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Abstract 29 

The Gram-negative bacterium Xylella fastidiosa colonizes plant xylem vessels and is 30 

obligately vectored by xylem sap-feeding hemipteran insects. X. fastidiosa causes diseases in 31 

many plant species but in a variety of its plant hosts this bacterium behaves as a commensal 32 

endophyte. Originally confined to the Americas, infecting mainly grapevine, citrus and coffee 33 

plants, X. fastidiosa has spread to several plant species in Europe, causing devastating crop 34 

diseases. Although many pathogenicity and virulence factors have been identified in X. 35 

fastidiosa which enable the bacterium to successfully establish in the xylem tissue, the 36 

mechanisms by which distinct X. fastidiosa strains colonize and cause disease in specific 37 

plant hosts have not been fully elucidated. Here we present comparative analyses of 94 38 

publicly available whole-genome sequences of X. fastidiosa strains with the goal of providing 39 

insights into plant host specificity determinants for this phytopathogen as well as of expanding 40 

the knowledge of its mobile genetic elements (MGE) content, mainly prophages. Our results 41 

revealed a pangenome of 4,549 protein coding sequences (CDSs) which is still open. The 42 

core- and accessory genomes comprise 954 and 2,219 CDSs, respectively. Phylogenetic tree 43 

construction using all core genome CDSs grouped the strains in three major clades of 44 

subspecies fastidiosa, multiplex and pauca, with subclades related to the strains’ sequence 45 

type (ST) obtained from multi-locus sequence typing (MLST). The geographic region where 46 

the strains were collected showed stronger association with the clades of X. fastidiosa strains 47 

rather than the plant species from which they were isolated. Among the CDS related to 48 

virulence and pathogenicity found in the core genome, those related to lipopolysaccharide 49 

(LPS) synthesis and trimeric autotransporter adhesins (TAA) are somewhat related with the 50 

plant host of a given strain according to phylogenetic inference. The X. fastidiosa accessory 51 

genome is represented by an abundant and heterogeneous mobilome, which includes a 52 

diversity of prophage regions. In summary, the genome comparisons reported here will enable 53 

a better understanding of the diversity of phylogenetically close genomes and warrant further 54 

investigation of LPS and TAAs as potential X. fastidiosa host-specificity determinants.  55 

 56 
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Impact statement 57 

The bacterium Xylella fastidiosa is a pathogen that infects many plant species and has caused 58 

devastating diseases in grapevine, citrus, coffee, and olive plants. This phytopathogen X. 59 

fastidiosa is original from the Americas and has emerged in Europe where it is causing severe 60 

economic losses for olive producers, mainly in Italy. Although many pathogenicity and 61 

virulence factors have been identified in X. fastidiosa, which enable this bacterium to 62 

successfully establish in the xylem vessels network, the mechanisms by which distinct X. 63 

fastidiosa strains colonize and cause disease in the different plant host species have not been 64 

fully elucidated. The comparative analyses of 94 whole-genome sequences from X. fastidiosa 65 

strains from diverse hosts and geographic regions provide insights into host specificity 66 

determinants for this phytopathogen as well as expand the knowledge of its mobile genetic 67 

elements (MGE) content, mainly prophages. Our results contribute for a better understanding 68 

of the diversity of phylogenetically close genomes and warrant further experimental 69 

investigation of lipopolysaccharide and trimeric autotransporter adhesins as potential host-70 

specificity determinants for X. fastidiosa.  71 

 72 

Data summary 73 

All genomic sequences were accessed from publicly available GenBank RefSeq database at 74 

NCBI (National Center for Biotechnology Information). A full listing of NCBI accession 75 

numbers for X. fastidiosa strains described in this paper is available in Table S1 (available in 76 

the online version of this article). 77 

 78 

Introduction 79 

Xylella fastidiosa is a Gram-negative bacterium in the Xanthomonadaceae family that 80 

colonizes the xylem vessels of its plant hosts and is exclusively vectored by xylem sap-feeding 81 

hemipteran insects [1, 2]. This bacterium causes several crop diseases, such as Pierce’s 82 

disease (PD) of grapevine [3], citrus variegated chlorosis (CVC) [4], coffee leaf scorch (CLS) 83 

[5], plum leaf scald (PLS) [6], and olive quick decline syndrome (OQDS) [7]. While X. 84 
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fastidiosa has also been associated with diseases in many other plant species, the bacterium 85 

behaves as a commensal endophyte in a variety of its plant hosts [8, 9]. 86 

 87 

A range of pathogenicity and virulence factors has been identified in X. fastidiosa that 88 

potentially enable the bacterium to overcome host defenses and successfully establish in the 89 

xylem tissue [1, 8, 10].  X. fastidiosa cells form biofilm-like structures that are crucial for 90 

successful acquisition and transmission by the insect vectors as well as for plant host 91 

colonization and pathogenesis [1, 11]. Progression of the disease symptoms are associated to 92 

X. fastidiosa systemic spread through the xylem vessel network which requires dispersal of 93 

bacterial cells from the biofilms [12-15] as well as twitching motility [16] and degradation of pit 94 

membranes by bacterial cell wall–degrading enzymes (CWDEs) [17, 18]. Moreover, symptoms 95 

severity is exacerbated by host-derived xylem occlusions (i.e., tyloses) elicited by X. fastidiosa 96 

colonization of grapevine [19]. Indeed, the symptoms caused by X. fastidiosa infection are 97 

suggestive of hydric stress and vary in intensity depending on pathogen genotype, plant host 98 

species/genotype, plant age, cultivation practices, and environmental conditions [10, 20]. 99 

