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Abstract 23 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging 24 

RNA virus causing COVID-19 disease across the globe. SARS-CoV-2 infected 25 

patients exhibit acute respiratory distress syndrome which can be compounded by 26 

endemic respiratory viruses and thus highlighting the need to understand the genetic 27 

bases of clinical outcome under multiple respiratory infections. In this study, 42 28 

individual datasets and a multi-parametric based selected list of over 12,000 genes 29 

against five medically important respiratory viruses (SARS-CoV-2, SARS-CoV-1, 30 

influenza A, respiratory syncytial virus (RSV) and rhinovirus were collected and 31 

analysed in an attempt to understand differentially regulated gene patterns and to 32 

cast genetic markers of individual and multiple co-infections. While a certain cohort 33 

of virus-specific genes were regulated (negatively and positively), notably results 34 

revealed a greatest correlation among gene regulation by SARS-CoV-2 and RSV. 35 

Furthermore, out of analysed genes, the MAP2K5 and NFKBIL1 were specifically 36 

and highly upregulated in SARS-CoV-2 infection in vivo or in vitro. In contrast, 37 

several genes including GPBAR1 and SC5DL were specifically downregulated in 38 

SARS-CoV-2 datasets. Additionally, we catalogued a set of genes that were 39 

conserved or differentially regulated across all the respiratory viruses. These finding 40 

provide foundational and genome-wide data to gauge the markers of respiratory viral 41 

infections individually and under co-infection.  42 

Key Words: SARS-CoV-2, SARS-CoV-1, Influenza, RSV, Rhinovirus, COVID-19, 43 

Transcriptomics. 44 
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1. Background 51 

Since its first appearance in Wuhan, severe acute respiratory syndrome coronavirus 52 

2 (SARS-CoV-2) has rapidly spread across the world in a way unlike any other 53 

respiratory viruses. Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 54 

is considered the third highly pathogenic coronavirus following SARS-CoV-1 and 55 

Middle East respiratory syndrome coronavirus (MERS-CoV) that cause severe 56 

accurate respiratory symptoms in humans [1]. The most striking feature of the 57 

incidences and epidemiology of SARS-CoV-2 is its high ability for transmission 58 

among people [2]. The clinical outcome and incidence vary that most COVID-19 59 

patients are clinically mild and moderate, and the elderly seem to have serious 60 

symptoms [3]. Additionally, severely affected patients had shown respiratory 61 

complications such as moderate to severe pneumonia, acute respiratory distress 62 

syndrome (ARDS), sepsis, acute lung injury (ALI), and multiple organ dysfunction 63 

(MOD) [4]. 64 

ARDS in COVID-19 patients is thought to be the main cause of death because of the 65 

cytokine storm caused by an over-activation of the human innate immune response 66 

[5]. However, there are multiple immune regulators and host genetic and epigenetic 67 

factors that are capable of significant contributions to the disease manifestation [5]. 68 

Host-pathogen interactions can act as a double-edged sword in different coronavirus 69 

infections as they might be useful not just for hosts, but also for viruses [6]. Similar 70 

tug-of-war host-viruses can also be present in COVID-19, which could lead to 71 

overcomplicated outcomes of the disease [7]. 72 

Although recent studies have shown the transcriptomic analysis of host responses to 73 

SARS-CoV-2 infection at different time points within multiple cell lines [8, 9], the 74 

transcriptional dynamics of host response to multiple virus infection remained largely 75 

unknown. In general, the host innate immune responses play an essential role in 76 

suppressing the replication of the virus once the virus enters the host, such as 77 

antiviral-mediated interferons and cytokines, which could lead to the virus 78 

pathogenesis. Increased cytokine levels are also observed in patients hospitalised 79 

with COVID-19 in the same way as both SARS-CoV and MERS-CoV, which induce 80 

high levels of cytokine [10, 11]. Accordingly, understanding the magnitude and 81 

