
1 

 

Automatic identification and annotation of MYB gene family members in plants 1 

Boas Pucker 2 

Institute of Plant Biology & Braunschweig Integrated Centre of Systems Biology (BRICS), TU 3 

Braunschweig, Braunschweig, Germany 4 

b.pucker@tu-braunschweig.de 5 

 6 

Abstract 7 

Background: MYBs are among the largest transcription factor families in plants. Consequently, members 8 

of this family are involved in a plethora of processes including development and specialized metabolism. 9 

The MYB families of many plant species were investigated in the last two decades since the first 10 

investigation looked at Arabidopsis thaliana. This body of knowledge and characterized sequences 11 

provide the basis for the identification, classification, and functional annotation of candidate sequences 12 

in new genome and transcriptome assemblies. 13 

Results: A pipeline for the automatic identification and functional annotation of MYBs in a given 14 

sequence data set was implemented in Python. MYB candidates are identified, screened for the 15 

presence of a MYB domain and other motifs, and finally placed in a phylogenetic context with well 16 

characterized sequences. In addition to technical benchmarking based on existing annotation, the 17 

transcriptome assembly of Croton tiglium and the annotated genome sequence of Castanea crenata 18 

were screened for MYBs. Results of both analyses are presented in this study to illustrate the potential 19 

of this application. The analysis of one species takes only a few minutes depending on the number of 20 

predicted sequences and the size of the MYB gene family. This pipeline, the required bait sequences, 21 

and reference sequences for a classification are freely available on github: 22 

https://github.com/bpucker/MYB_annotator. 23 

Conclusions: This automatic annotation of the MYB gene family in novel assemblies makes genome-24 

wide investigations consistent and paves the way for comparative studies in the future. Candidate genes 25 

for in-depth analyses are presented based on their orthology to previously characterized sequences 26 

which allows the functional annotation of the newly identified MYBs with high confidence. The 27 

identification of orthologs can also be harnessed to detect duplication and deletion events. 28 
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Introduction 33 

MYB transcription factors are named after an Avian myeloblastosis virus protein (v-Myb) which is a 34 

modified version of the cellular c-Myb and causes the activation of oncogenes [1]. While MYBs were first 35 

discovered in animals, they appear in substantially larger numbers in plants and form one of the largest 36 

transcription factor families [2–6]. A characteristic MYB feature is the presence of a conserved DNA-37 

binding domain at the N-terminus [7]. Up to four imperfect amino acid repeats (50-53 amino acids) form 38 

three alpha-helices each [7]. Helix two and three of each repeat are arranged to a helix-turn-helix 39 

structure [8]. Three regularly spaced tryptophan or other hydrophobic amino acid residues form the 40 

core of this structure [8]. The third alpha helix is responsible for the direct DNA interaction [9]. The 41 

repeats are classified into R1, R2, and R3 based on similarity to the respective repeats of the first 42 

characterized MYB, c-Myb [1]. MYB proteins are classified based on the presence of these repeats. For 43 

example, R2R3-MYBs harbor the R2 and R3 repeat while 3R-MYBs have one copy of each of the repeats 44 

(R1R2R3). Further classification into subgroups can be achieved based on the phylogenetic relationships 45 

and characteristic sequence motifs in the C-terminal region [2, 5, 10]. Different MYB classification 46 

systems were proposed in previous studies [2, 5, 10]. 47 

R1R2R3-MYBs have been proposed to be regulators of the cell cycle with conserved functions between 48 

animals and plants [11, 12]. R2R3-MYBs account for the large MYB family size in plants [2]. The 49 

evolutionary origin of R2R3-MYBs and 3R-MYBs is still debated. The loss model proposes that R2R3-50 

MYBs diverged from 3R-MYBs through loss of the R1 repeat [13–15], while the gain model proposes that 51 

the 3R-MYBs evolved from the R2R3-MYB through duplication of a repeat [10, 16]. R2R3-MYBs are 52 

involved in the regulation of numerous processes including the regulation of developmental processes, 53 

response to environmental stresses, and specialized metabolism [17–19]. WEREWOLF/MYB66 is a 54 

negative regulator of the root hair formation that determines the pattern of root hairs on the root 55 

epidermis of Arabidopsis thaliana [17]. An investigation of this MYB based on its crystal structure 56 

revealed the DNA binding site AACNGC and also suggests that this MYB is able to differentiate between 57 

DNA methylation states [20]. DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION/MYB35 determines 58 

the sex of Asparagus officinalis, but not in all other species of this genus [21]. The A. thaliana 59 