 100 

Originally confined to the Americas, infecting mainly grapevine, citrus and coffee plants, X. 101 

fastidiosa has spread to various plants species in a number of European countries, possibly 102 

through the importation of infected plant material [8, 21, 22]. Currently, most of X. fastidiosa 103 

strains are categorized in three major subspecies fastidiosa, pauca and multiplex which are 104 

presumed to have originated in Central America (subsp. fastidiosa), South America (subsp. 105 

pauca) and North America (subsp. multiplex) [8, 9, 23]. Another two subspecies (subspp. 106 

sandyi and morus) native from North America have also been proposed [24, 25]. Furthermore, 107 

X. fastidiosa strains can be classified into sequence types (STs) based on a multilocus 108 

sequence typing (MLST) scheme with seven housekeeping genes [26, 27].  109 

 110 

There is a loose association of X. fastidiosa subspecies or STs with host specificity, yet some 111 

strains can infect multiple hosts [10, 28]. Indeed, intersubspecific homologous recombination 112 
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is known to drive X. fastidiosa adaptation to novel hosts [24, 29, 30]. However, the 113 

mechanisms by which the distinct X. fastidiosa strains successfully colonize specific plant 114 

hosts remain unclear. X. fastidiosa lacks the Type III secretion system (T3SS) [31], a 115 

membrane-embedded nanomachine typical of Gram-negative pathogens, which delivers 116 

effector proteins directly into host cells triggering or suppressing defense mechanisms, 117 

respectively in resistant or susceptible plants [32]. Instead, X. fastidiosa type II secretion 118 

system (T2SS) seems to be a relevant delivering source of its virulence proteins [10, 15, 33, 119 

34]. It has been suggested that compatibility between xylem pit membrane carbohydrate 120 

composition and X. fastidiosa T2SS-secreted cell wall degrading enzymes is necessary for 121 

disease progression [35]. Moreover, since X. fastidiosa lipopolysaccharide (LPS) long chain 122 

O-antigen effectively delays plant innate immune recognition in grapevine, the heterogeneity 123 

of O-antigen composition may be among the mechanisms underlying X. fastidiosa host range 124 

[36]. 125 

 126 

Comparative genomics studies of X. fastidiosa strains isolated from different plant hosts and 127 

from diverse geographical regions identified shared and exclusive genes among these strains, 128 

chromosome rearrangements, indels, single nucleotide polymorphisms (SNPs) as well as 129 

differences in their mobile genetic elements (MGE) repertoire, such as plasmids, genomic 130 

islands and prophages [22, 29, 30, 37-48]. While some studies suggest that strains belonging 131 

to a phylogenetic group have similar pathogenicity mechanisms and strong selection, possibly 132 

driven by host adaptation, and, therefore, can be separated in subspecies [45, 46], other 133 

studies identified differences in each phylogenetic clade, such as enriched molecular functions 134 

[43] and distinct rates and events of recombination [22, 29, 30, 47]. 135 

 136 

The availability of new whole genome sequences of X. fastidiosa strains from diverse plant 137 

hosts and distinct geographical regions fosters up-to-date comparisons to be made. Here we 138 

present a comparative analysis of 94 X. fastidiosa genomes with the goal of providing insights 139 

into host specificity determinants for this phytopathogen as well as expanding the knowledge 140 
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of its MGE content.  141 

 142 

Methods 143 

Data collection, curation, and annotation 144 

A collection of 132 X. fastidiosa genome assemblies were downloaded from National Center 145 

for Biotechnology Information (NCBI) RefSeq database [49] 146 

(https://www.ncbi.nlm.nih.gov/genome/genomes/173) accessed in 2021-07-19 (Table S1). 147 

This initial collection was curated following the workflow depicted in Fig. S1 to remove 148 

genomes of laboratory variants, redundancies, and assemblies with contamination ≥5%, or 149 

with ≥1% of ambiguous bases, or with less than 20 tRNA genes or missing any of the 3 rRNA 150 

genes. Contamination and completeness of genome assemblies were evaluated using 151 

CheckM software [50]. Ambiguous bases in the assemblies were evaluated using QUAST tool 152 

[51]. Genomes that were not selected in the first curation round but represented a non-153 

redundant strain, host or geographical region and had an associated publication were 154 

retrieved and included in the final curated collection, making a total of 94 genome assemblies 155 

(Table S1; Table 1). This final collection was annotated using Prokaryotic Genome Annotation 156 

Pipeline (PGAP) [52] standalone software package (https://github.com/ncbi/pgap), release 157 

2021-07-01.build5508. 158 

  159 

Genome comparisons 160 

Comparative genomics analyses, pangenome, core genome and accessory genome 161 

reconstruction were performed using the Gene Tags Assessment by Comparative Genomics 162 

(GTACG) framework (https://github.com/caiorns/GTACG-backend). GTACG is based on an 163 

algorithm that uses clustering coefficient to find and maximize the number of orthologous 164 

groups in genomes from closely related strains [53]. The PGAP annotated genomes were 165 

uploaded in GTACG framework, and the protein coding sequences (CDSs) were compared 166 

using standalone BLASTP tool [54] with an e-value threshold of 1e-10. The clustering tool in 167 

GTACG framework was used to find a threshold that maximizes the cluster coefficient of each 168 
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cluster. We found that a threshold of 45% of the alignment length was enough to produce 169 

concise homologous clusters. Metadata information of the X. fastidiosa strains (Table S1) 170 

such as plant host, country of isolation and sequence type (ST) were retrieved from NCBI 171 

RefSeq database, public databases for molecular typing and microbial genome diversity 172 

(PubMLST) [27] and from the literature, manually curated and analyzed together with the 173 

information provided by the GTACG framework.  174 

 175 

Phylogenetic analyses 176 

Amino acid sequences of core genome orthologous CDSs were aligned with Clustal Omega 177 

v.1.2.1 [55] using default parameters. For maximum-likelihood (ML) phylogenies, the 178 

alignments were concatenated and computed using IQ-TREE v.1.5.4 [56] with a model 179 

predicted by ModelFinder and an ultrafast bootstrap of 1,000 replicates [57].  180 

