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Summary 
Humans are remarkably proficient at finding objects within a complex visual world. Current theories 
of attentional selection propose that this ability is mediated by target-specific preparatory activity in 
visual cortex, biasing visual processing in favor of the target object. In real-world situations, however, 
the retinal image that any object will produce is unknown in advance; its size, for instance, varies 
dramatically with the object’s distance from the observer. Using fMRI, we show that preparatory 
activity is systematically modulated by expectations derived from scene context. Human participants 
searched for objects at different distances in scenes. Activity patterns in object-selective cortex during 
search preparation (while no objects were presented), resembled activity patterns evoked by viewing 
targets object in isolation. Crucially, this preparatory activity was modulated by distance, reflecting the 
predicted retinal image of the object at each distance. These findings reconcile current theories of 
attentional selection with the challenges of real-world vision. 

 

Highlights 
• Visual cortex contains object-specific representations during search preparation. 
• We demonstrate this for the first time during concurrent visual scene processing. 
• Preparatory object representations are scaled to account for viewing distance. 
• Preparatory biases reflect the predicted retinal image inferred from scene context. 

 

eTOC blurb 
Attentional selection is thought to be mediated by target-specific preparatory activity in visual cortex. 
Gayet and Peelen provide evidence that such preparatory biases incorporate contextual expectations 
about object appearance, reconciling attention theories with the challenges of naturalistic vision. 

 

Keywords 
Attentional selection, predictive processes, real-world vision, biased competition, visual search, scene 
perception, fMRI  
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Introduction 
The vast majority of the sensory input entering through our eyes is irrelevant to our current behavioral 
goals. Consequently, the human visual system is equipped with means to favor behaviorally relevant 
visual input over irrelevant visual input. An influential idea is that attentional selection occurs by 
matching incoming visual input to attentional templates, so that objects matching (aspects of) the 
template receive prioritized processing [1] and attract spatial attention [2]. At a neural level, such a 
template may be instantiated through the pre-activation of neural populations coding for the visual 
properties of the target object (e.g., its color, shape, size, or combination thereof). This preparatory 
activity serves to increase effective responsivity to visual input that comprises target-like properties, 
biasing competition in favor of task-relevant objects [3, 4, 5, 6, 7]. The most direct evidence for such 
preparatory biases comes from monkey physiology and human neuroimaging studies that measured 
target-specific activity following search instructions but prior to stimulus onset. In this preparatory 
period, the firing rate of neurons tuned to target features increases within monkey inferotemporal 
cortex [8, 9], and stimulus-specific patterns of fMRI BOLD activity emerge throughout human visual 
cortex, ranging from primary visual cortex to inferotemporal cortex [10, 11, 12, 13, 14, 15, 16]. 

Despite these observations, there is ample reason to question whether the pre-activation of 
target-selective neurons in visual cortex is a viable selection mechanism for visual search in the real 
world. One key problem that is inherent to real-world visual search but is not accounted for by current 
models of attentional selection, is that a given object will produce a dramatically different image on 
the retinae depending on its location, which is unknown in advance. For instance, the color of the 
retinal image depends on the illumination on the object, its shape depends on the viewpoint, and – 
most critically – its size can vary by several orders of magnitude depending on the distance to the 
observer. Accordingly, the same object will evoke vastly different patterns of neural activity depending 
on its (yet unknown) location. In order to be an effective selection mechanism in the real world, 
preparatory activity could dynamically adjust to account for these situational dependencies. To 
account for the dependency between size and distance, for instance, this would entail pre-activating a 
smaller target object representation when searching far away, and a larger target object 
representation when searching for that same object nearby.  

In the current study, we addressed this open question by measuring fMRI BOLD activity in 
human observers while they prepared to search for objects at different distances in indoor scene 
photographs. We considered three possible outcomes. First, preparatory activity may not play a role 
during naturalistic visual search at all, either because visual processing of a scene interferes with the 
concurrent maintenance of a target object representation [17, 18], or because the visual system cannot 
account for the location-dependency of the search target (as explained above). Second, preparatory 
activity may be situationally invariant [19]. For example, preparatory activity may reflect a canonical 
(e.g., real-world) size of the target object, rather than its predicted – and variable – retinal image size 
[20, 21]. Third, preparatory activity may incorporate the expected retinal size of the target object given 
the current viewing distance (i.e., more distant objects will produce a smaller retinal image). In line 
with this latter possibility, human observers occasionally fail to detect objects of inappropriate sizes 
given their location [22, 23].  
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Figure 1. Schematic depiction of the experimental approach. (A) Search task. At the start of each trial, a letter (‘M’ or ‘B’) 
indicated which of two possible objects should be searched for (a melon or a box), and a green bar indicated the vertical 
location at which this target object could appear. After 800 ms, an indoor scene photograph was presented, which – 
together with the location cue (green bar) – enabled the observer to infer the real-world distance at which the target 
object should appear, thus predicting the retinal size of the target object. In half of the trials, after a varying delay (range 
2-3 seconds) an array of 14 to 20 objects was briefly presented (150 ms), followed by a noise mask (100 ms; not displayed), 
and participants were required to report (within 1.5 seconds) whether the target object was present or absent (here: 
present; circled in purple for illustrational purposes). In the other half of the trials, the scene remained unchanged for the 
full delay period (i.e., no objects were presented), allowing for measuring fMRI activity evoked during search preparation 
(for near and far, melons and boxes). (B) The stimulus set included sixteen different scene families that categorically varied 
in their spatial lay-out: half of the scene families had the ‘far’ location in the upper half of the screen, and the other half 
had the ‘far’ location in the lower half of the scene. This manipulation ensured that distance information could not be 
inferred from the location cue alone, but had to be extracted from the scene instead. (C) The goal of the training runs was 
to reveal benchmark patterns of fMRI activity evoked by visual presentation of isolated objects (large and small melons 
and boxes), to compare those to the patterns of fMRI activity evoked during search preparation (for near and far melons 
and boxes). The isolated objects in these training runs were cropped from the search scenes and presented in a mini-block 
design.  

 

We were able to distinguish between these possibilities by comparing the patterns of brain 
activity measured while observers were searching for an object at a given distance in a scene (Figure 
1A; search task runs) to benchmark patterns of activity measured while observers were viewing those 
same objects in isolation in different sizes (Figure 1C; training runs). The experimental design of the 
search task had two critical assets. First, in order to ensure that activity measured during search only 
reflected preparatory activity, we analyzed data from a subset of trials in which observers prepared to 
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search for the cued object, but the scene remained devoid of objects, and no actual search task was 
performed (Figure 1A, top). Second, we included different types of scene layouts (Figure 1B), to 
decouple viewing distance (i.e., ‘near’ and ‘far’) from the position of the cue (at the top or bottom of 
the image), thus requiring participants to extract the viewing distance from the scene itself rather than 
from the cue alone. The training runs with isolated objects were designed to retrieve benchmark 
activity patterns for both target objects (a melon and a box) in two different sizes (large and small). 
Object sizes in the training runs corresponded to the retinal image sizes that these objects would 
produce at the near and far distances of the search scene. These benchmark activity patterns allowed 
us to test directly whether preparatory activity (1) reflected a visual representation of the target object 
during search preparation, and (2) whether this visual representation was scaled to account for viewing 
distance during search. Taken together, the present experimental design captures a critical property 
of naturalistic visual search, incorporating contextual constraints on object appearance, while 
preserving full experimental control. 

