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Abstract 
 
Reference cell type atlases powered by single cell transcriptomic profiling technologies have 
become available to study cellular diversity at a granular level. We present FR-Match for 
matching query datasets to reference atlases with robust and accurate performance for 
identifying novel cell types and non-optimally clustered cell types in the query data. This 
approach shows excellent performance for cross-platform, cross-sample type, cross-tissue 
region, and cross-data modality cell type matching. 
 
Main 
 
Single cell transcriptomic profiling has emerged as a powerful tool to survey and discover cell 
phenotype heterogeneity in complex biological systems. Large collaborative consortia, such as 
the Human Cell Atlas [1] and NIH BRIAN Initiative [2, 3], have widely adopted the unbiased 
single-cell/nucleus RNA-sequencing (scRNAseq) technologies to generate reference cell type 
atlases at single cell resolution across many organs and species. Transcriptomicly-defined cell 
types have uncovered cellular diversity at an unprecedented level of granularity; a series of 
recent publications have reported 128 transcriptomic distinct cell types in human primary 
motor cortex (M1) [4], 116 cell types in mouse primary motor cortex (MOp) [5], and 75 cell 
types in human middle temporal gyrus (MTG) neocortex [6]. The Allen Institute for Brain 
Science has made these comprehensive datasets available serving as a reference cell type 
database (https://portal.brain-map.org/atlases-and-data/rnaseq).  
 
A key role for these reference datasets is to support the matching of new query data to the 
reference cell types. Azimuth is a web application for reference-based single-cell analysis 
following the Seurat pipeline [7]. Online iMNF is an extension of the Liger pipeline for single-cell 
multi-omics integration using iterative online learning [8, 9]. ScArches is a deep learning 
strategy for mapping query datasets on top of a reference by single-cell architectural surgery 
[10]. The mathematical foundation of these methods are linear algebra techniques (canonical 
correlation analysis (CCA) for Seurat and non-negative matrix factorization (NMF) for Liger) that 
effectively decompose the structure of large data matrices for integrative analysis.  While these 
methods are great tools for single-cell data integration, producing integrated UMAP 
visualization for both query and reference datasets with minimal batch effect, cell type 
matching is a more pragmatic use case that requires not only integrating the query cells onto 
the reference, but also being able to make a clear distinction between common and novel cell 
types existing in the query dataset and the studied conditions.   
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Previously, we reported a computational pipeline for downstream cell type analysis of 
scRNAseq data including NS-Forest [11, 12] – a random forest machine learning algorithm for 
the identification of the minimum set of marker genes for given cell types and FR-Match [13] – 
a minimum spanning tree-based statistical testing approach for cell type matching of query and 
reference datasets. We introduced the concept of Cell Type Barcode [11, 13] using NS-Forest 
marker genes to visualize and characterize the distinction between different cell types [11]. The 
NS-Forest marker genes also serve as a dimensionality reduction approach for FR-Match that 
essentially matches the query and reference cell types based on the Cell Type Barcode patterns 
[13].  Here, we report recent enhancements to FR-Match, including a normalization step and a 
cell-to-cluster matching scheme, and show that the Cell Type Barcode provides evidence and 
explainability for our matching results, as well as diagnostics of the cell type cluster quality.  
 
We designed a normalization procedure based on the marker gene expression patterns 
observed in the Cell Type Barcode plots, to robustly remove technical artifacts observed in 
different scRNAseq platforms (Methods). We observed that Barcode plots from the Smart-seq 
platform (Figure 1A(i)) and the 10X platform (Figure 1A(iv)) showed similar marker gene 
expression specificity, but varying non-specific marker gene background expressions. The pre-
normalization step is a min-max rescaling applied to each gene for both Smart-seq and 10X 
data, to globally align the data ranging from 0 to 1. The Smart-seq platform showed better 
sensitivity for low expression genes than the 10X experiment, but also showed more 
background noise. To reduce the background noise while preserving the expression signals, the 
normalization step for the Smart-seq data uses a per-Barcode per-gene summary statistic 
(mean or median) as a single-value index of the expression level. The index vector is used to 
weight the per-Barcode expression pattern by multiplying to the per-Barcode expression 
matrix. Finally, the Smart-seq Barcode is again rescaled to [0,1] for matching. The above 
procedure effectively aligned the cross-platform Barcode patterns (Figure 1A(ii)(iii)), showing 
similar signal and noise levels.  
 