dynamics of human transcriptome in response to medically important respiratory 82 
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viruses will help in understanding their pathogenesis, molecular genetic markers and 83 

in repurposing existing antivirals to combat respiratory viral infections. 84 

The current study aims to compare a large cohort of transcriptomic dataset map the 85 

gene regulation (up or down regulated) by SARS-CoV-2 infection and the 86 

compounding impact of other respiratory viruses such as influenza, SARS-CoV-1, 87 

respiratory syncytial virus (RSV) and rhinovirus. This parallel comparison showcases 88 

common and unique genetic signatures of respiratory viruses under individual and 89 

co-infection scenarios. 90 

2. Materials and Methods 91 

2.1 Data Collection, Inclusion and Exclusion Criteria 92 

Gene Expression Omnibus (GEO) and PubMed datasets were used to search for 93 

literature that contained data relating to upregulated and downregulated genes in 94 

response to infection with respiratory viruses (SARS-CoV-2, influenza, SARS-CoV-1, 95 

RSV and rhinovirus). The collection began with searching for datasets for the more 96 

recent COVID-19 pandemic. On GEO, the terms “("Severe acute respiratory 97 

syndrome coronavirus 2"[Organism] OR SARS-CoV-2[All Fields]) AND "Homo 98 

sapiens"” were used whereas when searching on PubMed, the terms “(SARS-CoV-99 

2) AND (Transcriptome)” were used. Once datasets were identified, inclusion and 100 

exclusion criteria were carried out as outlined in Table 1 to ensure parallel 101 

comparison of gene signatures.  102 

2.2. Included Datasets and Data Synchronisation 103 

The collected datasets from various sources were compiled into one set of data 104 

using Microsoft Excel program. The studied viruses and their respective analysed 105 

datasets are provided in a spreadsheet (Table 2). An overview of each dataset is 106 

provided in the Supplementary dataset 1. Each dataset carried genes found in a 107 

specific study mentioned in the category, and the corresponding level of gene 108 

expression is displayed next units originally used by the datasets. To ensure that all 109 

the included datasets for each virus could be compared, these were converted to the 110 

same units. The raw data was often listed in three units; Fold Change, Log Fold 111 

Change and Log 2-Fold Change, and all the data was converted into the Log 2-Fold 112 

Change format. Log 2-Fold Change was used as it allows easier visualisation of the 113 
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data, as the range of the values of the data becomes narrower, allowing for easier 114 

comparison of the up/ down regulated genes (Supplementary dataset 2). 115 

2.3. Ranking System 116 

Owing to large diversity among datasets in areas such as cell types and media in 117 

which the experiments were carried out, it could introduce biasness to compare 118 

genes specifically by their Log 2-Fold Change values, which is calculated to the 119 

baseline gene expression. To introduce a novel method of comparing each gene up 120 

or down regulated in a dataset compared to datasets from another viruse or different 121 

cell types, a ranking system next to each Log 2-Fold Change column was proposed. 122 

This system ranked the genes based on which percentage group they were in, 123 

depending on whether they were up or down- regulated. Then, a mean score was 124 

taken across datasets within the same studied viruses and these means were used 125 

to compare between the viruses. For avoidance of confusion, this system 126 

synchronizes the dataset such that at the top 10% of upregulated genes for one virus 127 

while only at the top 80% of genes for another virus. 128 

Using the GraphPad Prism 9.0.0 software, a scatter bar graph was generated using 129 

the overall ranking score for each gene of each virus. Two versions were created; 130 

first had the uncut data taken directly from the ranking system, containing roughly 131 