To preview our findings: preparatory activity patterns in object-selective cortex during search 
preparation reflected the identity of the target object, resembling activity patterns evoked by visual 
presentation of these objects. Crucially, this resemblance was specific to comparisons in which the 
expected size during search matched the retinal size during visual presentation. We conclude that 
during naturalistic visual search (1) visual representations of the target object are pre-activated in 
object-selective cortex, and (2) are scaled to account for viewing distance. These findings demonstrate 
how preparatory biases in visual cortex can support visual search in the real world. 

 

Results 
The main goal of this study was to test whether target-specific object representations – instantiated  
in visual cortex during search preparation – are scaled to account for viewing distance. A sample of 24 
participants took part in two two-hour fMRI sessions on different days. Participants were cued to 
search for a target object (a melon or a box) in the near or far plane of an indoor scene photograph 
(see Figure 1A). In half of the trials, an array of objects briefly appeared at the cued distance (150ms), 
and observers reported whether or not the cued target object was present. This behavioral task was 
purposefully challenging, but feasible. Participants were 74% correct on target present trials, and 60%  
correct on target absent trials, amounting to 67% accuracy on overall present-absent judgements, 
which was better than chance; p < .0005. All reported p-values reflect the probability of incorrectly 
rejecting the null hypothesis (i.e., Type-1 error rate), based on 2000-samples bootstrap tests across 
participants (see STAR methods).  

The fMRI analyses reported below are based on the other half of the trials, in which no objects 
appeared, thus isolating activity evoked by search preparation. Shared patterns of fMRI responses in 
visual cortex evoked by viewing an object in separate training runs (Figure 1C) and by preparing to 
search for that same object in the search task, are taken as evidence that this object is represented in 
the preparatory activity. 

We focused our analyses on two main regions of interest (ROIs): object-selective cortex 
(hereafter OSC; mostly corresponding to the lateral occipital complex) and early visual cortex 
(hereafter EVC; mostly corresponding to V1 and V2). This followed from two main considerations. First, 
previous work has shown object-specific preparatory activity in these two regions while observers 
prepared to search for objects in naturalistic scenes [16]. Second, these two areas constitute key regions 
underlying the perception of object size [24, 25, 26, 27, 28, 29, 30], as influenced by scene context [31]. These 
ROIs were functionally defined for each individual participant (see STAR methods).  
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Preparatory activity contains a target-specific object representation 

Before asking whether target-specific object representations are scaled to account for viewing 
distance, we needed to ascertain that such object representations were indeed instantiated in visual 
cortex during search preparation. This is not a given, considering that all studies to date that 
demonstrated target-specific preparatory activity did so while observers were staring at an empty 
screen, in anticipation of an upcoming search task. By contrast, in our study we measured preparatory 
activity while participants were actively processing the scene in which they were searching for an 
object, as would be the case in real life. In a first analysis, we tested whether search preparation for 
melons and boxes (i.e., following an ‘M’ or ‘B’ cue in the search task) evoked distinguishable patterns 
of activity (irrespective of size). A multivariate classification approach (see STAR methods) showed that 
this was the case in OSC (p = .001), but we found no such evidence in EVC (p = .259), as shown in Figure 
2A. As such, OSC retained information about the upcoming target object during search preparation. It 
is possible, however, that our analysis approach captured lingering activity evoked by the cues (i.e., an 
‘M’ or a ‘B’) rather than sustained visual-like representations of the target objects.  

To distinguish between these possibilities, in a second analysis we tested whether activity 
patterns evoked during search preparation for the two target objects (while no object was actually 
presented) were qualitatively similar to those evoked by viewing the two target objects (i.e., images 
of melons and boxes presented in isolation in separate training runs, which evoked distinguishable 
activity patterns in both ROIs; p < .0005, for both tests). Again, for this analysis we lumped together 
large and small objects, and near and far search, to isolate the object-specific responses. Confirming 
our hypothesis, we observed above-chance object cross-classification in OSC (p = .004), but not in EVC 
(p = .098) (Figure 2B). These findings replicated across a wide range of voxel inclusion thresholds 
(Figure 2B, right-most panels), as well as using a reversed classification approach; a classifier trained 
to distinguish between search preparation for melons versus boxes successfully classified which object 
was visually presented in the training runs, based on activity patterns in OSC (Supplemental 
Information S1). Moreover, the generalization from visually evoked activity to preparatory activity was 
not driven by systematic differences in overall BOLD response to melon- compared to box-related 
conditions (Supplemental Information S2). Taken together, these findings show that activity patterns 
in OSC reflect a visual-like representation of the target object during search preparation. To our 
knowledge, this provides the first demonstration of preparatory object representations during 
concurrent scene processing. 
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Figure 2. Analysis approach and results: decoding the target object during search preparation. (A) We first tested whether 
search preparation for melons versus boxes (i.e., following an “M” versus “B” cue in the search task) evoked distinguishable 
patterns of activity in OSC and EVC. This was the case in OSC, but we found no such evidence in EVC. Multivariate 
classification was achieved using a linear support vector machine (libsvm [32]) on run-based beta-maps following a leave-
one-run-out cross-validation procedure. To probe the robustness of the analyses conducted on the two default ROIs, we 
repeated these analyses for twenty different voxel inclusion thresholds (rightmost plots). Significance is reported after 
correction for multiple comparisons and threshold-free cluster enhancement [33] (see STAR methods). For reference, the 
default voxel inclusion threshold used in the main graph (on the left) is also included in these graphs, and labeled ‘all’. (B) 
Next, using a cross-classification approach, we tested whether a classifier trained on visually evoked activity in training 
runs (images of melons versus boxes) successfully cross-classified the objects that participants were cued to search for in 
the search task (melon versus box). This was the case in OSC. Small colored dots represent classifier information (derived 
from distance-to-bound) for individual participants, obtained separately from the left and right hemispheres (displayed 
within the left and right kernel-density plots, respectively). The central marker reflects the population mean, averaged 
across hemispheres. Error bars around the central markers, shaded areas within the kernel-density plots (on the left), and 
shaded area in the robustness plots (on the right), represent the bootstrapped 95% confidence intervals of the mean (2000 
permutations). *p < .05, **p < .005, ***p < .0005. 
 