The cell-to-cluster extension of FR-Match is an iterative procedure that allows each cell in the 
query cluster to be assigned a summary p-value, quantifying the confidence of matching, to a 
reference cluster (Methods). This extension is available as a stand-alone function 
“FRmatch_cell2cluster()” in the “FRmatch” R package 
(https://github.com/JCVenterInstitute/FRmatch). A cosine distance option was also added for 
robust matching between experiments with global data variabilities (Methods). 
 
Using the above-described pipeline and extensions, the cross-platform matching approach was 
validated using Allen human M1 snRNAseq data generated using the 10X Chromium v3 protocol 
[4] as the reference and an M1 snRNAseq dataset from another Allen study on multiple human 
cortical regions using the Smart-seq v4 protocol [6] as a query. Although the raw counts of the 
query and the reference data showed very different data distributions (Supplementary Figure 1) 
the FR-Match matching results produced almost all one-to-one match of the subclass types for 
all query cells (Figure 1B), with the exception of the agglomerated IT query type. Due to the 
grouping of the layer-non-specific IT cells, the majority of these cells were matched to one of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2021. ; https://doi.org/10.1101/2021.10.17.464718doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464718
http://creativecommons.org/licenses/by-nc-nd/4.0/


the layer-specific IT reference types, with a few left unassigned. These results verify that the 
normalization step for aligning Smart-seq and 10X data is effective, and the extended FR-Match 
is robust to perform cross-platform cell type matching. 
 
We also applied this FR-Match pipeline to assess cross-sample type matching using snRNAseq 
from the Allen mouse MOp cell types [5] as the reference and scRNAseq from the MOp subset 
from a transcriptomic cell type taxonomy of the entire adult mouse isocortex and hippocampal 
formation [14] as the query. Since both datasets were generated using the 10X protocol, we 
only applied the min-max scaling in the normalization step. For the subclass types, most of the 
query types were one-to-one matched to a reference type (Figure 1C). The highlighted box 
shows that the query SMC-Peri type was matched to the separate SMC and Peri types in the 
reference, with almost half-half split. As previously noted [13], a one-to-many match may 
suggest that the query cluster is under-partitioned. An examination of the Cell Type Barcode 
plots for these query and reference cell types (Figure 1D) showed two distinct patterns in the 
query Barcode, each corresponding to one of the reference Barcodes. Thus, the FR-Match cell 
type matching pipeline, together with the Cell Type Barcode, showed excellent matching of 
single nucleus and single cell clusters and provided solid evidence of sub-optimal partitioning 
based on marker genes in the matching results.  
 
We also benchmarked the FR-Match pipeline with the Azimuth and Online iNMF approaches 
(Supplementary Figure 2) for sub-optimal parititoning identification. All cells were matched, but 
these integration methods were not able to split the under-partitioned clusters. Azimuth 
matched all query SMC-Peri cells to the reference Peri subclass with few mismatched to the 
reference VLMC subclass (Supplementary Figure 2C). The Online iNMF produced joint clustering 
of the integrated data instead of explicitly reporting the cell-to-cell mapping. All the query SMC-
Peri cells and the reference SMC and Peri cells were grouped in the same cluster from the joint 
clustering (Supplementary Figure 2D). 
 
For the above two analyses, we also matched to the most granular cell types and benchmarked 
with Azimuth. For the mouse MOp cross-sample type matching results, FR-Match formed a 
clean diagonal alignment of cell types and assigned unmatched cells as “unassigned” in the 
bottom row (Figure 2A). Azimuth also matched the majority of the cells along the diagonal, but 
with many suboptimal matches scattered off-diagonally, which potentially should be 
unassigned (Figure 2B). Similar results for the human M1 cross-platform cell type matching can 
be found in Supplementary Figure 3. 
 