 181 

Functional Annotation 182 

Orthologous protein clusters encoded by the core, accessory and singleton genomes were 183 

compared to the Clusters of Orthologous Groups (COGs) [58] database using rpsblast+ 184 

(BLAST version 2.9.0) [54], with a cut-off e-value of 1e-6. COG categories were assigned to 185 

the best hits of rpsblast+ analysis. 186 

 187 

Mobile genetic elements prediction 188 

Mobile Genetic Elements (MGE), such as prophages, genomic islands (GI) and insertion 189 

sequences (IS) were identified in the genome assemblies by a combination of prediction tools 190 

coupled with manual curation as previously described [59]. Prophage regions were predicted 191 

with Virsorter2 [60] and PHASTER [61]. Inovirus_detector software 192 

(https://github.com/simroux/Inovirus) was used for identification of prophages from the 193 

Inoviridae family (filamentous single-stranded DNA phages) [62]. GI consensus regions were 194 

defined using the results of SeqWord Sniffer [63] and GIPSy [64] software, which was used to 195 

assign one or more categories related to GI potential function. GI regions overlapping to 196 
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prophages sequences were not considered. IS regions were predicted using the ISEScan [65] 197 

software. MGE regions predicted in each genome assembly were mapped in the genome for 198 

visual inspection and manual curation. Nucleotide sequences of prophages, GIs and ISs were 199 

compared to explore homology relationships using BLAST all-vs-all. The BLAST hits with an 200 

identity and coverage alignment higher than 40% and 75%, respectively, were filtered, 201 

analyzed and the resulting sequence similarity network (SSN) was visualized with Cytoscape 202 

3.8 software [66]. Finally, the most frequent prophages and genomic islands were retrieved for 203 

the evaluation of their gene content. Taxonomic classification of selected prophages was 204 

performed with vContact2 [67] and with PhaGCN [68]. 205 

 206 

Prospection of anti-MGE defense systems 207 

CRISPR-Cas systems were searched with the software CRISPRFinder 208 

(http://crispr.i2bc.paris-saclay.fr/Server/) [69]. Hidden Markov Models (HMM) matrices were 209 

built to analyze known antiphage defense systems such as superinfection exclusion (SIE), 210 

Disarm, Brex, pAgos, Abortive Infection (Abi), Hachiman, Shedu, Septu, Lamassu, Druantia, 211 

Gabyja, Zorya and Wadjet [70]. To create HMM matrices, we recovered FASTA files with the 212 

amino acid sequences of each system from NCBI and IMG/M (Integrated Microbial Genomes 213 

& Microbiomes) databases [71] and created an alignment for a set of sequence of each 214 

system, which was then compared against the X. fastidiosa genomes. PICI elements (Phage-215 

inducible chromosomal islands) were searched in X. fastidiosa genomes using an in-house 216 

Python pipeline that enables detection of the main PICI features [72]. Restriction-modification 217 

(R-M) systems were searched with BLASTP against the REBASE [73] database. 218 

 219 

RESULTS AND DISCUSSION 220 

General features of X. fastidiosa genomes 221 

The main features of genome assemblies as well as plant host and country of isolation of 132 222 

X. fastidiosa strains publicly available until 2021-07-19 in NCBI RefSeq database are 223 

summarized in Table S1. This collection was curated following the pipeline depicted in Figure 224 
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S1 (to remove redundancies as well as genomes of laboratory variants) and 94 genome 225 

assemblies were selected for further analyses (Table S1; Table 1). These are high-quality 226 

draft genome sequences [74] given they present high completeness (>98%) and low 227 

contamination (<1.45%) according to CheckM [50] analysis. The average chromosome size of 228 

the selected 94 assemblies is 2,537,252 bp ± 90,235 bp with an average GC content of 229 

51.88% ± 0.36. Strains Hib4 (isolated from Hibiscus spp.) and Griffin-1 (isolated from Quercus 230 

rubra) have, respectively, the largest (2,813,286 bp) and smallest (2,387,314 bp) chromosome 231 

sizes. While 46 strains of the selected genome assemblies do not include plasmid related-232 

contigs, the number of plasmids in the other strains is 1 (34 strains), 2 (9 strains), and 4 (5 233 

strains), which include conjugative and mobilizable as well as non-mobilizable plasmids [42]. 234 

Chromosomes of the selected genomes have 2,291 ± 131 CDS and 110 ± 45 protein coding 235 

pseudogenes annotated by PGAP [52]. These results indicate a reasonable homogeneity in 236 

the genomes of distinct X. fastidiosa strains in relation to their chromosome sizes and GC 237 

content. In contrast, the plasmid content shows a greater diversity among strains consistent 238 

with previous observations [42]. 239 

 240 

X. fastidiosa pangenome and core genome 241 

The pangenome of X. fastidiosa (number of orthologous CDSs clusters present in the 94 242 

genomes) was calculated using GTACG framework [53], considering chromosome and 243 

plasmids CDSs, since pangenomes are composites of the host chromosome together with 244 

MGEs [75]. The pangenome growth curve has not yet reached saturation (Fig.1a), indicating 245 

that the X. fastidiosa pangenome can be considered open and comprises 4,549 orthologous 246 

CDSs. The core genome curve (Fig. 1b) reveals that 954 CDSs belong to the core genome 247 

(conserved orthologous CDSs present in all 94 genomes). The pangenome frequency plot 248 