     

Preparatory object representations are distance-dependent 

The main goal of this study was to find out whether preparatory object representations, as observed 
in OSC, are scaled to account for the current viewing distance. To test this, we first trained two different 
classifiers on visually evoked activity in the training runs: one classifier was trained to distinguish 
between activity evoked by viewing small images of melons versus boxes, and the other was trained 
to distinguish between large images of melons versus boxes. We could then compare the ability of 
both classifiers to distinguish whether participants were searching for a melon versus a box, separately 
for near search and far search. If object representations were rescaled during search preparation, the 
classifier trained to distinguish between large objects should perform best when cross-classifying 
target objects during near search and the classifier trained to distinguish between small objects should 
perform best when classifying target objects during far search. The data confirmed our hypothesis 
(Figure 3): when training on size-matching objects, preparatory activity in OSC yielded above chance 
cross-classification of the target object (p < .0005), but this was not the case when training on size-
mismatching objects (p = .224; difference p = .017). Similarly, in EVC, preparatory activity yielded above 
chance cross-classification of the target object when training on size-matching objects, (p = .040), but 
not when training on size-mismatching objects (p = .244). However, cross-classification did not reliably 
differ between these two training regimes in EVC (p = 0.197). Confirming our finding in OSC, 19 out of 
20 alternative voxel inclusion thresholds yielded an even more reliable difference-score than the 
default voxel inclusion threshold reported here (Figure 3, top-right panel). Moreover, the same 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2021. ; https://doi.org/10.1101/2021.10.17.464696doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.17.464696
http://creativecommons.org/licenses/by-nd/4.0/


6 
 

conclusions were reached using a reversed analysis approach, in which classifiers were trained on 
activity evoked during search preparation and tested on activity evoked by visually presented objects 
(Supplemental Information S1). This size-specificity was not observed in face- and scene-selective 
regions of interest (Supplemental Information S3). Taken together, the present findings show that 
preparatory activity patterns in OSC reflect a representation of the search target that (1) resembles a 
visually evoked representation, and (2) takes into account the predicted retinal image size of the target 
object at the current viewing distance. 

 
Figure 3. Analysis approach and results: distance-dependent object representations during search preparation. We tested 
whether cross-classification of target object (as shown in Figure 2B) improves when training a classifier on appropriately 
sized objects given the current viewing distance (e.g., large melons versus large boxes, when testing on near search) 
compared to inappropriately sized objects (e.g., large melons versus large boxes, when testing on far search). All analysis 
and data visualization approaches are identical to those described under Figure 2. For clarity, the robustness plots on the 
right only display confidence intervals for the critical difference score (size-matching minus size-mismatching object cross-
classification). *p < .05, **p < .005, ***p < .0005. 

 

General Discussion 
We investigated whether target-specific preparatory activity is a viable mechanism for resolving 
competition between objects [3] in naturalistic conditions. To this end, we tested whether activity 
evoked during search preparation varies with viewing distance to account for the expected change in 
retinal image size of the target object. We observed that preparatory activity patterns in object-
selective cortex contained information about the identity of the target object, scaled to match the 
predicted retinal size of the object at the current viewing distance. This preparatory activity could aid 
visual selection, by comparing the predicted target object representation to the actual visual input, 
thus prioritizing processing of the target object (e.g., template-based visual search [1, 2]). The present 
findings demonstrate how preparatory activity can support attentional selection in the real world, 
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where the visual input associated with an object depends on scene context: during search preparation, 
object-selective cortex contains a representation of the target object that flexibly adjusts to match the 
predicted retinal image that the target object produces at the current search location.  

 In addition to our main finding - that preparatory activity scales with viewing distance - the 
finding of object-specific preparatory activity (melon versus box) during naturalistic search constitutes 
an important generalization of previous work. Existing evidence for preparatory activity comes from 
studies in which observers searched for simple targets (e.g., vertical red bars) amongst distractors (e.g., 
red and green bars) on a uniform background [6]. While natural scenes are arguably much richer than 
artificial displays (e.g., more clutter, occlusion), visual search in natural scenes is surprisingly efficient 
[34], and might therefore rely on different mechanisms than visual search in artificial displays [35, 36, 37]. 
Thus far, very few studies have attempted to measure preparatory activity during naturalistic visual 
search (we are only aware of [16]). Perhaps more importantly, all existing studies investigating 
preparatory activity recorded brain activity while participants stared at an empty screen in anticipation 
of the upcoming search task (i.e., following a cue that announced the target object). In real-world visual 
search, however, the outside world is not switched off during search preparation. Rather, observers 
concurrently process the visual scene in which they are searching for a target object. Active processing 
of a visual scene might interfere with the concurrent maintenance of a target representation in visual 
cortex [17, 18, 38], forcing observers to rely on more abstract parietal or prefrontal storage mechanisms 
[39, 40] (but see [41, 42]). In the current study, a scene was presented during search preparation, and our 
data provides evidence that observers actively processed the scene as they successfully extracted 
distance information (as evidenced by the distance-dependency of object classification, depicted in 
Figure 2B). As such, the current study provides an important demonstration of target-selective 
preparatory activity during concurrent scene processing, showing that preparatory activity is a viable 
mechanism for real-world attentional selection. 

It is well known that expectations modulate visual processing (see [43] for a review), causing 
expected visual objects to evoke a reduced but sharpened neural response [44, 45]. Much like 
preparatory activity for explicit search targets, the expectation of an upcoming object suffices for 
evoking object-specific activity patterns in visual cortex [46, 47]. In the present work, we show that 
observers used scene context to generate expectations about the appearance of an object. Specifically, 
knowing the distance at which an object was expected to appear allowed observers to generate strong 
predictions regarding the retinal size of the upcoming target object. Our results show that observers 
incorporated these predictions in their top-down attentional set, as reflected in combined distance- 
and object-specific preparatory activity. 

We interpret the finding of distance-dependent object-specific preparatory activity as 
evidence that object representations are rescaled to match the current search distance. An additional 
preparatory mechanism that may play a role in real-world search is distance-based feature weighting; 
that is, the up- or down-weighting of object features based on their informativeness for the presence 
of the target object at a given distance. For instance, representing the texture of a cantaloupe melon 
might be more useful during near search (when texture is more visible) than during far search. Such a 
distance-based feature weighting mechanism could contribute to the current findings, as feature-
specific preparatory activity (in the testing runs) may generalize to visually-evoked activity (in the 
training runs): classifiers trained to distinguish large melons from large boxes may rely more strongly 
on texture than classifiers trained to distinguish small melons from small boxes. Crucially, both the 
scaling and the differential-feature weighting interpretation support the same general conclusion that 
object-specific preparatory activity incorporates contextual expectations about target appearance. 
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Future research is needed to isolate the features that are most important for distance-dependent 
updating of preparatory activity. 

In the current study, participants were laying down with their head fixed, searching for pre-
defined objects in two-dimensional gray-scale images following abstract cues. This setting differs in 
many ways from perception in the real world [48]. The aim of the current study, however, was not to 
recreate real-world viewing conditions in the lab but, instead, to isolate one key aspect of real-world 
perception. In our study, viewing distance (as inferred from a photograph) determined the size with 
which a target object was represented during search preparation. This implies that participants were 
able to infer the viewing distance at which they were searching for a target object from our scene 
stimuli with sufficient precision using pictorial depth cues (e.g., perspective, blur, or comparisons to 
canonically-sized objects). During real-world vision, observers have many more cues at their disposal 
to obtain an even better estimate of viewing distance: binocular disparity, vergence, accommodation, 
and monocular movement parallax [49, 50, 51]. Moreover, some of these real-world cues even provide 
information that is at odds with the available pictorial depth cues (e.g., vergence). For these reasons, 
extracting viewing distance is easier during real-world vision than in our experiment, presumably 
making distance-dependent preparatory activity an even more effective mechanism during real-world 
search than in the present experiment. At the same time, it remains unknown how the present 
paradigm in which observers were cued to search at two substantially distinct distances (1.5 and 3 
meters) within a static display would generalize to attentional selection during dynamic visual input. 
Will preparatory object representations gradually change size as observers gaze across different 
distances, or will observers instead anticipate the viewing distance of the subsequent saccade 
endpoint to generate an object representation of the predicted size? Observers might continuously 
strike a balance between size-specific and size-invariant representations, depending on whether the 
gazing behavior moves parallel (e.g., looking at the road ahead) or transversal to the depth-axis (e.g., 
looking across the street). Having demonstrated that observers can utilize the inferred viewing 
distance to generate situation-specific preparatory biases, future work is needed to investigate how 
this mechanism is implemented in more dynamic settings.  