PFG1/MYB12 and the paralogs PFG2/MYB11 and PFG3/MYB111 are responsible for the regulation of the 60 

flavonol biosynthesis in most tissues [18]. This process appears highly conserved as orthologs of the 61 

AtMYB11/AtMYB12/AtMYB111 clade in Beta vulgaris [22] and Medicago truncatula [19] are also 62 

regulators of the flavonol biosynthesis. MYB21 and MYB24 were identified as additional flavonol 63 

regulators in the stamen of A. thaliana [23]. Some processes like the regulation of the flavonol 64 

biosynthesis depend only on MYB regulators [18]. Other specialized metabolite biosynthesis pathways 65 

are regulated by the interaction of multiple proteins. The MBW complex, named after the three 66 

components MYB, bHLH, and WD40, is one of the best studied transcriptional regulation systems [24–67 

27]. Two branches of the flavonoid biosynthesis, the anthocyanin and proanthocyanidin biosynthesis, 68 

are controlled by the MBW complex [24, 25, 28]. Since anthocyanins are responsible for the 69 

pigmentation of flowers and other plant structures, mutants in their regulation can be identified based 70 

on a visible phenotype. Proanthocyanidins are responsible for the coloration of seed coats thus mutants 71 

in their biosynthesis can be identified based on a yellow seed color. Mutations in the regulating MYBs 72 
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and other transcription factors [29–32] are often the reason for loss of anthocyanins and/or 73 

proanthocyanins. Transcriptional regulation was studied based on these pathways due to their visually 74 

detectable phenotypes. 75 

Since MYBs are controlling many processes in plants, there is also a substantial interest to understand 76 

their functions in crop species. In Brassicaceae, the glucosinolate content controlled by several MYBs is 77 

an economically relevant trait [33]. ATR1/MYB34, HIG1/MYB51, and MYB122 increase the indolic 78 

glucosinolates and HAG1/MYB28, PMG2/RAO7/MYB29, and MYB76 the aliphatic glucosinolates in 79 

Arabidopsis thaliana [34–36]. The red coloration of sugar beets is controlled by BvMYB1 which activates 80 

two betalain biosynthesis genes [37]. AmMYB1 in amaranth was identified as best candidate gene to 81 

explain the seed coloration variation between accessions [38]. A MYB appears to be the underlying 82 

factor of post-harvest hardening that renders a specific yam accession inedible within a day [39, 40]. 83 

MYB duplications between different apple cultivars appear responsible for differences in the red fruit 84 

flesh coloration [41]. Consumers prefer apricots with a red blush which is controlled by an anthocyanin 85 

biosynthesis activating MYB [42]. The identification of MYB candidate genes and the regulated processes 86 

is the first step towards modification through SMART breeding or genome editing [43, 44]. This interest 87 

in MYBs sparked numerous genome-wide investigations in species with a new genome or transcriptome 88 

assembly [3, 4, 22, 31, 45–48]. The identification of MYBs is repeatedly performed on many different 89 

data sets with strong variation in the quality of the analyses. Well described A. thaliana MYB sequences 90 

[2] are often used as baits to find new MYBs based on sequence similarity. Like all routine tasks with 91 

clearly defined steps, the identification of MYBs is a promising target for an automatic approach. We 92 

previously developed an automatic workflow, called KIPEs, for the annotation of core flavonoid 93 

biosynthesis genes which could also be expanded to the annotation of transcription factor gene families 94 

[4]. However, KIPEs is optimized for the identification and assessment of enzymes based on conserved 95 

amino acids in the active center. One underlying assumption is a small number of gene copies per 96 

species, which is violated by the very large MYB gene family. Also it is technically possible to run KIPEs 97 

for the identification of a gene family, the performance decreases with gene family size. Many previous 98 

studies relied only on BLAST or added additional filters for the presence of conserved R2R3-MYB 99 

domains in candidate sequences [4, 22, 49]. The inspection of MYB domains is laborious when 100 

performed manually, but suitable to define a set of fully functional R2R3-MYBs. While specificity of this 101 

filtering approach is high, it suffers from a low sensitivity i.e. neglects degenerated copies which might 102 

have experienced neofunctionalization. There are other solutions to identify orthologous sequences in a 103 

large number of species independent of the presence of specific sequence patterns [50, 51], but these 104 

approaches would require a substantial amount of manual cleaning to narrow down a final set of MYB 105 

sequences. Particular challenges are analyses based on transcriptome assemblies, because 106 

transcriptome assemblies show often a large number of isoforms resulting from alternative splicing or 107 