(Fig. 1c) shows the typical U-shape where 30.25% and 20.97% of pangenome p CDSs are 249 

detected, respectively, in a single genome (singleton genome) and in all genomes (core 250 

genome). Calculation of the soft-core genome (conserved orthologous CDSs present 95% of 251 

the selected genomes, i.e., 89 genomes) showed 1,567 CDSs (34.4% of the pangenome). 252 
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The values for core genome as well as the pangenome frequency values we report here are 253 

somewhat different than previously reported [30, 43, 48] because we have used different 254 

algorithms for genome annotation and clustering of orthologous CDSs as well as a larger 255 

number of genomes. 256 

  257 

Genome-scale phylogeny  258 

The core genome (954 CDSs) was used for a genome-scale phylogeny. The Maximum 259 

Likelihood (ML) tree (Fig. 2) grouped the 94 X. fastidiosa strains in three major clades defined 260 

by strains from the subspecies fastidiosa, multiplex and pauca. The strains from subspecies 261 

morus and sandyi grouped in subclades of the major subsp. fastidiosa clade. The overall 262 

topology of this core-genome based phylogeny tree agrees with a previously reported 263 

genome-wide phylogeny of 21 X. fastidiosa strains [45] and a k-mers based phylogeny of 72 264 

X. fastidiosa strains [30]. 265 

 266 

Information of ST, country of isolation and host of origin for each strain (Table S1) were 267 

integrated to the genome-scale phylogeny (Fig. 2) as an attempt to highlight correlations, if 268 

any, among strain features and their phylogenetic relationship. We observe that most of the 269 

subclades are congruent with groups of the STs as well as country of isolation. For example, 270 

strains of ST1 belong to subclades of subsp. fastidiosa major clade and have been isolated in 271 

USA and Spain. Both ST6 and ST7 strains are in subclades of subsp. multiplex along with 272 

strains from USA, Spain and France. ST11, ST14 and ST53 were distributed among strains of 273 

subspecies pauca, which the first two STs are from strains isolated in Brazil while ST53 274 

strains were isolated from Costa Rica and Italy. The strains from Italy were grouped with 275 

Costa Rica strains, corroborating the reported introduction of X. fastidiosa in Italy originating 276 

from Costa Rica [76]. Similarly, IVIA5235 (ST1; subsp. fastidiosa) isolated in Spain was 277 

possibly imported from North America as previously suggested [22]. In the case of STs 278 

represented by a single strain, most of them, such as ST5 (Ann-1), ST8 (sycamore-Sy-VA), 279 

ST43 (BB08-1), ST69 (Fb7), ST70 (Hib4), ST74 (CFBP8072) and ST76 (CFBP8356), are 280 
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found in a branch by themselves. 281 

 282 

The core-based phylogeny indicates a weak association between host of origin with the major 283 

clades in the genome-scale ML tree (Fig.2). Some strains isolated from Coffea, Citrus, Olea, 284 

Vitis, and Morus belong to monophyletic clades. It has been shown that citrus and coffee 285 

strains from subspecies pauca seem to be limited to their original hosts, despite crop proximity 286 

and the presence of insect vectors [77, 78]. On the other hand, the core-based phylogeny also 287 

indicates that some strains isolated from Coffea, Prunus, and Nerium are distributed into the 288 

three distinct major clades. There is evidence that some strains can infect multiple hosts [28, 289 

79, 80] and that intersubspecific homologous recombination drives X. fastidiosa adaptation to 290 

novel hosts [24, 29, 30].  291 

 292 

Virulence factors as potential host specificity determinants  293 

We found that the vast majority (90%; 63/70) of the CDSs listed in Table S2, which were 294 

identified or predicted to be virulence and pathogenicity factors for X. fastidiosa [10, 34, 36, 295 

38, 81-84], belong either to the core or soft-core genomes. The lack of CDSs in some strains 296 

is mostly due to pseudogenization (data not shown). We highlight the polygalacturonase 297 

(PD1485 in Temecula1 strain) ortholog, previously reported to carry a frameshift mutation [38], 298 

which is confirmed as a pseudogene in strains from subspecies pauca isolated from citrus 299 

(strains 9a5c, U24D, Fb7, J1a12, B111, CVC0251, CVC0256, 11399 and XRB), coffee 300 

(strains 32 and 3124), and vinca (strain CFBP8078). All other strains from subspecies pauca 301 

such as Pr8x, 6c, Hib4, COF0324, CFBP8072, CODIRO and De-Donno harbor an intact 302 

polygalacturonase sequence, similarly to all other strains analyzed in this study from subsp. 303 

multiplex and fastidiosa. Polygalacturonase has been shown to be a critical virulence factor for 304 

X. fastidiosa pathogenesis in grapevine [18]; therefore, we hypothesize that another cell wall-305 

degrading enzyme, such as a putative pectin-lyase [85], may perform that function in the 306 

strains that carry the frameshift mutation. 307 

 308 
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Each of the orthologous clusters of CDSs related to virulence/pathogenicity (Table S2) that 309 

belong to core or soft-core genomes was used for a separate phylogeny reconstruction. The 310 

resulting ML trees were inspected to verify evidence, if any, of association of clades and 311 

subclades with specific plant hosts. Among dozens of trees, we found that a few may reflect 312 

the kind of association we were looking for, such as the trees reconstructed with CDSs related 313 

to LPS biosynthesis and CDSs of the three trimeric autotransporter adhesins (TAA) (Fig.3)  314 

 315 

The ML trees (Fig. 3a) obtained with orthologous clusters of CDSs encoding the afimbrial 316 

adhesins xadA1 (PD0731), xadA2 (PD0744) and xadA3 (PD0824) suggest that these genes, 317 

particularly xadA1 and xadA3, are potential determinants of host specificity. These afimbrial 318 

adhesins mediate X. fastidiosa cell-cell aggregation and adhesion to surfaces during biofilm 319 

formation [11, 86].  The orthologs of PD0814 (O-antigen ligase family protein), PD0815 320 