Besides the retinal image size of an object, scene context provides various other predictions 
that could inform object processing [52, 53, 23]. For example, the position of an object in a scene also 
predicts the shape of its retinal projection: a round clock on a wall to the left or right of the observer 
will be projected on the retinae as an ellipse. Behavioral work has shown that when observers searched 
for an elliptic target, their attention is captured by a canonically circular object (i.e., a coin) when it is 
rotated so as to produce an elliptic projection [54]. This shows that, at the processing stage that is 
relevant to visual search, objects are (at least partly) represented in terms of their retinal projection, 
rather than their canonical real-world shape. Consequently, predicting the shape of the retinal 
projection of an object based on the angle of incidence could potentially benefit search. Object-
selective cortex exhibits different degrees of invariance for such location-dependent factors as 
illumination, viewpoint, and size [26]. As such, it remains unknown whether preparatory activity in visual 
cortex incorporates the angle of incidence similarly as it does for viewing distance. Nonetheless, the 
current work can be regarded as a proof-of-principle, showing that context-based predictions can be 
incorporated in preparatory activity, optimizing visual processing for goal-directed behavior in the real 
world. 

There are at least two additional mechanisms that could work together with the preparatory 
scaling mechanism described here to support visual search at different distances. First, scene context 
could rapidly modulate the representations of target and distractor objects once these appear (or once 
they are fixated [55]), perhaps even before competition is biased by preparatory activity. Behavioral 
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studies have provided evidence for this notion, showing that spatial attention is captured by objects 
whose distance-inferred size matches the size of objects currently held in short-term memory [21], with 
such memory templates resembling preparatory activity [56, 57, 58]. Second, preparatory activity can be 
instantiated at multiple levels of the visual hierarchy, from low-level features to high-level object 
categories [6]. For some objects, it may thus be possible to pre-activate high-level representations that 
are invariant to size and viewpoint. In line with this, behavioral studies have shown that when 
observers searched for a highly-familiar object category (people or cars) in natural scenes, attention 
was automatically captured by outlines of a person (or car) regardless of their orientation [19]. In sum, 
preparatory activity can comprise multiple features, each of which might be more or less diagnostic 
under different circumstances, and can be instantiated at different processing levels, allowing either 
for relatively early image-like selection, or for higher-level selection (e.g., view invariance). Considering 
human observers’ remarkable proficiency in detecting objects in naturalistic scenes [59, 60, 61, 62, 63, 64] it is 
probable that we flexibly switch between search mechanisms to optimally match situational demands.  

 

Conclusion 

We proposed that for preparatory biases to work as a selection mechanism in naturalistic conditions, 
these would have to (1) operate when participants concurrently process visual information (i.e. looking 
at a scene while preparing to search), and (2) dynamically update as a function of the current search 
location (to account for viewing distance, illumination, angle of incidence, etc.). Here, we show for the 
first time that human observers generate visual-like representations of target objects in object-
selective cortex while (1) actively processing the scene that they are searching, and (2) adapting these 
object representations as a function of viewing distance. By doing so, we demonstrate that preparatory 
biases in visual cortex are a viable mechanism for visual selection in the real-world.  
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STAR Methods 
Resource availability 

Lead contact. 

Further information and requests for resources should be directed to and will be fulfilled by the Lead 
Contact, Surya Gayet (surya.gayet@gmail.com or s.gayet@uu.nl). This study did not generate new 
unique reagents. 

 

Materials availability. 

All stimuli are publicly available at the Open Science Framework (OSF) project page associated with 
this study, which is listed in the Key Resources Table (https://osf.io/nqf6p/). 

 

Data and code availability. 

• Behavioral data and processed fMRI data (beta-maps and regions of interest in MNI space) have 
been deposited at the OSF project listed in the Key Resources Table (https://osf.io/nqf6p/)  and are 
publicly available as of the date of publication. Raw fMRI data in native subject space (activity maps 
and defaced structural scans) are deposited at the Donders Institution repository listed in the Key 
Resources Table (https://doi.org/10.34973/z3ym-9y81) and are publicly available as of the date of 
publication. Note that privacy regulations require one-time registration to access these data. 

• Experiment scripts and analysis files (accompanied by comprehensive read-me files, and in-script 
annotations) have been deposited at the OSF project listed in the Key Resources Table 
(https://osf.io/nqf6p/) and are publicly available as of the date of publication.  

• Any additional information required to reanalyze the data reported in this paper is available from 
the lead contact upon request. 

 

Experimental Model and Subject Detail 

Participants. 

Participants were recruited through the Radboud university participant pool (SONA systems) and 
participated for monetary reward, after providing informed consent. The study was in accordance with 
the institutional guidelines of the local ethical committee (CMO region Arnhem-Nijmegen, The 
Netherlands, Protocol CMO2014/288).  

A total of 24 participants (12 females, mean age = 24.1, SD = 5.2) took part in this study, and 
none were excluded. All participants completed two two-hour experimental sessions on separate days. 
The predetermined sample size of 24 followed from a trade-off between (A) the sample-size to achieve 
80% power for obtaining an effect of medium size (N=34), and (B) our preference for having more 
within-subject power (i.e., two sessions instead of one), totaling to 48 experimental sessions. 
Maximizing the within-subject power was deemed necessary, because the hypothesized object-
selective responses in preparatory activity were expected to yield small effect sizes, and key (decoding) 
analyses were performed within participants. 
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Method Details 

Apparatus. 

Participants viewed the stimuli through a mirror mounted on the head coil of the scanner. Stimuli were 
presented on a 1024 x 768 EIKI LC – XL100 projector (60 Hz refresh rate), back-projected onto a 
projection screen (Macada DAP diffuse KBA) attached to the back of the scanner bore. The effective 
viewing distance (eyes-mirror + mirror-screen) approximated 1440mm. Participants provided 
responses with the index fingers of the left and right hand, on a HHSC-2x4-C button box in each hand, 
connected to the serial port of the computer handling the stimulus presentation. All stimulus materials 
and experimental scripts described below can be found in the online repository, listed in the Key 
Resources Table.  

 

General experimental procedure. 