Another important matching challenge is to match cell types across different tissues or 
anatomic regions within a tissue.  The cluster-to-cluster version of FR-Match [13] was used to 
match cell clusters from the Smart-seq platform between the human M1 [4] and human MTG 
[6] brain regions and the bi-directional (M1 as query to MTG as reference, and vice versa) 
matching results shown in Figure 2C. Most of the GABAergic neuron and all of the glial cell 
types were nicely matched across these two cortical brain regions, but none of the 
Glutamatergic neuron types were matched. This suggests that the inhibitory neuron and glial 
cell types are preserved across brain regions, whereas the excitatory neurons are region-
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specific. We also examined the Cell Type Barcode plots for a pair of matched cell types 
(Supplementary Figure 4), showing highly similar expression patterns of the matched types 
using reciprocal marker genes, even though the best marker genes selected for each brain 
regions may be different. 
 
Finally, we report the application of FR-Match for cross-data-modality cell type assignment 
using spatial transcriptomics data generated by single molecular fluorescence in situ 
hybridization (smFISH) [15] and Smart-seq scRNAseq as the reference, both from mouse 
primary visual cortex (V1) [16]. De novo clustering of the smFISH data was used to obtain 
broadly-defined clusters and the FR-Match cell-to-cluster pipeline to assign a reference cell type 
to each spatial cell in the initial clusters (Methods). The FR-Match results successfully 
recapitulated the clear laminar distributions of the excitatory neurons, corresponding to their 
assigned cell types (Figure 2D). In contrast, the inhibitory neurons are scattered across all 
layers, with the Vip type located more densely in upper layers and the Sst and the Pvalb types 
located more densely in deeper layers. The FR-Match cell type assignment for the spatially 
sequenced cells fully reflected their location in the tissue, agreeing with the expected layering 
patterns. 
 
In summary, we extended our cell type matching pipeline to perform both cell-to-cluster and 
cluster-to-cluster matching. The added normalization step and cosine distance option allow FR-
Match to perform robust and accurate cell type matching across platforms (Smart-seq vs. 10X), 
sample types (single-cell vs. single-nucleus), brain regions (M1 and MTG), and data modalities 
(spatial transcriptomics and scRNAseq). Compared with existing methods, FR-Match can 
effectively detect non-optimally partitioned clusters from the previous clustering step, and 
uniquely identify potential novel cell types as “unassigned” cells. The Cell Type Barcodes can be 
useful for investigators to interpret the underpinning transcriptomic drivers of the FR-Match 
results, assisting future research directions. 
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Methods 
 
FR-Match cell-to-cluster matching algorithm 
 
As originally conceived, FR-Match is a cluster-to-cluster matching algorithm that utilizes a 
graphic model and minimum spanning trees to learn the data distributional equivalence 
between two cell type clusters derived from single cell or single nucleus RNA sequencing 
(scRNAseq) data [13]. The required input data for FR-Match are cell-by-gene expression matrix 
and cell cluster membership labels for both query and reference data. The output of the 
original FR-match is a map between the query cluster labels to the reference cluster labels, 
a.k.a. assigning the known reference cell types to the query cell clusters, or defining a query 
cluster as an unassigned “novel” cell type in the reference. 
 
Here, we extend the FR-Match algorithm to map each query cell to the known cell types in the 
reference, i.e., cell-to-cluster matching. The input data are the same as before. If the query 
clusters are unavailable, it is sufficient to obtain broadly-grouped clusters by using the popular 
Louvain [17] or Leiden [18] clustering algorithms for scRNAseq data. These clusters may not be 
at the ideal level of granularity to be directly matched to the granular cell types defined in the 
reference; rather, they provide candidate cluster memberships as the input data to FR-Match.  
 
The extended cell-to-cluster FR-Match algorithm is as follows, which is implemented in the 
function FRmatch_cell2cluster() and its plotting function 
plot_FRmatch_cell2cluster() in the FRmatch R package. Relevant arguments of 
the functions are also listed below.  
 