(Glycosyltransferase family 2 protein) and PD0816 (CDP-glycerol glycerophosphotransferase 321 

family protein), which are related to LPS biosynthesis, generated ML trees (Fig. 3b) that also 322 

suggest these genes, particularly the O-antigen ligase, as potential determinants of host 323 

specificity. It has been shown that O-antigen delays plant innate immune recognition in 324 

grapevine and as such the heterogeneity of O-antigen composition may be related to X. 325 

fastidiosa host range [36]. Overall, our results suggest that differences in the sequences of 326 

virulence-related genes may contribute to define X. fastidiosa host-specificity.  327 

 328 

Unraveling X. fastidiosa accessory genome and its mobile genetic elements 329 

The distribution of core, singleton and accessory genomes of the 94 strains among COG 330 

functional categories is depicted in Fig. 4. As expected, the COG functional categories of 331 

highly conserved biological processes, such as “Translational, ribosomal structure, and 332 

biogenesis” (category J), and “Cell wall/membrane/envelope biogenesis” (category M) 333 

comprise a substantial fraction of the core genome in comparison to the accessory genome. In 334 

contrast, the accessory genome is enriched in category X (Mobilome: prophages, 335 

transposons), comprising ~15%. Other categories also enriched in the accessory genome are 336 
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“Replication, recombination and repair” (category L) and “Defense mechanisms” (category V) 337 

which is suggestive of the ability of X. fastidiosa strains to cope with stress conditions in 338 

distinct environments.  339 

 340 

The enrichment of the accessory genome in the mobilome-associated CDSs (COG category 341 

X) prompted us to explore the full set of MGEs (prophages, genomic islands, insertion 342 

sequences) in the genome assemblies of the 94 X. fastidiosa strains. Using a combination of 343 

prediction tools, sequences related to prophages, GIs, ISs, and plasmids were identified in the 344 

genome assemblies. We found that the content of MGEs varies considerably among the 345 

strains, ranging from ~5% to ~40% of the genome, with a mean value of 19.2% ± 8.3. Among 346 

the strains with the higher MGE content are RH1, J1a12, Fb7 and MUL0034 (Fig. 5).   347 

 348 

X. fastidiosa genome assemblies harbor 9 ± 2 prophage-related regions. Among the strains 349 

with complete genomes, IVIA5901, Hib4, MUL0034, and RH1 have the greatest number of 350 

prophage regions (10 regions) while the strains with the least prophage regions are Salento-1, 351 

Salento-2, De-Donno (5 regions). A previous study reported 6 and 8 prophage-like regions in 352 

complete genomes of 9a5c and Temecula1, respectively [87] and a comparison of 72 X. 353 

fastidiosa genomes revealed an average of 9.5, 9.3 and 8.5 prophage regions, respectively, 354 

for strains from subsp. fastidiosa, multiplex and pauca [30]. 355 

 356 

The MGEs identified in the genome assemblies of the 94 strains were then grouped in a 357 

sequence similarity network (SSN). Fig. 6 shows the clusters representing the predicted X. 358 

fastidiosa mobilome. While some sequences are conserved in various strains (clusters in Fig. 359 

6) several are unique to a particular strain (shown in the bottom of Fig. 6). The sizes of these 360 

MGE sequences vary from ~4 kbp to 100 kbp for prophages and genomic islands, 100 bp to 361 

4.8 kbp for insertion sequences, and 1 kbp to 64.3 kbp for plasmids (data not shown).  Most of 362 

the MGEs clusters are from GIs with an average size of 23.7 kbp ± 11. A few GIs seem to be 363 

related to pathogenicity/virulence or to antibiotic resistance, such as cluster 1, cluster 10, and 364 
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cluster 17, which harbor CDSs encoding efflux RND transporter and toxin-antitoxin systems. 365 

ISs appear distributed mainly in six clusters with tightly connected nodes (clusters 4, 9, 12, 13, 366 

15, and 16) showing ISs commonly found among X. fastidiosa genomes. Several ISs of the 367 

clusters 4 and 8 are found within other MGEs such as prophages or genomic islands, while 368 

the other ISs were found in the chromosome. The ISs from clusters 4 and 8 belong to the 369 

IS200/IS605 family which is widely spread in Bacteria and Archaea [88]. Members of this 370 

family are unusual because they use obligatory single-strand DNA intermediates, which 371 

distinguishes them from classical IS [88].  372 

 373 

A closer examination of clusters 2, 8, 11, and 18 (Fig. 6) reveals that their prophage 374 

sequences carry lysozyme and holin proteins, commonly found in temperate and lytic 375 

bacteriophages. The sequences grouped in these 4 clusters belong from strains isolated from 376 

diverse countries such as Brazil, Mexico, Costa Rica, Italy, Spain and USA, and also in 377 

Taiwan in the case of clusters 2 and 11.  378 

 379 

Cluster 7 groups prophages classified as inoviruses [62] and identified in 68 of the 94 380 

genomes analyzed. Some inoviruses are present in two copies in a same strain such as 381 

Salento-1 and Salento-2 which could suggest superinfection events. It remains to be 382 

investigated whether multiple prophage carriage confers any fitness advantage to X. 383 

fastidiosa, as has been observed for Pseudomonas aeruginosa, where multiple prophage 384 

carriage seems to be beneficial during mixed bacterial infections [89]. Inoviruses play a 385 

relevant role in the structure in P. aeruginosa biofilm [90] and have been reported to encode 386 

Zonula occludens toxin (Zot) in several Vibrio species [91]. Zot protein seems to play a dual 387 

function as it is essential for inovirus morphogenesis and has also been reported to contribute 388 

for Vibrio cholerae pathogenesis [92, 93]. Zot-like CDSs are annotated in multiple inoviruses 389 

distributed among X. fastidiosa strains (data not shown). Zot proteins have been postulated as 390 

virulence factors for plant pathogens [94], including X. fastidiosa [41]. It is worth noting that 391 