Upon arrival at the scanner facilities, participants were guided through the three different tasks that 
they would perform inside the scanner (i.e., the search task, the training runs, and the functional 
localizer runs), as described below. Instructions were provided verbally, accompanied by a click-
through demo and followed by a brief practice session on the experimenter’s laptop, to verify that 
participants understood the task instructions before going into the scanner. In the scanner, 
participants practiced the search task during the five-minute anatomical scan, while the experimenter 
monitored the behavioral responses. Participants performed a total of 24 functional runs. Each 
functional run started and ended with 15 seconds of fixation. 

 

Experimental design & stimuli: Search task. 

The search task was designed to measure fMRI BOLD responses evoked during search preparation for 
different types of objects. Participants were instructed that they would search for one of two specific 
objects in scene photographs; a Cantaloupe melon and a small cube-shaped cardboard box (which was 
physically present during the instructions). On each trial, the letter ‘M’ or ‘B’ indicated whether they 
had to search for a melon or box, respectively. A green marker would indicate at what vertical location 
of the upcoming scene the target object could appear. After 1600ms, the scene appeared and, after a 
variable delay, an array of objects was briefly (150ms) presented within the scene. The array consisted 
of 14 to 20 objects, of which 12 to 18 distractor objects (drawn from of a pool of about 35 objects) 
such as a sweater, a laptop, a tea mug, a plant, and a watering can. The entire scene was then removed 
and backward masked (100ms), and participants were required to swiftly respond whether the target 
object was present or absent (within 1500ms), using button boxes in the left and right hand. After the 
response they would get feedback (correct, incorrect, or too slow), and the fixation dot changed color 
to announce the start of the next trial (1500ms inter-trial-interval). Participants were instructed that 
on half of the trials, no array of objects would appear within the scene, and hence no response would 
be required. Finally, it was stressed that participants were required to maintain fixation on the green 
marker throughout the trial, to ensure that they could detect the target object irrespective of its 
horizontal location (i.e., left or right of fixation). The two possible target locations always contained an 
object: either the target object, or a foil. The foil was either the non-target object (e.g., the melon 
when the box was cued) or an object that matched the shape (but not the size) of the target object 
(e.g., a football when the melon was cued on the far plane). 
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The study comprised sixteen search task runs, totaling to 512 trials per participant. Each search 
task run consisted of 32 trials, in an event-related design. Within each of these runs, five factors were 
counterbalanced within-participant and presented in random order. First, a green marker cued 
participants to fixate the upper part or the lower part of the upcoming scene (see Figure 1A). Second, 
one of two distinct types of scenes could be presented: scenes in which the far region was in the upper 
part of the image or the lower part of the image (see Figure 1C). Jointly, these two factors determined 
the search distance (i.e., near or far). Third, one of two possible object cues could be presented (i.e., 
the letter ‘M’ or ‘B’ indicating whether participants had to search for the presence of a melon or box 
respectively. Fourth, after a variable delay an array of objects appeared, or not. Fifth, on those trials in 
which an array of objects appeared, the cued target object could either be present in the array or not. 
One additional factor was counterbalanced with the five factors listed above across all eight search 
task runs of an experimental session, but not within each run: the scene background was chosen from 
one of eight scenes per scene type (sixteen scenes in total). Then a number of factors were (maximally) 
equated within runs, but could not be counterbalanced with the factors listed above. First, the type of 
distractor object at the non-target location could either be of a shape or a size that was similar to the 
cued target object. Second, the variable asynchrony between the scene onset and the onset of the 
search array could either be 2, 2.5 or 3 seconds (on trials in which no array was presented, the trial 
ended after the longest delay had elapsed). Finally, the mapping of the present/absent responses with 
the left/right button boxes was counterbalanced across participants. Participants never saw the same 
array of objects more than once. 

The indoor scenes were photographed at sixteen different indoor locations within the 
Radboud University campus (Nijmegen, The Netherlands), using a digital camera on a tripod. A custom-
made script was used to compute object positioning and camera angle, ensuring that the target objects 
would produce the same two retinal image sizes (large and small, corresponding to viewing distances 
of 1.5 and 3 meters), at the same eccentricity (left and right of fixation, in the near and far regions of 
the scene) in all sixteen different scene families. By doing so we ensured that the (predicted) sizes of 
the different target objects would be nearly identical within each of the two distance conditions (thus 
allowing for training binary classification algorithms). The images were turned grayscale, and any text 
appearing in the photographs was blurred using Photoshop 2017 (Adobe Inc.). The masks consisted of 
Pink (1/f filtered) noise, generated prior to each trial. The scene stimuli subtended 20 (width) by 14.4 
degrees of visual angle (dva), and the target objects subtended about 0.9 by 0.9 dva (far) and 1.8 by 
1.8 dva (near), with their inner edges positioned at an eccentricity of 3.2 dva from fixation. The upper 
and lower fixation positions were separated by 5.4 dva. 

All sixteen different scenes (without objects), and all 512 unique search arrays used in the 
present experiment are publicly available via the Open Science Framework project page listed in the 
Key Resources Table.  

 

Experimental design & stimuli: Model training. 

The purpose of the training runs was twofold: (1) retrieving benchmark activity patterns evoked by 
viewing isolated objects to train the multivariate models, and (2) identifying voxels that are visually 
responsive to the specific target stimuli used in our study (i.e., for defining the early visual cortex ROIs).  

Participants were instructed to fixate the center of the screen, while pairs of objects were 
simultaneously presented to the left and right of fixation. Their task was to press a button whenever 
one of the two objects was 20% smaller or 20% larger than the remainder of the stimuli (i.e., an oddball 
detection task). The presentation of objects was subdivided into series (mini-blocks) comprising 
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specific image categories (namely large and small melons and boxes), but this was irrelevant to the 
participants’ task.  

Training runs consisted of a mini-block design, and the study comprised four training runs. Each 
run comprised 16 mini-blocks (four repetitions of four conditions, followed by a baseline fixation 
block). Each mini-block lasted 14.7 seconds and comprised 20 unique images (presented for 450 ms 
each, with a 250 ms blank in between). These images consisted of the target objects from the search 
tasks (i.e., melons and boxes) that were cropped from the scenes, equated in luminance, and 
presented on a uniform gray background. The objects were presented in pairs, one to the left and one 
to the right of fixation, at the exact same position (relative to fixation) as the target objects in the 
search task runs. 

 

Experimental design & stimuli: Functional localizer. 

The purpose of the functional localizer runs was to identify object-selective voxels in individual 
participants. Participants were instructed to fixate the center of the screen, while different images 
were presented at fixation. Their task was to press a button whenever any image was presented twice 
in succession (i.e., a 1-back task). The presentation of images was subdivided into series (mini-blocks) 
comprising specific image categories (namely objects, scrambled objects, faces, and houses / 
landscapes), but this was irrelevant to the participants’ task.  

The design of the localizer runs was identical to the design of the training runs, and the study 
comprised a total of four localizer runs. The stimuli and design of the localizer runs were based on (and 
nearly identical to) that of [65]. In our set-up, the stimuli subtended 12 by 12 dva. 