1. Dimensionality reduction:  

1.1. Select informative marker genes using our companion marker gene selection algorithm 
- NS-Forest - or user-defined marker genes for the reference dataset; 

1.2. Extract the reference marker genes in the query dataset, i.e., project the query data to 
the reference feature space with reduced dimensionality; 

2. Pairwise iterative matching:  
2.1. For each pair of query cluster (𝑗) and reference cluster (𝑘): 

2.1.1. For 𝑖 in 1 to the total number of iterations (subsamp.iter=): 
2.1.1.1. Subsample the same number of cells (subsamp.size=) from the query 

and reference clusters, denoted as 𝑆!  for the set of selected query cells; 
2.1.1.2. Perform Friedman-Rafsky test (FR test) [19], a nonparametric statistical 

test for multivariate two-group comparison, and obtain p-value from the test, 
denoted as 𝑝!; 

2.1.1.3. Assign the p-value to the selected query cells, i.e., 𝑝"# = 𝑝!  for 𝑐 ∈ 𝑆!  and 
reference cluster 𝑘; 

2.1.1.4. Repeat 2.1.1.1 and 2.1.1.2, and obtain 𝑝!$ for the updated iteration 𝑖′; 
2.1.1.5. Update 𝑝"# = max	{𝑝"# 	, 𝑝!$} for 𝑐 ∈ 𝑆!$ and reference cluster 𝑘, i.e., re-

assign 𝑝"# if 𝑝!$ is greater than previously assigned 𝑝"#; 
2.1.2. End looping over iterations; 
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2.2. End looping over query-and-reference-cluster-pairs; 
2.3. Obtain a p-value matrix {𝑝"#} for every query cell 𝑐 and reference cluster 𝑘; 
2.4. Apply multiple hypothesis testing correction to the p-values (p.adj.method=); 
2.5. Determine the matched cell type for a query cell as the reference cell type that gives 

the maximum p-value for that query cell, or unassigned (i.e., no matched cell type) if 
the maximum p-value is below the p-value threshold (sig.level=). 

 
Normalization  
 
The plate-based Smart-seq protocol and the droplet-based 10X protocol are known to have 
very different read counts and sensitivity [20]. Normalization is a key step for performing the 
cross-platform matching. In our pipeline, we designed a rescaling and normalization procedure 
based on the expression values and the signal-and-background-noise-pattern observed from 
the Cell Type Barcode plots.  
 
First, we observed that the gene expression values of the Smart-seq and 10X data have very 
different dynamic range (Supplementary Figure 1). The marker genes displayed in the Cell Type 
Barcode were selected by the NS-Forest marker gene selection algorithm that preferentially 
selects binary expression genes [11], i.e., those genes that are highly expressed in the given cell 
type and have no/weak expression in other cell types. For the comparison purpose, we 
designed a gene-wise min-max rescaling step to align the dynamic range of gene expression of 
both protocols in the range of [0,1]. Let 𝒙% be a length-𝑁 vector of the expression value of 
marker gene 𝑔 across all 𝑁 cells in the dataset. The rescaled expression vector is 

𝒙4% =
𝒙!

'()	(𝒙!)
. 

 
Second, due to the high sensitivity of Smart-seq protocol and low detection rate of 10X protocol 
on the weakly expressed genes, the Cell Type Barcode displays weak signal for the genes that 
are not the marker genes of the given cell type for the Smart-seq data, whereas the Cell Type 
Barcode of the 10X data displays zero expression for those genes. For the cell type matching 
purpose, the weak expression in the Cell Type Barcode of Smart-seq data becomes a kind of 
background noise in its expression pattern (Figure 1A). In order to eliminate such background 
noise in the Smart-seq Barcode, we designed the following normalization step. Let  𝑋6- be the 
rescaled but unnormalized expression sub-matrix displayed in a Cell Type Barcode 𝑏. 𝑋6- is an 
𝑚 × 𝑛- matrix, where 𝑚 is the number of all marker genes, and 𝑛- is the number of cells of cell 
type 𝑏. The normalized values are 

𝑋-./0123!456 = 𝒘- ⋅ 𝑋6- 
where 𝒘𝒃 is a weighting vector consisting of the row means of 𝑋6-. Due to the binaryness of NS-
Forest marker genes, 𝒘- is usually a binary vector with values either close-to-0 or close-to-1. 
Due to the weighting, the dynamic range of the normalized values may shrink from [0,1]. A final 
rescaling step is to realign the maximum value of the dynamic range back to 1 sub-matrix-wise, 
which is 

𝑋-
8!.23 = 9

'():;"
#$%&'()*+,<

⋅ 𝑋-./0123!456. 
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The final expression matrix for the input of the algorithm is the column-concatenation of 𝑋-

8!.23  
for all 𝑏’s, where 𝑁 = ∑ 𝑛-- . 
 