EB92-1, a proposed X. fastidiosa biocontrol strain, lacks both Zot genes found in Temecula1 392 
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strain (PD0915 and PD0928) and as such Zot has been suggested as a potential X. fastidiosa 393 

virulence factor [95]. Moreover, a X. fastidiosa Zot protein was shown to elicit cell death-like 394 

responses in the apoplast of some Nicotiana tabacum cultivars [33]. Besides Zot, other 395 

prophage-encoded genes may play a role in the biology of X. fastidiosa as observed in other 396 

bacteria, where the so called “moron” loci have been related to virulence, stress resistance, 397 

phage resistance and host adaptation [96-98]. More studies are necessary to understand the 398 

contribution of “moron” loci, such as Zot genes, as well as events of prophage induction to X. 399 

fastidiosa biology. There is experimental evidence X. fastidiosa releases phage particles [99, 400 

100] but the impact of prophage induction in host colonization is unknown. 401 

 402 

Immunity systems prospection in X. fastidiosa genomes 403 

Since X. fastidiosa strains harbor numerous MGE, we made a screening of the well-known 404 

immunity systems in Gram-negative bacteria to evaluate X. fastidiosa strategy to deal with 405 

mobile genetic elements. Figure 7 shows the screening results for 46 X. fastidiosa genome 406 

assemblies. The SuperInfection Exclusion (SIE), Abortive infection, pAGOs, DISARM and 407 

BREX systems [101-105] are absent in all X. fastidiosa strains analyzed in this study. The 408 

same was observed for the recently reported systems HACHIMAN, SHEDU, SEPTU, 409 

LAMASSU and DRUANTIA [70]. Although we have found genes coding for proteins of the 410 

systems GABYJA and ZORYA [70] in all X. fastidiosa strains analyzed, none were inside an 411 

operon, and as such cannot be considered as true systems. The proteins gp41, gp42 and 412 

gp43 previously described as part of a SIE system operon in X. fastidiosa strain 53 [100] are 413 

found in several of the strains we have analyzed, although not as a complete operon and also 414 

not considered as true systems. We created HMM clusters and used them against all strains 415 

genomes searching for phage-inducible chromosomal islands (PICI) elements [72]. Although 416 

they are commonly found in Gram-negative bacteria, our analysis did not detect PICI elements 417 

in X. fastidiosa genomes.  418 

 419 

A survey of Restriction-Modification systems (R-M system types I, II and III) [73, 106] in the 46 420 
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genome assemblies showed that all strains possess at least one of the three main R-M 421 

system types (Fig. 7) as previously reported for 9a5c and Temecula1 strains [107]. The type II 422 

is usually found in multiple operons per genome, while the type III is observed in a single 423 

operon per genome. We also searched for CRISPR sequences and genes encoding Cas 424 

proteins [69]. All potential CRISPR candidates found in the 94 genomes assemblies are not 425 

true CRISPRs according the CRISPRfinder tool [69]. Moreover, although  426 

genes encoding Cas-like proteins were found in some X. fastidiosa strains, they are not in the 427 

vicinity of any CRISPR candidates. Cas proteins are required for the functionality of the 428 

CRISPR/Cas immunity system [108]. Thus, similarly to major bacterial lineages [109], X. 429 

fastidiosa lacks a functional CRISPR-Cas viral defense system, which may contribute its 430 

permissiveness in prophage acquisition. Moreover, despite the fact that X. fastidiosa genomes 431 

encode R-M systems, a mechanism of immunity known to prevent both lytic and lysogenic 432 

infections in individual bacteria, it is reported to increase the number of prophage-acquiring 433 

individuals at the population level [110].  434 

 435 

We also investigated the presence of the WADJET system reported to act against foreign 436 

plasmidial DNA [70]. This system was found in most of the X. fastidiosa strains we analyzed, 437 

except in ATCC35879, OLS0479, CVC0256 and 6c (Fig. 7). Strains OLS0479, CVC0256 do 438 

not have WADJET system, which may contribute to harboring 4 plasmids each.  439 

 440 

Final remarks 441 

The comparative analyses of 94 publicly available whole-genome sequences of X. fastidiosa 442 

strains revealed an open pangenome with 4,549 protein coding sequences (CDS). A core 443 

genome-scale phylogeny grouped these X. fastidiosa strains in three major clades defined by 444 

strains from the subspecies fastidiosa, multiplex and pauca consistent with previous k-mers 445 

based phylogeny of 72 X. fastidiosa strains [30]. Most of the subclades are congruent with 446 

groups of the STs as well as country of origin. Moreover, the geographic region where the 447 

strains were collected showed stronger association with the clades of X. fastidiosa strains 448 
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rather than the plant species from which they were isolated. The vast majority of the CDSs 449 

identified or predicted to be virulence and pathogenicity factors for X. fastidiosa belong either 450 

to the core or soft-core genomes. Among the CDS related to virulence and pathogenicity 451 

found in the core genome, those related to lipopolysaccharide (LPS) synthesis and trimeric 452 

autotransporter adhesins (TAA) are somewhat related with the plant host of a given strain 453 

according to phylogenetic inference, and as such may contribute to define X. fastidiosa host 454 

specificity. Finally, we found that the content of MGEs varies considerably among the strains, 455 

ranging from ~5% to ~40% of the genome assemblies and includes a diversity of sequences 456 

related to prophages, GI, IS and plasmids. It is worth noting the inoviruses sequences are 457 

found in all analyzed strains and that they encode a Zot protein which has been suggested to 458 

be a virulence factor for X. fastidiosa.  459 

 460 

Overall, the comparative analyses of 94 whole-genome sequences from X. fastidiosa strains 461 

from diverse hosts and geographic regions provide insights into host specificity determinants 462 

for this phytopathogen as well as expand the knowledge of its mobile genetic elements (MGE) 463 

content. Our results contribute for a better understanding of the diversity of phylogenetically 464 

close genomes and warrant further experimental investigation of lipopolysaccharide and 465 

trimeric autotransporter adhesins as potential host-specificity determinants for X. fastidiosa.  466 