24,000 genes, and secondly a cut down version of the data where non-significant 132 

genes were removed. Additionally, the non-coding gene loci and non-annotated 133 

genes were removed, as these often yielded zero values for up or down regulated 134 

genes reducing 6200 genes. Furthermore, other genes were removed which 135 

contained more than three or more zero values for up or downregulation across the 136 

five viruses removing a further 200 genes. Finally, using influenza virus as a model 137 

virus, all genes were removed that lied within the ranking scores of +20 (bottom 20% 138 

upregulated) and -20 (bottom 20% downregulated genes), unless a gene had a 139 

ranking score of above +50 or below -50 in any other of the viruses. This removed a 140 

further 5005 genes leaving a total of just over 12,000 genes in the cut down version, 141 

which removed the large proportion of genes containing zero values for clearer view 142 

for the spread of gene ranking scores. 143 

 144 
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2.4. Log2 Fold Change 145 

The collected dataset was converted into Log2 Fold Change for the gene 146 

expression. The datasets that were unconvertable into Log2 were removed for Log2 147 

Fold Change analysis. In addition, only datasets that compared infected and non-148 

infected patients were used while high vs low viral load datasets were removed. 149 

Finally, Log2 Fold Change values for each gene and for each dataset were inputted 150 

into the software and the graphing tool was used to generate scatter bar charts for 151 

each virus-specific dataset. These include the top five upregulated and/or 152 

downregulated genes for each dataset taken from the original data. 153 

2.5. iDEP.91 Software 154 

Once all the data had been converted into the ranking score format, it was exported 155 

into a separate Excel File to be compiled into one concise table (Supplementary 156 

dataset 3), then saved as a text document and uploaded to the iDEP web 157 

application for expression and pathway analysis as described earlier [12]. 158 

3. Results 159 

3.1. Overview of the differences in the Log-2 Fold Change values and Ranking 160 

Scores Across Multiple Respiratory Viruses 161 

The scatter bar graphs for each of the individual datasets within each of the five 162 

viruses were drawn to provide an overview of the differences in the Log-2 Fold 163 

Change values obtained from each dataset (Fig. 1). The scatter bar graph for the 164 

datasets collected for the SARS-CoV-2 uses the original Fold change values given 165 

by each study where each bar represents a separate dataset that showed the up and 166 

down regulated genes in response to viral infection (Fig. 1A). A vast majority of top 167 

five upregulated genes were summarized (Table 3) while the top five down regulated 168 

genes involved in the innate immune response to SARS-CoV-2, SARS-CoV-1, 169 

influenza, RSV and rhinovirus infection were concluded (Table 4). Interestingly, each 170 

dataset shown was distinctive showing a varying pattern where host genes are mildly 171 

up or down regulated and only a few that are highly differentially up or down 172 

regulated. This highlights selective genes of the innate immune response are 173 

affected in response to a specific virus infection. Collectively, dataset GSE155286 174 

has the widest spread of data while dataset GSE147507 has the lowest (Table 2). In 175 
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addition, all the datasets arried both downregulated and upregulated genes except 176 

GSE153790, which has only upregulated genes. Amongst the top five up-regulated 177 

genes, five genes including IFI27 and C-X-C motif chemokine ligand (CXCL) group 178 

of cytokine-producing genes, specifically CXCL10 showed a virus-specific trend. 179 

Using the same approach, we used the data collected for innate immune genes in 180 

response to influenza virus infection that contains nine datasets. The data was 181 

presented for better visualising to gauge the innate immune genes play critical roles 182 

in the virus infection. Consistently, amongst all datasets, the up regulated genes for 183 

the influenza virus were interferon alpha-inducible protein 27 (IFI27) and interferon 184 

induced protein 44 producing gene IFI44/IFI44L, which involves in type-1 interferon 185 

signalling process leading to apoptosis and the formation of tubular structures, 186 

respectively.  187 

The scatter bar graphs for SARS-CoV-1, RSV and rhinovirus indicate a unique set of 188 

genes up or down regulated during infection (Fig. 1C, 1D and 1E), respectively. 189 