The above procedure is implemented in the normalization function normalization() in 
the R package. The whole procedure was only applied in the case of cross-platform matching 
between Smart-seq and 10X protocols. If both the query and reference data are generated 
using the same platform, the weighting step is not necessary, which can be turned on or off by 
specifying norm.by=”mean” or NULL option in the normalization()function. 
 
Cosine distance metric in FR-Match 
 
To make more robust matching, we made another modification in the FR-Match algorithm, 
which is to calculate the cosine distance that is invariant to scaling as an option for constructing 
the minimum spanning tree used in FR test. Let 𝒙 = >𝑥%@%=9

1
 and 𝒚 = >𝑦%@%=9

1
 be two cells in 

the 𝑚-dimensional feature space of marker genes 𝑔 = 1,⋯ ,𝑚. The cosine similarity between 
the two cells is defined as 

similarity = cos(𝜃) =
∑ 𝑥% ⋅ 𝑦%1
%=9

P∑ 𝑥%>1
%=9 ⋅ P∑ 𝑦%>1

%=9

 

where 𝜃 is the angle between vectors 𝒙 and 𝒚. Intuitively, if the angle 𝜃 is small, then cos	(𝜃) is 
large, which means the two cells 𝒙 and 𝒚 are more similar to each other as the angle between 
their representing vectors is small in the multi-dimensional space. If two cells are from different 
platforms, say 𝒙 is Smart-seq data and 𝒚 is 10X data, the different between their expression 
range is normalized by the denominator in the above equation, which is the product of the 
lengths of the two vectors. Finally, the cosine distance is defined as 

distance = 1 − cos	(𝜃). 
It is suggested to use the scaling-invariant cosine distance for more robust cell type matching 
across platforms. The option of using cosine distance can be turned on or off by specifying 
use.cosine=TRUE in the FRmatch() or FRmatch_cell2cluster() function. 
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Data availability 
 
All datasets are publicly available in Allen Brain Map Cell Types Database: RNA-Seq Data 
(https://portal.brain-map.org/) and NeMO Data Archieve (https://nemoarchive.org/). 
Specifically, each dataset can be downloaded from the following list. 

• Human M1 10X: https://portal.brain-map.org/atlases-and-data/rnaseq/human-m1-10x  
• Human M1 Smart-seq: https://portal.brain-map.org/atlases-and-data/rnaseq/human-

multiple-cortical-areas-smart-seq  
• Mouse MOp single-nucleus RNA-seq: https://assets.nemoarchive.org/dat-ch1nqb7  
• Mouse MOp single-cell RNA-seq: https://portal.brain-map.org/atlases-and-

data/rnaseq/mouse-whole-cortex-and-hippocampus-10x  
• Human MTG Smart-seq: https://portal.brain-map.org/atlases-and-data/rnaseq/human-

mtg-smart-seq  
Raw count matrices were downloaded and preprocessed by log-transformation of the count 
per million (CPM) data. Log(CPM) data were the input data of the FR-Match algorithm. 
 