 467 
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Figure Legends 853 

Fig. 1. Pangenome and core-genome of 94 Xylella fastidiosa strains. Pangenome (a) and 854 

core genome (b) curves. Each boxplot represents the distribution of the number of 855 

orthologous CDSs clusters added (pangenome) or in common (core genome) with the addition 856 

of new genomes. Pangenome frequency plot (c). Number of orthologous CDSs detected in a 857 

single genome (left) and in all analyzed genomes (right). 858 

 859 

Fig. 2. Core genome-scale phylogeny. Amino acid sequences of 954 CDSs of X. fastidiosa 860 

(94 strains) core genome were used for a Maximum Likelihood (ML) phylogenetic 861 

reconstruction. The three major clades grouped strains from subspecies fastidiosa, multiplex 862 

and pauca. Information of sequence type (ST), country of isolation and host of origin for each 863 

strain (Table 1) are represented by the squares followed by the indicated color legends.  864 

 865 

Fig. 3. Phylogeny reconstruction of selected CDS. Maximum Likelihood (ML) phylogenetic 866 

reconstruction of CDS of three trimeric autotransporter adhesins (TAA) (a) and CDS related to 867 
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LPS biosynthesis (b). Information of host of origin for each strain (Table 1) represented by the 868 

squares follow the indicated color legend shown in Fig. 2.  869 

 870 

Fig. 4. Distribution of core, singleton and accessory genomes of the 94 genomes strains 871 

among Clusters of Orthologous Groups (COG) functional categories. [J] Translation, 872 

ribosomal structure and biogenesis; [M] Cell wall/membrane/envelope biogenesis; [E] Amino 873 

acid transport and metabolism; [H] Coenzyme transport and metabolism; [R] General function 874 

prediction only; [O] Posttranslational modification, protein turnover, chaperones; [C] Energy 875 

production and conversion; [L] Replication, recombination and repair; [P] Inorganic ion 876 

transport and metabolism; [G] Carbohydrate transport and metabolism; [T] Signal transduction 877 

mechanisms; [K] Transcription; [I] Lipid transport and metabolism; [F] Nucleotide transport and 878 

metabolism; [N] Cell Motility; [U] Intracellular trafficking, secretion, and vesicular transport;  [V] 879 

Defense mechanisms; [D] Cell cycle control, cell division, chromosome partitioning; [W] 880 

Extracellular structures; [Q] Secondary metabolites biosynthesis, transport and catabolism; [X] 881 

Mobilome: prophages, transposons; [A] RNA processing and modification; [Z] Cytoskeleton; 882 

[Y] Nuclear structure; [B] Chromatin structure and dynamics; [S] Function unknown. 883 

 884 

Fig. 5 Percentage of mobile genetics elements distributed among the X. fastidiosa strains 885 

according to their genome assembly level: complete, scaffold and contig. 886 

 887 

Fig. 6 Sequence Similarity Network of the X. fastidiosa mobilome. Prophage, genomic islands, 888 

insertion sequences and plasmids as indicated by distinct colors. Nodes correspond to each 889 

of the distinct MGEs predicted in the 94 strains analyzed, the edges represent the similarity of 890 

nucleotide sequence with more than 75% of identity and 40% of the coverage, and evalue < 891 

1e-6.  892 

 893 

Fig. 7. Circus plot showing the distribution of the different immunity systems in the genomes of 894 

X. fastidiosa strains. 895 
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Strain name Assembly accession Genome assembly 
status