 

Acquisition of fMRI data. 

fMRI data were acquired on a 3T Magnetom PrismaFit MR Scanner (Siemens AG, Healthcare Sector, 
Erlangen, Germany) using a 32-channel head coil. A T2*-weighted gradient echo EPI sequence with 6x 
multiband acceleration factor was used for acquisition of functional data (TR 1s, TE 34ms, flip angle 
60°, 2 mm isotropic voxels, 66 slices). For the search task, 295 images were acquired per run and 318 
images were acquired per run for the training and localizer runs. A high-resolution T1-weighted 
anatomical scan was acquired at the start of each experimental session, using an MPRAGE sequence 
(TR 2.3 s, TE 3.03ms, flip angle: 8°, 1 mm isotropic voxels, 192 sagittal slices, FOV 256 mm). 

 

Preprocessing of fMRI data. 

Data preprocessing was performed using SPM12. Preprocessing steps included field-map correction, 
two-step spatial realignment of the functional images, normalization to MNI 152 space (no down-
sampling), and smoothing with a 3mm (FWHM) Gaussian filter. The two experimental sessions were 
independently warped into MNI space, and then combined. 

 

Creating regions-of-interest: Object-selective cortex (OSC). 

We ran a general linear model to model the responses evoked by viewing intact objects and scrambled 
objects in the localizer runs. Individual mini-blocks were modeled as boxcars and convolved with the 
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canonical hemodynamic response function (HRF) provided in SPM12, and six motion parameters were 
included as nuisance regressors. Next, we computed a univariate contrast on the resulting run-based 
beta-maps to identify voxels that exhibited a significantly (puncorrected < .05) stronger response to intact 
objects than to scrambled objects. The ensuing collection of object-selective voxels for each participant 
was then intersected with a population-level functionally-defined object-selective mask (retrieved 
from [66]), constraining the ROIs to lateral occipital regions, including the lateral occipital complex. The 
size of the OSC ROI varied across participants, with an average size of 1497 voxels (SD = 672; range = 
[181, 2693]) in the left hemisphere, and of 1173 voxels (SD = 512; range = [148, 2377]) in the right 
hemisphere.  

To assess the robustness of our results, we created twenty additional ROIs for each participant, 
in which we differently constrained the maximum number of object-selective voxels. To this end, we 
sorted participants’ object-selective voxels within the group-level mask from most to least object-
selective. Then, we created ROIs by keeping only the N most object-selective voxels within the mask, 
where “N” was a number increasing from zero to the median number of (significantly) object-selective 
voxels across all participants in twenty equidistant steps. Thus, this resulted in twenty additional OSC 
sub-ROIs of increasing size, and with increasingly liberal voxel inclusion. 

All ROIs were initially constrained to a single hemisphere, allowing us to perform classification 
analyses within the left and right hemisphere separately (and averaging the results across hemispheres 
later). 

 

Creating regions-of-interest: Early visual cortex (EVC). 

We ran a general linear model to model the responses evoked by viewing target objects in the training 
runs (large and small melons and boxes). Individual mini-blocks were modeled as boxcars and 
convolved with the canonical HRF, and six motion parameters were included as nuisance regressors. 
Next, we computed a one-sample univariate contrast on the resulting run-based beta-maps to identify 
voxels that exhibited a significantly (puncorrected < .05) stronger response to all four object categories in 
the training runs (i.e., large and small melons and boxes) relative to the implicit baseline. The ensuing 
collection of visually responsive voxels for each participant was then intersected with an anatomical 
mask constituted of Brodmann’s Areas 17 and 18 [67], thus constraining the ROIs to a brain region 
mostly corresponding to primary and secondary visual cortex [68]. The EVC ROI had an average size of 
1713 voxels (SD = 604; range = [540, 2968]) in the left hemisphere, and of 1939 voxels (SD = 747, range 
= [690, 3244]) in the right hemisphere. Akin to the approach described above for the OSC ROI, we 
created twenty additional EVC sub-ROIs per participant that included an incremental number of 
visually responsive voxels. Again, separate ROIs were created for the left and right hemisphere. 

  

Quantification and Statistical analyses 

Behavioral analyses. 

The search task comprised a total of 256 trials that required a behavioral response (i.e., in which an 
array of objects was presented), half of which were target-present trials, and half of which were target-
absent trials. Trials that did require a response but in which no response was provided within the time 
limit were excluded from further behavioral analysis, so that the eventual analysis comprised an 
average of 126 (SD = 3.3) target-present trials, and 125.8 (SD = 3.4) target-absent trials per participant. 
Participants were 73.7% (SD = 9.7%) accurate on the remaining target-present trials (corresponding to 
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a hit rate of 0.74), and 60.1% (SD = 13.3) accurate on target-absent trials (corresponding to a false-
alarm rate of 0.40). To test for above-chance performance at the group level, we subtracted individual 
participants’ false alarm rates from their hit rates, to obtain a single performance metric for each 
participant. Then, on each of 2000 iterations, we drew N values from the resulting performance 
metrics, and computed the arithmetic mean (with N corresponding to the sample size of 24). To test 
for significant above chance-level performance, we computed the fraction of iterations (out of 2000) 
that yielded a positive average performance at the group level. If a positive value was observed on 
more than 95% of iterations, this was regarded as significant above chance performance, given an 
alpha level of 0.05. 

Using the same general analysis approach, we observed no difference in behavioral 
performance between trials in which the target was a melon and trials in which the target was a box, 
p = 0.873. There was a small difference in behavioral performance between near targets (69% correct) 
compared to far targets (65% correct), p = 0.048, and between scenes in which the far plane was above 
the near plane (69% correct) compared to scenes in which the far plane was below the near plane (65% 
correct), p = 0.0016. 

In the training runs, participants correctly reported 79% of size changes (i.e., hit rate) within 
our predefined response deadline of 1.5 seconds. Behavioral performance was slightly lower for 
melons (78% correct) than for boxes (80% correct), p = 0.0139, but did not differ between small and 
large objects, p = 0.810. It should be noted that no performance difference (e.g., between near-far or 
melon-box conditions) was shared between the search task runs and the training runs. It is therefore 
unlikely that successful cross-classification capitalized on differences in task difficulty. 

 

General linear model (GLM) estimation. 

To model responses evoked by viewing target objects in the model training runs (large and small 
images of melons and boxes), we ran a general linear model on the data of each participant. Individual 
mini-blocks were modeled as boxcars and convolved with the canonical hemodynamic response 
function provided in SPM12. The GLM captured four conditions of interest, based on the factors ‘object 
size’ and ‘object type’: large images of melons, large images of boxes, small images of melons, and 
small images of boxes. To model responses evoked during search preparation in the search task, the 
search delays of individual trials (from scene onset to scene offset) were modeled as boxcars and 
convolved with the canonical HRF. Note that this included only the 50% of trials in which no array of 
objects appeared, and the scene thus remained unchanged and devoid of objects. For each participant, 
a single GLM was used to model all sixteen runs across two scanning sessions. This GLM captured the 
four conditions of interest based on the factors ‘search distance’ and ‘object cue’: near search for 
melons, near search for boxes, far search for melons, far search for boxes. In all GLMs, six motion 
parameters and one run-based regressor were included as nuisance regressors, and betas were 
estimated on a run-basis. 