Code availability 
 
Open source software packages – NS-Forest and FR-Match – are available in GitHub 
repositories. Reproducible analysis notebooks are also available as tutorials in the software 
GitHub page. All details can be found in https://jcventerinstitute.github.io/celligrate/.  
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Figure 1: A. Schematic of cross-platform cell type matching pipeline based on feature selected using NS-Forest 
and cell type matching using FR-Match. The pipeline includes input reference data from the 10X platform, 
marker gene selection using NS-Forest algorithm based on the reference data, marker gene extraction for the 
query input Smart-seq platform data using the same set of reference marker genes, platform-specific rescaling 
and normalization steps, and cell type matching of the query and reference normalized data using FR-Match 
algorithm(s). B. FR-Match cell-to-cluster cell type matching results of the query Smart-seq data and reference 
10X data for human M1 brain region. Results are shown as the proportion of cells matched between pairs of 
query and reference subclass cell types. Most of the query cells are matched with the expected reference 
subclass cell types, aligning diagonally in the plot. The only exception is the agglomerated query IT subclass 
that was matched to several layer-specific reference IT subclasses or unassigned. C. FR-Match cell-to-cluster 
cell type matching results of the query single-cell RNA-seq (scRNAseq) 10X data and reference single-nucleus 
RNA-seq (snRNAseq) 10X data for mouse MOp brain region. Highlighted boxed (in red) is the under-
partitioned query SMC-Peri subclass that was split and matched to the corresponding SMC subclass and Peri 
subclass separately in the reference data. D. Cell Type Barcodes of the under-partitioned query SMC-Peri 
subclass and the corresponding reference SMC subclass and reference Peri subclass. The Barcode plots clearly 
show two distinct expression patterns in the under-partitioned query cluster, each reflecting a reference 
cluster expression pattern. 
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Figure 2: A. FR-Match cell-to-cluster results of mouse MOp cell type matching at the most granular cell type 
resolution. Majority of the cells in the query cell types were matched uniquely to the reference cell types, 
showing clean diagonal matches with few off-diagonal match. The highlighted box (in red) at the bottom is the 
“unassigned” row for the query cells that were not matched to any of the reference cell types based on the 
FR-Match restuls. The unassigned cells may suggest sub-optimally partitioned query clusters or novel cell 
types not presented in the reference cell types. B. Azimuth results of mouse MOp cell type matching at the 
most granular cell type resolution. Though majority of the cells were matched along the diagonal, there were 
many off-diagonal matches suggesting low-quality matching. C. FR-Match cluster-to-cluster two-way matching 
results for the cross-brain-region matching of human M1 and MTG. FR-Match results suggests that most of the 
GABAergic and glial cell types are preserved across brain regions, but Glutamatergic cell types are region-
specific. D. FR-Match application to the spatial transcriptomics data. Cell type assignment of the mouse VISp 
smFISH data using the scRNAseq-defined reference cell types of the same brain region and FR-Match cell-to-
cluster algorithm. The assigned excitatory cell types clearly recapitulate the laminar distribution in the spatial 
coordinates (top); and the assigned inhibitory cell types show the expected scattering spatial distribution. E. 
Spatial distributions of the excitatory cell types (top) and inhibitory cell types (bottom) summarized from the 
FR-Match cell type assignment results for the smFISH data shown in D.  
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Supplementary Figure 1: Data distribution histogram of the log(CPM) data from the Smart-seq protocol (left) 
and the 10X protocol (right). The Smart-seq data form a bimodal distribution, whereas the 10X data form a 
long-tail right-skewed distribution. 
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Supplementary Figure 2: Cell type matching results using Azimuth and Online iNMF. A. Azimuth results of 
human M1 subclass cell type matching. B. Online iNMF results of human M1 subclass cell type matching. C. 
Azimuth results of mouse MOp subclass cell type matching. D. Online iNMF results of mouse MOp subclass cell 
type matching. 
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Supplementary Figure 3: FR-Match (left) and Azimuth (right) results of human M1 cell type matching at the 
most granular cell type resolution. 
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Supplementary Figure 4: Reciprocal marker gene Cell Type Barcodes. Pairs of Barcode plots for the matched 
cell types (M1.Inh_L1_LAMP5_NMBR and MTG.Inh_L1_SST_NMBR) between M1 and MTG. Matched cell types 
were identified by two-way FR-Match. Left pair are Barcodes of the two cell types based on the M1 marker 
genes. Right pair are Barcodes of the two cell types based on the MTG marker genes. Both pairs show very 
similar expression patterns of the Barcodes within each pair on the reciprocal sets of marker genes, convincing 
the similarity of the matched cell types between different brain regions. 
 