Plasmid 
number

Country of 
isolation Host of origin Sequence 

Type
32 GCA_000506405 Contig 0 Brazil Coffea sp 16
3124 GCA_001456195 Complete 0 Brazil Coffea arabica 16
11399 GCA_001684415 Contig 2 Brazil Citrus sinensis 11
6c GCA_000506905 Contig 1 Brazil Coffea sp 14
9a5c GCA_000006725 Complete 2 Brazil Citrus sinensis 13
AlmaEM3 GCA_018069645 Complete 0 USA Vaccinium sp 42
Ann-1 GCA_000698805 Complete 1 USA Nerium sp 5
ATCC-35871 GCA_000428665 Scaffold 0 USA Prunus sp 41
ATCC-35879 GCA_011801475 Complete 1 USA Vitis sp 2
B111 GCA_013283685 Scaffold 2 Brazil Citrus sinensis 11
Bakersfield-1 GCA_009664125 Complete 1 USA Vitis vinifera 1
Bakersfield-11 GCA_015476015 Complete 1 USA Vitis vinifera 1
Bakersfield-13 GCA_015475995 Complete 1 USA Vitis vinifera 1
Bakersfield-14 GCA_015475975 Complete 1 USA Vitis vinifera 1
Bakersfield-8 GCA_015476035 Complete 1 USA Vitis vinifera 1
BB01 GCA_001886315 Scaffold 0 USA Vaccinium corymbosum 42
BB08-1 GCA_018069665 Complete 0 USA Vaccinium sp 43
CFBP7970 GCA_004016315 Contig 1 USA Vitis sp 2
CFBP8071 GCA_004016295 Contig 1 USA Prunus dulcis 1
CFBP8072 GCA_001469345 Scaffold 0 Ecuador Coffea arabica 74
CFBP8073 GCA_001469395 Scaffold 0 Mexico Coffea canephora 75
CFBP8078 GCA_004016365 Contig 0 USA Vinca sp 51
CFBP8082 GCA_004016375 Contig 1 USA Ambrosia artenisiifolia 2
CFBP8351 GCA_004016405 Contig 1 USA Vitis vinifera 1
CFBP8356 GCA_004016415 Scaffold 0 Costa-Rica Coffea arabica 76
CFBP8416 GCA_001971475 Contig 0 France Polygala myrtifolia 7
CFBP8417 GCA_001971505 Contig 0 France Spartium junceum 6
CO33 GCA_001417925 Contig 0 Costa-Rica Coffea sp 72
CoDiRO GCA_000811965 Contig 1 Italy Olea sp 53
COF0324 GCA_001549815 Contig 4 Brazil Coffea sp 14
COF0407 GCA_001549825 Contig 4 Costa-Rica Coffea sp 53
CVC0251 GCA_001549765 Contig 4 Brazil Citrus sinensis 11
CVC0256 GCA_001549745 Contig 4 Brazil Citrus sinensis 11
De-Donno GCA_002117875 Complete 1 Italy Olea europaea 53
Dixon GCA_000166835 Scaffold 1 USA Prunus sp 6
DSM-10026 GCA_900129695 Scaffold 0 USA Vitis vinifera 2
EB92-1 GCA_000219235 Contig 1 USA Sambucus canadensis 1
ESVL GCA_004023385 Contig 2 Spain Prunus dulcis 6
Fb7 GCA_001456335 Complete 1 Argentina Citrus sp 69
Fillmore GCA_012974105 Complete 0 USA Olea europaea 81
GB514 GCA_000148405 Complete 1 USA Vitis sp 1
Griffin-1 GCA_000466025 Contig 0 USA Quercus rubra 7
GV156 GCA_009910885 Contig 0 Taiwan Vitis vinifera 2
GV230 GCA_014249995 Complete 0 Taiwan Vitis labrusca 2
Hib4 GCA_001456315 Complete 1 Brazil Hibiscus sp 70
IAS-AXF212H7 GCA_009669445 Contig 1 Spain Prunus dulcis 6
IAS-AXF-235T10 GCA_009669465 Contig 1 Spain Prunus dulcis 6
IVIA5235 GCA_003515915 Complete 1 Spain Prunus avium 1
IVIA5901 GCA_004023395 Complete 0 Spain Prunus dulcis 6
IVIA6586-2 GCA_009669335 Contig 2 Spain Helicrysum italicum 6
IVIA6731 GCA_009669375 Contig 2 Spain Helicrysum italicum 6
J1a12 GCA_001456235 Complete 2 Brazil Citrus sp 11
LM10 GCA_012974145 Complete 0 USA Olea europaea 7
M12 GCA_000019325 Complete 0 USA Prunus sp 7
M23 GCA_000019765 Complete 1 USA Prunus sp 1
Ma151 GCA_018449095 Contig 0 Italy Rhamnus alaternus 87
MUL0034 GCA_000698825 Complete 1 USA Morus alba 30
Mul-MD GCA_000567985 Contig 0 USA Morus alba 29
NOB1 GCA_012952075 Scaffold 0 USA Vitis rotundifolia 2
OK3 GCA_012952085 Scaffold 0 USA Vitis vinifera 2
OLS0478 GCA_001549755 Contig 2 Costa-Rica Nerium sp 53
OLS0479 GCA_001549735 Contig 4 Costa-Rica Nerium sp 53
PD7202 GCA_006370235 Contig 0 Netherlands Plant tissue undetermined
PD7211 GCA_006370175 Contig 0 Netherlands Plant tissue 73
Pr8x GCA_001456295 Complete 1 Brazil Prunus sp 14
RAAR14-plum327 GCA_009695495 Contig 0 Brazil Prunus domestica 26
RAAR6-Butte GCA_009695485 Contig 0 USA Prunus dulcis 7
Red-Oak-2 GCA_015475935 Complete 0 USA Quercus rubra 7
RH1 GCA_012974125 Complete 0 USA Olea europaea 7
Riv5 GCA_015475955 Complete 1 USA Prunus cerasifera 34
Salento-1 GCA_002954185 Complete 1 Italy Olea europaea 53
Salento-2 GCA_002954205 Complete 1 Italy Olea europaea 53
Stag-s-Leap GCA_001572105 Contig 1 USA Vitis sp 1
sycamore-Sy-VA GCA_000732705 Contig 0 USA Platanus occidentalis 8
Temecula1 GCA_000007245 Complete 1 USA Vitis sp 1
Temecula1Star GCA_006370185 Contig 0 USA Vitis sp 1
TemeculaL GCA_006370155 Scaffold 0 USA Vitis sp 1
TOS14 GCA_007713995 Contig 0 Italy Spartium junceum 87
TOS4 GCA_007713905 Contig 0 Italy Prunus dulcis 87
TOS5 GCA_007713945 Contig 0 Italy Polygala myrtifolia 87
TPD3 GCA_007845655 Contig 0 Taiwan Vitis vinifera 2
TPD4 GCA_007845705 Contig 0 Taiwan Vitis vinifera 2
U24D GCA_001456275 Complete 1 Brazil Citrus sinensis 13
VB11 GCA_012952095 Scaffold 1 USA Vitis vinifera 2
WM1-1 GCA_006370215 Contig 0 USA Vitis sp 2
XF3348 GCA_009669515 Contig 1 Spain Prunus dulcis 81
XRB GCA_013283695 Scaffold 2 Brazil Citrus sp 11
XYL1732 GCA_003973705 Contig 0 Spain Vitis sp 1
XYL1752 GCA_009669505 Contig 1 Spain Prunus dulcis 81
XYL1968-18 GCA_014856935 Contig 0 Spain Olea europaea 81
XYL1981 GCA_009669455 Contig 0 Spain Ficus carica 81
XYL2055 GCA_003973695 Contig 0 Spain Vitis sp 1
XYL2107-18 GCA_014856795 Scaffold 0 Spain Prunus dulcis 1
XYL2153-18 GCA_014856785 Scaffold 0 Spain Vitis vinifera 1

Table 1. Final curated collection of Xylella fastidiosa  genome assemblies
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