 

Multivariate pattern analyses. 

All multivariate classification analyses were performed with The Decoding Toolbox [69] using a linear 
support vector machine (hereafter SVM; libsvm [32]). Classification analyses were performed on the 
run-based beta weights obtained from the GLMs (described in the previous paragraph), and were 
conducted within the left and right hemispheres separately. The results from both hemispheres were 
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combined in the final step just prior to statistical testing. A leave-one-out cross-validation approach 
was used for the within run-type classification (i.e., within search task, or within model training runs), 
and a single-step cross-classification approach was used for the cross-classification analyses (e.g., 
training on visually evoked activity from the model training runs, and testing on activity evoked during 
search preparation in the search task runs). 

For classification of object cue (melon versus box in the search task; Figure 2A), object type 
(melon versus box in the training runs), and cross-classification of object cue from object type (Figure 
2B), all melon versus box maps were used, ignoring whether they were large or small, far or near. For 
the main analyses depicted in Figure 3 (cross-classification of object cue from size-matching and size-
mismatching objects in the training runs) two separate classifiers were trained. First, a classifier was 
trained to distinguish between small melons and boxes, and tested on search preparation for melons 
versus boxes in the far plane (matching condition) and in the near plane (mismatching condition). 
Second, a classifier was trained to distinguish between large melons versus large boxes, and tested on 
search preparation for melons versus boxes on the near plane (matching condition) and in the far plane 
(mismatching conditions). The two matching conditions were then combined, and the two 
mismatching conditions were combined.   

The number of training examples per classification analysis depended on the type of run used 
to train the classifier (there were 16 search task runs, and 4 model training runs), and the number of 
conditions included in the classification analysis (4 in total: large/near melon, small/far melon, 
large/near box, small/far box). To illustrate, we used 16 training examples per classification analysis to 
distinguish between visual presentation of melons versus boxes in the model training runs: 8 melon 
beta-maps and 8 box beta-maps (collapsed over size). Similarly, there were 64 test examples for the 
main classification analyses: 32 melon beta-maps and 32 box beta-maps.  

To quantify the amount of information that is present in patterns of neural activity as retrieved 
by SVM classification (e.g., information about object type in OSC) we derived the following metric of 
classifier information from the distance-to-bound values D: 

  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖 =  
𝐶𝐶𝐶𝐶𝑖𝑖𝑟𝑟_𝑖𝑖𝑛𝑛𝑖𝑖𝑛𝑛𝐶𝐶𝐶𝐶(𝐷𝐷��⃗ ) ∙ 𝐿𝐿�⃗

(1:𝑁𝑁) ∙ 𝐿𝐿�⃗
 

 

(1) 

where N refers to the number of test examples for a given classification analysis (e.g., 64 for 
melon versus box classification in search task runs); D is an array of length N comprising the distance-
to-bound values for each of the N test examples; and L is an array of length N containing the N labels 
(i.e., either -1 or 1) describing the correct classification category of the corresponding values in D (e.g., 
“-1” for “melon” and “1” for “box”). Put simply, the numerator of this equation reflects the amount of 
classifier information (positive for correct classification and negative for incorrect classification), and 
the denominator is a constant, which normalizes the classifier information metric to the range [-1, 1].   

The sign of the distance-to-bound values reflects binary classification decision, with negative 
and positive values reflecting classifier decision “melon” and “box”, respectively. The magnitude of 
these values can be regarded as the classifier’s certainty of this classification decision. By computing 
the dot product of these distance-to-bound values (negative for “melon” and positive for “box”), with 
their associated correct test labels (“-1” for “melon” or “1” for “box”), the ensuing metric provides an 
increasingly positive value for increasingly correct classification and an increasingly negative value for 
increasingly incorrect classification. Instead of using the raw distance-to-bound values, we use their 
rank values (where the most negative value is ranked 1, and the most positive value is ranked N). This 
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is important, because the hyperspaces obtained from different linear classifiers are not directly 
comparable (e.g., when averaging across hemispheres or conditions of non-interest, or comparing 
across conditions of interest and participants). Using this approach, we remain agnostic to the shape 
or space of the different hyperspaces, while still penalizing incorrect classifications more when they 
are very ‘certain’ (e.g., rank 1 or 64 out of 64) more than when they are very uncertain (e.g., rank 32 
or 33 out of 64).  

This metric of classifier information has two crucial advantages over traditional binary 
classification accuracy. First, continuous (i.e., distance-to-bound) measures are more sensitive than 
binary classification decisions [70]. Second, this approach is inherently immune to classification biases 
that systematically favor one label over the other. Importantly, because our metric relies on rank order, 
it does share the key advantage of binary classification metrics: being agnostic as to the shape or range 
of the hyperplane of the linear classifier, thus allowing for comparison across multiple classifiers. 

 

Significance testing.  

For each main ROI (e.g., OSC), and each condition of interest (e.g., classification of object type within-
training runs) we performed bootstrap tests against chance, with 2000 samples (allowing for a lower 
bound of pMIN < .0005). Specifically, on each iteration, we drew 24 samples with replacement from the 
24 classifier information metrics (i.e., one for each participant), and computed the arithmetic mean. 
To test for significance, we then computed the fraction of iterations (out of 2000) that yielded above 
chance-level classifier information at the group level. If a positive value was observed on more than 
95% of iterations, this was regarded as significant above chance-level classifier performance, given an 
alpha level of 0.05. Note that this approach entails a directional test, which followed from the strong 
prediction that classifier information should be either at chance or above chance but not below chance.  

 To evaluate the robustness of our results observed in our primary ROIs, we conducted each 
classification analysis in each generic ROI (EVC and OSC) an additional twenty times, in the twenty sub-
ROIs of increasing size (see ROI description above). In all twenty additional analysis, a new SVM was 
trained and tested (following the same classification procedure described above) and classifier 
information metrics were computed as described above. In addition, we also computed classifier 
information metrics after pseudo-randomly permuting the correct test-labels (e.g., melon or box) 
against which the classifier outcomes were pitted. Importantly, the same (permuted) labels were used 
across all twenty sub-ROIs, to preserve inherent correlations between sub-ROIs. This procedure was 
repeated 2000 times to generate a null distribution that has the same variance and autocorrelations 
as the actual data, but should not carry any information about object type. Next, we applied threshold-
free cluster enhancement [33] (TFCE) using the CoSMoMVPA toolbox [71]. TFCE boosts belief in 
consecutive data-points with signal (i.e., representing cluster-like spatial support of individual data-
points). TFCE-scores were computed for the observed data as well as the null data. The eventual test 
statistic, as reported in the figures, conveys how likely a given TFCE-score is (for each sub-ROI), given 
the maximum TFCE-score across all sub-ROIs in the null data, thus accounting for cumulative Type I 
error. Importantly, using this method, statistical significance establishes the existence of above-chance 
classification; it does not allow for making claims about the location or extent (i.e., sub-ROIs) of this 
effect [72]. 
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Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 
Raw data (fMRI & behavior) This study https://doi.org/10.34