While limited datasets were available against some viruses, minimum eight datasets 190 

provided approximately 12,000 different genes. Datasets that have gaps around the 191 

zero value for Log-2 fold change are the datasets that only include genes that were 192 

significantly up or down regulated. All datasets shown in Fig. 1C, 1D and 1E show a 193 

clear abundance of genes that are mildly differentially regulated with significantly 194 

less genes at the high fold change values, highlighted by the shape of the 195 

GSE53543 dataset. Interestingly, there was marked variation between the highest 196 

and lowest values obtained for log-2-fold change for different datasets within SARS-197 

CoV-1. In addition, most of innate immune genes fall within +10 or -10 log-2 fold 198 

change for these viruses. However, SARS-CoV-1 appears to have a unique set of 199 

top five up regulated genes compared to the other viruses whereas both RSV and 200 

rhinovirus datasets showed IFI44 gene and the CXCL family. OASL remained a 201 

consistently upregulated gene in RSV datasets. 202 

The log-2 fold change values of each gene for each dataset was changed into a 203 

ranking score due to the high variation of experimental method used to collect data 204 

for each dataset, which meant that log-2 fold change values were rarely consistent 205 

between datasets for differential gene regulation of patients/cells infected with the 206 

same respiratory virus. Thus, the ranking score removed this issue by assigning 207 
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each gene a value based on its position among other differentially regulated genes 208 

within the same dataset (i.e., a gene placing as the 5th highest upregulated gene in a 209 

list of 100 genes would receive a score of 95). These synchronized values were 210 

averaged across all datasets within each virus that enabled the data collected from 211 

different experimental approaches to be compared more effectively between 212 

datasets within the same virus and a combination of datasets to be compared 213 

between different viruses (Table 5 and 6).  214 

3.2. iDEP.91 statistical analysis 215 

The application of ranking scores facilitated the generation of a dataset consisting of 216 

12,000 genes across all viruses by removing many non-significant genes (Fig. 2A). 217 

This newly and reduced set of genes and the data provided a higher resolution of 218 

genes distribution across multiple respiratory viruses (Fig. 2B). Thereafter, all 219 

analysis was conducted using dataset generated through ranking system 220 

The scatter plots generated on 12,000 genes highlight the distribution patterns of 221 

genes between SARS-CoV-2 and other respiratory viruses (Fig. 2C to 2F).  The 222 

relationship between SARS-CoV-2 and influenza virus gene regulation revealed a 223 

uniform scatter data (Fig. 2C), while the relationship between SARS-CoV-2 and 224 

SARS-CoV-1 gene regulation contains more spread of data points except towards 225 

the centre of the graph due to the removal of less important data towards zero 226 

values (Fig. 2D). A slightly different patterns was observed where a linear 227 

relationship between SARS-CoV-2 and RSV (Fig. 2E) was noticed. An overall less 228 

uniform spread of data points with a skew to the right towards the top of the graph, 229 

and additional upregulated genes were observed in SARS-CoV-2 and rhinovirus 230 

comparison (Fig. 2F). 231 

3.3. Heatmap Analyses and Gene Differences between Respiratory Viruses 232 

The heatmap were generated to provide an insight into pathways that are differently 233 

regulated by each of the five studied respiratory viruses (Fig. 3). SARS-CoV-2 234 

appeared unique in eliciting a separate viral response compared to the other 235 

respiratory viruses. Notably, there was a region at the bottom of the heatmap 236 

between genes DDX21 and GBP3 where other viruses have no effect or a slight 237 

upregulation of the genes, however, SARS-CoV-2 causes a downregulation (Fig. 3). 238 
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Perhaps the most unique out of all the respiratory viruses is SARS-CoV-1 which 239 

showed large areas of each heatmap where it is causing a downregulation of genes 240 

where all other respiratory viruses were eliciting upregulation. 241 

The heatmap results highlighted the differences between each of the respiratory 242 

viruses, even though they are in the same group based on their target within the 243 

host; the genes that being affected are substantially different. Each virus shown in 244 

the heatmap carried different and distinct green and red areas, with very few 245 