MTG.Inh_L1_SST_NMBR

F−beta: 0.898

MT1F
ID3
LOC105376917
SLC1A3
EMCN
PALMD
CUX2
PENK
CALCRL
MOXD1
LINC01500
CBLN2
CCDC68
CARM1P1
PRSS12
RMST
MME
ANXA1
LOC105371677
NTNG1
COL5A2
LOC101927281
CCDC168
LOC105376457
LOC105378657
LOC105374971
LOC101927835
RBM20
NPY2R
IFNG_AS1
IL26
ITGA11
PKD2L1
MEGF10
RPRM
LOC101928622
SULF1
ADAMTSL1
NPFFR2
LOC105377183
TNNT2
LOC105371833
NR4A2
NPNT
ERG
LINC00343
PXDN
THEMIS
OLFML2B
SNTB1
LOC105378486
LOC101928964
GAS2L3
SLC15A5
IGFBP3
SLITRK6
PCOLCE2
LOC105379054
PIK3C2G
ADAM33
CPLX3
CBLN4
TGFBR2
LOC101927870
SP8
C18orf42
LOC105379146
ANGPT1
VIP
DCN
CNR1
PLCXD3
LOC101929028
DACH2
PCDH18
KCNH8
SCML4
GGH
KIT
LOC101928923
CCDC141
PCP4
SLC22A3
EGFEM1P
ANKFN1
SEMA3C
CXCL14
NDNF
SV2C
LRRC63
CASC6
SLC9A9
TAC1
EYS
HPSE2
NOS1
MYO5B
HTR2C
SLC7A11
LINC00836
COL15A1
LOC401478
TAC3
TSHZ2
EYA4
TMEM255A
IGFBP7
ADGRG6
PROM1
HPGD
FAM89A
NPY
IQGAP2
ABI3BP
SPP1
HGF
MEPE
SLC9A2
STK32A
CPED1
NMU
FREM1
QRFPR
SLC17A8
LOC101929667
BCHE
ANKRD34B
LOC100996671
LOC105377701
LYPD6
PAWR
GPC5
SPON1
FBN2
LOC102724957
TH
CSF1R
APBB1IP
PCDH15
PDGFRA
ENPP2
CERCAM

Marker

Marker
0
1

0

2

4

6

8

10

12

M1.Inh_L1_LAMP5_NMBR
MT1F
ID3
LOC105376917
SLC1A3
EMCN
PALMD
CUX2
PENK
CALCRL
MOXD1
LINC01500
CBLN2
CCDC68
CARM1P1
PRSS12
RMST
MME
ANXA1
LOC105371677
NTNG1
COL5A2
LOC101927281
CCDC168
LOC105376457
LOC105378657
LOC105374971
LOC101927835
RBM20
NPY2R
IFNG_AS1
IL26
ITGA11
PKD2L1
MEGF10
RPRM
LOC101928622
SULF1
ADAMTSL1
NPFFR2
LOC105377183
TNNT2
LOC105371833
NR4A2
NPNT
ERG
LINC00343
PXDN
THEMIS
OLFML2B
SNTB1
LOC105378486
LOC101928964
GAS2L3
SLC15A5
IGFBP3
SLITRK6
PCOLCE2
LOC105379054
PIK3C2G
ADAM33
CPLX3
CBLN4
TGFBR2
LOC101927870
SP8
C18orf42
LOC105379146
ANGPT1
VIP
DCN
CNR1
PLCXD3
LOC101929028
DACH2
PCDH18
KCNH8
SCML4
GGH
KIT
LOC101928923
CCDC141
PCP4
SLC22A3
EGFEM1P
ANKFN1
SEMA3C
CXCL14
NDNF
SV2C
LRRC63
CASC6
SLC9A9
TAC1
EYS
HPSE2
NOS1
MYO5B
HTR2C
SLC7A11
LINC00836
COL15A1
LOC401478
TAC3
TSHZ2
EYA4
TMEM255A
IGFBP7
ADGRG6
PROM1
HPGD
FAM89A
NPY
IQGAP2
ABI3BP
SPP1
HGF
MEPE
SLC9A2
STK32A
CPED1
NMU
FREM1
QRFPR
SLC17A8
LOC101929667
BCHE
ANKRD34B
LOC100996671
LOC105377701
LYPD6
PAWR
GPC5
SPON1
FBN2
LOC102724957
TH
CSF1R
APBB1IP
PCDH15
PDGFRA
ENPP2
CERCAM