973/z3ym-9y81  
Processed data (fMRI & behavior) This study https://osf.io/nqf6p/  
Stimulus material (training and search task runs) This paper https://osf.io/nqf6p/  
Stimulus material (functional localizer runs) [65] https://osf.io/nqf6p/  
Population-level regions-of-interest [66] https://osf.io/nqf6p/  
Sofftware and Algorithms 
MatLab (versions r2018a, r2021a) Mathworks http://www.mathwork

s.com/products/matl
ab/; RRID: 
SCR_001622 

SPM (version 12) [73] https://www.fil.ion.ucl
.ac.uk/spm/software/
spm12; RRID: 
SCR_007037 

The Decoding Toolbox, TDT (version 3.98)  [69] https://sites.google.c
om/site/tdtdecodingt
oolbox/; RRID: 
SCR_017424 

CosmoMVPA (last git pull: 16-12-2020) [71] http://cosmomvpa.or
g; RRID: 
SCR_014519 

Psychtoolbox (version 3.0.14) [75, 75] http://psychtoolbox.o
rg/; RRID: 
SCR_002881 

Image Processing Toolbox (version r2018a) Mathworks https://nl.mathworks.
com/products/image.
html  

Other 
MatLab code for running experiment This study https://osf.io/nqf6p/ 
MatLab code for fMRI data pre-processing, region-
of-interest creation, analyses, and statistical testing 

This study https://osf.io/nqf6p/ 

MatLab code for analysis of behavioral data This study https://osf.io/nqf6p/ 
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Diversity statement 
Recent work in several fields of science has identified a bias in citation practices such that papers from 
women and other marginalized groups are under-cited relative to the number of such papers in the 
field [76, 77, 78, 79, 80, 81]. We seek to proactively consider choosing references that reflect the diversity of 
the field in thought, form of contribution, gender, and other factors (but acknowledge that we likely 
failed to fully account for the bias against these underrepresented groups). We decided against 
reporting numerical metrics classifying the authors represented in our reference list (e.g., using 
databases that store the probability of a name being carried by a woman [80, 81]), for two main reasons. 
First, reporting binary classification of gender marginalizes intersex, non-binary, and gender non-
conforming people. Second, selectively reporting gender (or classifying along one or more other 
dimensions) marginalizes all other under-represented groups. With this statement, we want to (at 
least) raise awareness of this issue, and look forward to future work that could help us to better 
understand how to support equitable practices in science. 
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Supplemental Figures 
 

 

Supplemental Figure S1. To corroborate the cross-
classification results reported in the main 
manuscript, we replicated our main analyses after 
reversing the cross-classification direction which 
should lead to qualitatively similar results despite 
being based on completely different testing and 
training datasets [S1]; although they might differ 
quantitatively [S2]). This entailed training the 
classifier on activity evoked during search 
preparation (in the search task) and testing the 
classifier on activity evoked by viewing isolated 
visual objects (in the training runs). First, we tested 
whether a classifier trained to distinguish between 
melon versus box search (i.e., following an ‘M’ 
versus ‘B’ cue) could distinguish between visually 
presented melons versus boxes (in purple). Second, 
we tested whether this melon versus box cross-
classification improved when training on the 
appropriate search distance (in green) compared to 
the inappropriate search distance (in red). All key 
findings reported in the main manuscript were 
replicated using this reversed cross-classification 
approach. Small colored dots represent classifier 
information (derived from distance-to-bound) for 
individual participants, obtained separately from 
the left and right hemispheres (displayed within the 
left and right kernel-density plots, respectively). 
The central markers reflect the population mean, 
averaged across hemispheres. Error bars around 
the central markers, and shaded areas within the 
kernel-density plots represent the bootstrapped 
95% confidence intervals of the mean. *p < .05, **p 
< .005. 
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Supplemental Figure S2. Univariate results. (A) Panel A depicts the average run-based GLM beta-weights for each of the 
four conditions of the search task (i.e., activity evoked during near and far melon and box search), and the training runs 
(i.e., activity evoked by viewing large and small images of melons and boxes), averaged over all voxels within a ROI. (B) 
Panel B depicts univariate contrasts, derived from the values reported in Panel A. In the left plot, positive values reflect a 
stronger BOLD response evoked following a ‘B’-cue (box) compared to an ‘M’-cue (melon) in the search task. In the right 
plot, positive values reflect a stronger BOLD response evoked by viewing an image of a box compared to melon in the 
training runs. To summarize the findings: in the search task, we found no difference in BOLD response during search 
preparation for melons compared to boxes, in either OSC (p = .190) or EVC (p = .474). In the training runs, images of boxes 
evoked a stronger BOLD response than images of melons in OSC (p = .004) as well as EVC (p < .0005). Based on this, it 
appears unlikely that the multivariate cross-classification of search target from visual objects (reported in Figures 2B and 
3 of the main manuscript) can be fully accounted for by a shared difference in univariate responses. Small gray or blue 
dots represent the difference in average beta-weight between pairs of conditions for individual participants, obtained 
separately from the left and right hemispheres (displayed within the left and right kernel-density plots, respectively). The 
central markers reflect the population mean, averaged across hemispheres. Error bars around the central markers, and 
shaded areas within the kernel-density plots represent the bootstrapped 95% confidence intervals of the mean. Asterisks 
denote significance in one-sample or paired bootstrap tests (2000 samples). **p < .005, ***p < .0005. 
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Supplemental Figure S3. Main analyses applied to scene-selective and face-selective regions. This figure depicts the main 
(cross-decoding) analyses reported in Figure 2B and 3 of the manuscript for four other regions of interest: scene selective 
regions OPA (occipital place area), PPA (parahippocampal place area), and RSC (retrosplenial cortex), and face-selective 
region FFA (fusiform face area). Following the same procedure as that of the object-selective region of interest reported 
in the main manuscript (OSC), the scene-selective ROIs were obtained by (1) identifying voxels that exhibited a significantly 
(puncorrected < .05) stronger response to scenes than to objects in the functional localizer runs, and (2) intersecting these 
scene-selective voxels with three different population-level functionally-defined scene-selective masks (retrieved from 
[S3]), reflecting OPA, PPA and RSC. Similarly, the face-selective region was obtained by (1) identifying voxels that exhibited 
a significantly stronger response to faces than to objects and scenes in the functional localizer runs, and (2) intersecting 
these face-selective voxels with a population-level functionally-defined FFA mask (retrieved [S3]). The results show that two 
scene-selective regions (OPA and PPA) exhibit an object-specific preparatory bias (depicted in blue). These regions’ 
preferential responses to rectilinear stimuli and cardinal orientations [S4, S5, S6] might underly their ability to differentiate 
between melons and boxes in our study. The ability to distinguish between melons and boxes, however, did not improve 
when the classifier was trained on objects of the appropriate size as compared to the inappropriate size given the current 
viewing distance. Small colored dots represent classifier information (derived from distance-to-bound) for individual 
participants, obtained separately from the left and right hemispheres (displayed within the left and right kernel-density 
plots, respectively). The central markers reflect the population mean, averaged across hemispheres. Error bars around the 
central markers, and shaded areas within the kernel-density plots represent the bootstrapped 95% confidence intervals 
of the mean. *p < .05, **p < .005. 
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