coloured areas shared between more than two viruses. The most substantial 246 

difference was noticed between SARS-CoV-2 and SARS-CoV-1, whereas almost no 247 

colours in common. However, SARS-CoV-1 appeared to be the only virus that has 248 

both up and down regulated genes in two specific groups.  249 

3.4. Standard deviation calculation and T-SNE plot Analyses 250 

The SD graph highlights the extremely high standard deviation across all the 251 

regulated genes in response to different viruses (Fig. 4A). A standard deviation 252 

above 1 was considered high unless the standard deviation in this case was 253 

between 25 and 75 indicating that there are high differences in the differentially 254 

regulated genes in response to each virus. On the other hand, a correlation matrix 255 

that shows the correlation between each of the viruses revealed that the most similar 256 

virus to SARS-CoV-2 was RSV with a Pearson’s correlation coefficient of 0.48 (Fig. 257 

4B) while the least similar one was SARS-CoV-1 with a Pearson’s correlation 258 

coefficient of 0.15 (Fig. 4B). A correlation value of 1 implies that there is a perfectly 259 

linear distribution of data between the two variables and a value of 0.48 generated 260 

for RSV compared to SARS-CoV-2 is relatively high that highlight how close the two 261 

viruses are in comparison to other viruses. 262 

Differentially regulated genes were classified into 20 clusters based on their K 263 

means (Fig. 4C) where we used them to break down for better understanding 264 

whereabouts the differences between these emerged viruses. Each cluster contains 265 

genes involved in specific pathways that allows for the comparison of gene 266 

regulation in a variety of pathways depending on the virus (Supplementary dataset 267 

4). After K-means clustering, cluster O appeared to contain the most pathways 268 

involved in the innate immune response, such as the JAK-STAT signalling pathway, 269 

TNF signalling pathway and IL-17 signalling pathway indicating that cluster O could 270 
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be used as a sign of a virus’s regulation for the overall innate immune response 271 

signalling. Both influenza and SARS-CoV-2 showed both up and down regulated 272 

genes within the cluster with specific areas either being highly up- or down-273 

regulated, suggesting that these viruses target specific areas within this cluster. 274 

While SARS-CoV-1 and RSV upregulated and down regulated this region, 275 

respectively. 276 

The T-SNE plot analyses for all the data was coloured based on their belonging 277 

cluster. The T-SNE allowed multi-dimensional data to visualise in a low dimension 278 

space such as the 2D graph (Fig. 4D). The distance between each of the points 279 

reflected the similarity of each data point. Whilst T-SNE should not always be used 280 

for gene expression data analysis, due to its high intrinsic dimensionality. Therefore, 281 

it has been used to highlight that even though there are a high number of clusters 282 

present, they are still very much distinguishable, despite there being some clusters 283 

that exhibit more separation of data points compared to others. In addition, there was 284 

a slight problem with crowding towards the centre of the dataset; however, this was 285 

observed in most SNE forms.  286 

3.5. Comparison between differentially regulated genes among multiple 287 

respiratory viruses 288 

Generally, the number of upregulated genes is relatively even with the number of 289 

downregulated genes, however, there are more downregulated genes than 290 

upregulated genes for each of the five tested viruses. The standouts are 291 

substantially downregulated than upregulated genes in case of rhinovirus infection in 292 

(Fig. 5A). Moreover, rhinovirus showed less differentially regulated genes in total 293 

compared to the other respiratory viruses. 294 

The Venn diagrams showed a comparison between each of the viruses by how 295 

many differentially regulated genes they have in common, regardless of whether 296 

they are up or down regulated. This highlighted genes that are differently regulated 297 

within only one virus compared to others within the same diagram (Fig. 5B). Vast 298 

majority of genes are found to be differentially expressed across all viruses; 299 

however, there were some exceptions mainly found within RSV that has the highest 300 

number of genes unique to itself while rhinovirus rarely had any uniquely expressed 301 

genes. 302 
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3.6. Impact of SARS-CoV-2 on cellular DNA replication 303 