0

2

4

6

8

10

12

14

MTG
cluster

M1
cluster

MTG
markers

M1.Inh_L1_LAMP5_NMBR

F−beta: 0.79

ATP1A2
LOC105376917
SERPINI2
LPAR4
ABL2
ITIH5
COLEC12
ABCG2
LOC105378837
BMPR1B
SV2C
RMST
LOC105374235
GRB14
LOC101927745
LOC105376987
TXK
CCDC68
VIPR2
COBLL1
BDNF
LOC105377209
HPCAL1
GULP1
CUX2
LINC00943
PKD2L1
LINC00607
LINCR_0002
COL22A1
LOC105374971
LOC105375929
LOC105374972
LOC105375974
LOC105374392
LOC100507562
LOC105376081
FAP
TRABD2A
NOX4
LOC101927835
LINC00836
SYT2
CD36
CCDC80
IGFBP3
LOC101927439
LOC105371833
HS3ST4
NPFFR2
CRH
OLFML2B
SMYD1
C14orf39
LOC105369818
LOC105376592
LOC105376591
MGST1
SLC15A5
ADRA2A
NXPH4
LOC105377183
LOC105371497
LOC101927987
FAM163A
CNR1
RGS10
SYTL5
KAL1
RGS5
LOC105379168
SCML4
LOC105373643
SLC22A3
FLT1
SP8
LOC105373642
NOS1
CA8
CPLX3
PKP2
COL15A1
ABI3BP
PTHLH
ADAM33
LOC101927269
PRELID2
LOC101927870
NDNF
DDR2
LOC105377434
CHRNA6
VIP
MYO5B
FAM19A4
PVALB
KCNS3
NMU
FRZB
HTR2C
PENK
SMOC2
LRRC38
SST
ADGRG6
KMO
SLC24A3
KIRREL3
CBLN4
TAC3
LOC105373452
LOC105377632
LOC105373451
SULF1
LOC105373538
BCHE
PDGFD
HGF
MEPE
FAM150B
ANKRD34B
ZFPM2_AS1
STON2
PAWR
HPGD
FBN2
ADAMTS20
LOC105378030
LOC100996671
BMP3
FGD3
FREM1
TH
CX3CR1
VCAN
LOC105371624
ST18
OPALIN
LOC101927199
LINC00609

Marker

Marker
0
1

0

2

4

6

8

10

MTG.Inh_L1_SST_NMBR
ATP1A2
LOC105376917
SERPINI2
LPAR4
ABL2
ITIH5
COLEC12
ABCG2
LOC105378837
BMPR1B
SV2C
RMST
LOC105374235
GRB14
LOC101927745
LOC105376987
TXK
CCDC68
VIPR2
COBLL1
BDNF
LOC105377209
HPCAL1
GULP1
CUX2
LINC00943
PKD2L1
LINC00607
LINCR_0002
COL22A1
LOC105374971
LOC105375929
LOC105374972
LOC105375974
LOC105374392
LOC100507562
LOC105376081
FAP
TRABD2A
NOX4
LOC101927835
LINC00836
SYT2
CD36
CCDC80
IGFBP3
LOC101927439
LOC105371833
HS3ST4
NPFFR2
CRH
OLFML2B
SMYD1
C14orf39
LOC105369818
LOC105376592
LOC105376591
MGST1
SLC15A5
ADRA2A
NXPH4
LOC105377183
LOC105371497
LOC101927987
FAM163A
CNR1
RGS10
SYTL5
KAL1
RGS5
LOC105379168
SCML4
LOC105373643
SLC22A3
FLT1
SP8
LOC105373642
NOS1
CA8
CPLX3
PKP2
COL15A1
ABI3BP
PTHLH
ADAM33
LOC101927269
PRELID2
LOC101927870
NDNF
DDR2
LOC105377434
CHRNA6
VIP
MYO5B
FAM19A4
PVALB
KCNS3
NMU
FRZB
HTR2C
PENK
SMOC2
LRRC38
SST
ADGRG6
KMO
SLC24A3
KIRREL3
CBLN4
TAC3
LOC105373452
LOC105377632
LOC105373451
SULF1
LOC105373538
BCHE
PDGFD
HGF
MEPE
FAM150B
ANKRD34B
ZFPM2_AS1
STON2
PAWR
HPGD
FBN2
ADAMTS20
LOC105378030
LOC100996671
BMP3
FGD3
FREM1
TH
CX3CR1
VCAN
LOC105371624
ST18
OPALIN
LOC101927199
LINC00609

0

2

4

6

8

10

MTG
cluster

M1
cluster

M1
markers

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2021. ; https://doi.org/10.1101/2021.10.17.464718doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464718
http://creativecommons.org/licenses/by-nc-nd/4.0/