A visual representation for the impact of SARS-CoV-2 on the DNA replication within 304 

infected cells was outlined (Fig. 6). The upregulated genes (2/32) were shown in red 305 

while the downregulated (27/32) were shown in green (Fig. 6). Genes responsible to 306 

produce DNA ligase and helicase were notably down regulated, which are important 307 

in the DNA replication and being used by the virus as a means of slowing down the 308 

cell cycle to enhance viral replication. 309 

3.7. Regulation of JAK-STAT immune signalling pathway in response to SARS 310 

CoV-2 infection 311 

There are more upregulated genes in JAK-STAT immune signalling (Fig. 7A) and 312 

the cytokine-cytokine receptor interaction pathways (Fig. 7B) than downregulation, 313 

highlighted by the prominence of the red colouring over the green colouring. While 314 

there were several upregulated genes as GFAP and Ras, which are involved in cell 315 

differentiation and MAPK signalling pathway, respectively. 316 

The genes that are up or down regulated in realtion to the immune signalling 317 

pathways and are affected in response to SARS-CoV-2 infection were analysed 318 

using KEGG pathway database (Fig. 7A, 7B and Supplematary Figure 1). These 319 

results  revealed that SARS-CoV-2 does not affect every pathway in a simple 320 

manner by either upregulating or downregulating all genes involved in that pathway, 321 

but instead having multiple effects.  322 

Using the ranking scores, C8orf4 was the second most highly upregulated gene in 323 

cells/patients infected with SARS-CoV-2. The C8orf4 (also known as TCIM) is 324 

responsible for producing the c8orf4 protein (also known as TC1) which is involved in 325 

the enhancement of NF-kappaB activity, leading to up-regulating several cytokines 326 

involved in the process of inflammation [13]. This is the main factor attributed to the 327 

cytokine storm exhibited in patients following SARS-CoV-2 infection. In addition, our 328 

analyses show that each virus has a different effect on the regulation of c8orf4 and 329 

its regulation could therefore be used as a biomarker to differentiate between 330 

aetiology of infection, with extremely high levels of TC1 protein pointing towards a 331 

SARS-CoV-2 infection (Fig. 7C). Of course, many other genes could be used as 332 
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markers for SARS-CoV-2 infection but also genes that are conserved between all 333 

viruses. 334 

After individual identification of the upregulated or downregulated genes and their 335 

respective pathways, we aim to visualise where those genes are located within the 336 

human chromosome (Fig. 7D). Human genome map analyses show each 337 

chromosome with its own line with genes where the upregulated genes appear 338 

above the line in red colour while genes that are downregulated appear below the 339 

line in blue colour (Fig. 7D). This genomic map shows the regulation in response to 340 

SARS-CoV-2 infection and revealed that every chromosome in the human genome 341 

has been affected whereas the mostly affected chromosome was chromosome 19. 342 

However, the least affected chromosomes were X and Y sex chromosomes. In 343 

addition, chromosome 17 also shows a notable pattern.  There are many areas 344 

across many chromosomes that showed notable gaps where SARS-CoV-2 appears 345 

to have no effect on gene regulation (Fig. 7D). 346 

There is a large amount of consistency between all the genome maps within the 347 

most affected chromosome, in all cases, being chromosome 19. In case of 348 

rhinovirus, there is a lack of altered genes regulation on the X and Y chromosomes. 349 

Furthermore, a much blander overall picture on fewer data points (Supplementary 350 

figure 2D) because there were less genes recorded to have been up or 351 

downregulated in the rhinovirus dataset. 352 

 353 

4. Discussion 354 

Despite majority of the human respiratory viruses show similar pathology by infecting 355 

the same respiratory system, they all showed clear and substantial differences, 356 

which have highlighted unique markers related to differential gene regulation. The 357 

scatter plots showed the correlation between the effects of each virus on human 358 

gene expression, and a specific removal of genes was evident in this analysis which 359 

are less dramatically differentially regulated and therefore of less importance to this 360 

study.  These results indicated that SARS-CoV-2 is like RSV compared to other 361 

respiratory viruses because of the high correlation between the data points within the 362 

scatter graphs showing a rising diagonal line suggesting a positive correlation 363 
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between the upregulated and downregulated genes. These results are supported by 364 

the correlation matrix, where the Pearson’s correlation coefficient between SARS-365 

CoV-2 and RSV was 0.48, much higher than the 0.22, 0.2 and 0.15 for influenza, 366 

rhinovirus, and SARS-CoV-1, respectively. The SARS-CoV-2 and RSV showed high 367 

similarity in differentially regulated genes. This aligns with the fact that affected 368 

patients exhibit similar symptoms when infected with any of SARS-CoV-2 or RSV, 369 

mainly upper respiratory tract symptoms and often lower respiratory tract symptoms 370 

such as a dry cough [14]. Interestingly, both viruses appear to cause damage to the 371 

respiratory tract that result in persistent problems long after infection such as 372 

persistent airway obstruction as well as hyper-responsiveness can be seen in 373 

patients 30 years after infection with RSV [15]. These symptoms are like the long-374 

term lung dysfunction reported after SARS-CoV-2 infection [16]. However, the main 375 

difference between these two viruses is the age of the patients that are more 376 

susceptible for infection, with RSV commonly causing respiratory tract infection in 377 

young infants and children [14], whereas SARS-CoV-2 is known for more severe 378 

cases being present in the elderly albeit infection potential among all ages. Further 379 

research in this area could be useful to compare influenza, RSV, SARS-CoV-1 and 380 

rhinovirus against SARS-CoV-2 but specifically for each pathway/area such as the 381 

innate immune response or the cytokine activation pathway. 382 

Insights into the human chromosomes in response to SARS-CoV-2 infection 383 

revealed that the mostly affected chromosome was chromosome 19 suggesting a 384 

high number of genes involved in the immune response to viral infection could be 385 

present within chromosome 19 and severe cases of infection could be attributed to 386 

the genetic mutations within this chromosome. Another interesting point is the 387 

presence of differential gene expression on the X chromosome for patients suffering 388 

from COVID-19. Altered genes on the X-chromosome could lead to a difference in 389 

the clinical outcome between men and women infected with SARS-CoV-2. Previous 390 

studies reported that the immune regulatory genes encoded by the X chromosome in 391 

women could cause lower viral load levels resulting in a reduction in the 392 

inflammatory response compared to men [17]. 393 

The top and bottom five consistently up and down- regulated genes across all five 394 

viruses could potentially be used as markers for specific respiratory viral infection. 395 

JAK2 is one of the genes, which is consistently, and highly upregulated among all 396 
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the studied viruses and it encodes for the Janus Kinase 2 protein (JAK2). JAK2 plays 397 

a crucial role in the cytokine signalling where it associates with type II cytokine 398 

receptors, hormone-like cytokine receptors and being activated by IFN-gamma [18]. 399 

Additional four-upregulated genes were DDX60L, IFI44, FOXN2 and DDX60, which 400 

may be a target for drugs.  401 

The upregulated genes in response to SARS-CoV-2 infection have been identified 402 

while those were downregulated in the other respiratory viruses.  These genes could 403 

be used as markers for a SARS-CoV-2 infection and to distinguish SARS-CoV-2 404 

from other respiratory viruses. The most important gene was the NFKBIL1 gene that 405 

encodes for the NF-kappa-B inhibitor-like protein 1 and it is involved in the NF-406 

kappa-B signalling, which plays a major role in the inflammatory response by 407 

increasing the cytokine expression [19]. On the other hand, the downregulated 408 

genes in response to SARS-CoV-2 could possibly be used as a marker to distinguish 409 

SARS-CoV-2 infection in case of suspicion with a respiratory virus infection 410 

associated with respiratory symptoms. One of these genes is GPBAR1, which 411 

encodes for the G-protein acid receptor 1. Previously, it has been reported that 412 

GPBAR1 was able to regulate and increase the expression of IL-10 [20] suggesting 413 

that levels of IL-10 in patients suffering with COVID-19 would be lower, however, 414 

recent studies contradict that as IL-10 levels are found to be unexpectedly increased 415 

in severe cases [21]. 416 

5. Conclusions and limitations 417 

The aim of this study was to determine the influence of SARS-COV-2 on the immune 418 

regulation and gene induction in comparison to other respiratory viruses. It appeared 419 

that SARS-CoV-2 was unique in its impact on gene regulation and matches none of 420 

the other respiratory viruses except RSV. Genes such as MAP2K5 and NFKBIL1 421 

have been found to be greatly upregulated in SARS-CoV-2 whilst being 422 

downregulated in the compared viruses. Whereas genes such as GPBAR1 and 423 

SC5DL were contrastingly found to be significantly downregulated in SARS-CoV-2 424 

but upregulated in influenza, SARS-CoV-1, RSV and rhinovirus. Despite all the 425 

reported differences, the most conserved genetic signature was JAK2 gene as well 426 

as the constitutively downregulated ZNF219 gene. While the resolution of analysis 427 
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provides foundational finding, further research is warranted to validate the impact of 428 

these molecular signature against individual or multiple infections. 429 

We observed a limitation of the study that the gene regulation may be affected by the 430 

experimental characteristics such as time length post infection, the culturing 431 

conditions, phenotypes of the cells, and the nature of the virus stimulation (in vivo or 432 

in vitro studies). Finally, different cell types (A549, BALF or PBMC cells) were used 433 

for virus infection, which may respond differently to different viral infections. 434 

Nevertheless, the provided analysis provides a foundation for the impact of 435 

respiratory viruses on the gene regulation. 436 
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 532 

Figure captions 533 

Fig. 1. Scatter bar graphs of the Log-2-Fold Change of each gene for each dataset 534 

for the A) SARS-CoV-2, B) Influenza, C) SARS-CoV-1, D) RSV, E) Rhinovirus. A 535 

horizontal line is also shown on each bar, which marks the average Log-2 fold 536 

change of the selected genes. 537 

Fig. 2. Uncut (A) and Cut (B) ranking scores for each gene combining all datasets for 538 

each respiratory virus. Also, in this figure are scatter plots of ranking scores of all 539 

genes collected for each respiratory virus, using SARS-CoV-2 as the comparison. 540 

(C) shows a comparison of Influenza and SARS-CoV-2, (D) between SARS-CoV-1 541 

and SARS-CoV-2, (E) between RSV and SARS-CoV-2 and (F) between Rhinovirus 542 

and SARS-CoV-2. 543 

Fig. 3. Heatmap of DEGs for all the respiratory viruses studied in this analysis. 544 

Figure 4. (A) Standard deviation of all genes across all viruses. (B) Correlation 545 

matrix using data taken from the top 75% of genes. (C) KEGG pathway analysis by 546 

cluster. (D) T-SNE plot of all 12,000 genes 547 

Fig. 5. (A) Total number of upregulated and down regulated genes for each virus. (B) 548 

Venn diagrams representing the differentially regulated genes that are in common 549 

between each of the respiratory viruses. 550 

Fig. 6. Heatmaps specific to different pathways compiled by GAGE pathway 551 

analysis. (A) for Defence response to virus, (B) for cytokine response, (C) for 552 

regulation of cytokine production and (D) for positive regulation of innate immune 553 

response. 554 

Fig. 7. (A) Regulation of genes associated with the JAK-STAT signalling pathway. 555 

(B) Regulation of genes associated with cytokine-cytokine receptor interaction. (C) 556 

Ranking scores of the C8orf4 gene for each respiratory virus. (D) Genome map 557 

showing SARS-CoV-2 upregulated genes in red and downregulated genes in blue. 558 
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