artifacts [52, 53]. 108 

This study presents a Python-based pipeline to provide a high quality annotation of all MYBs in a given 109 

set of peptide or coding sequences that are provided as input. Additionally, MYB candidates are checked 110 

for conserved domains and assigned to orthologs in other plant species. Genome sequencing and the 111 

construction of assemblies is becoming a routine task. The generation of high quality structural 112 
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annotations is also advancing quickly with the aid of massive RNA-Seq data sets and full length transcript 113 

sequencing. Therefore, a huge number of data sets will be available to study MYBs in an unprecedented 114 

number of different plant species. Our automatic identification of MYBs in a large number of species 115 

facilitates pan-MYB analyses to better understand the evolution of the MYBome and to transfer 116 

functional insights acquired in one species effectively to orthologs in other species. 117 

 118 

Implementation 119 

MYB data sets 120 

The identification of MYBs in novel genome or transcriptome sequences requires broad phylogenetic 121 

coverage of bait sequences. The MYB domain sequences of Arabidopsis thaliana [2], Vitis vinifera [3], 122 

Beta vulgaris [22], Musa acuminata [4], Vitis vinifera [3], Medicago truncatula, Populus trichocarpa, 123 

Citrus sinensis, Solanum lycopersicum, Solanum tuberosum, Aquilegia coerulea, Oryza sativa, Zea mays 124 

[47], Amborella trichopoda, Picea abies, Selaginella moellendorfii, Physcomitrella patens, 125 

Chlamydomonas reinhardtii, Volvox carteri, Micromonas pusilla, Ostreococcus lucimarinus, and 126 

Cyanidioschyzon merolae [10] were merged to generate a bait sequence collection. Closely related non-127 

MYB sequences including CDC5 were identified by running a BLASTp search with the bait MYB 128 

sequences against the Araport11 peptide sequences [54]. Hits with a minimum BLAST score of 100 were 129 

collected and stripped of any bona fide MYBs. This step allowed the identification of MYB-like 130 

sequences, but excludes spurious hits that would slow down the following analysis steps. While the 131 

previously described MYBs form a collection of 1889 ingroup sequences, these 26 non-MYB sequences 132 

represent the outgroup sequences for down-stream analysis. 133 

Pipeline 134 

The automatic annotation pipeline is summarized in Fig. 1. Required inputs are (1) the MYB bait 135 

sequences (described above), (2) a classification of the MYB bait sequences into ingroup and outgroup, 136 

and (3) a set of coding sequences or peptide sequences that will be analyzed. Step 0: All parameters, 137 

tool versions, and the input files are logged in a report file for reproducibility. If the Python module 138 

hashlib is available, md5sums are calculated for all input files to ensure an accurate documentation. 139 

However, calculation of this checksum is optional and file names (including their paths) will be 140 

documented in any case. Cleaning of the input sequences removes any characters from the sequence 141 

names that would interfere with the phylogenetic analysis. Step 1: Initial candidates are identified based 142 

on local sequence similarity via BLAST [55, 56] or HMMER [57]. Default parameters accept BLASTp hits 143 

with 50 amino acid length, 80% alignment similarity, and a maximum of 100 hits per bait sequence. This 144 

is a very sensitive setting given the large number of bait sequences and an expected MYB gene family 145 

size below 300 in most species. If a collection of coding sequences is provided, these will be translated 146 

and then compared based on BLASTp to harness the stronger conservation of amino acid sequences 147 

compared to nucleotide sequences. Step 3: A phylogenetic tree is constructed with these initial 148 

candidates and all bait sequences. Alignments are constructed with MAFFT [58]. Tree construction via 149 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2021.10.16.464636doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.16.464636
http://creativecommons.org/licenses/by/4.0/


5 

 

RAxML [59] and FastTree2 [60] is supported. FastTree2 (-wag -nopr -nosupport) is recommended due to 150 

substantially higher speed when large data sets are analyzed. Step 3: Calculation of distances between 151 

different leaves of the tree is used to identify ortholog relationships between bait and candidate 152 

sequences. The Python package dendropy [61] is applied using the patristic distance method and 153 

counting edges. To exclude outliers caused by fragmented sequences or annotation artifacts, candidates 154 

are excluded if the distance to the next bait sequences exceeds three times the average distance of 155 

nearest neighbours. This cutoff was optimized by manually inspecting distributions of this value in 156 

context with the corresponding phylogenetic trees, but it is possible to modify this value as well as most 157 

other parameters. The bait sequences with the shortest distance are identified for each selected 158 

candidate in the tree. If most of these bait sequences are ingroup MYBs, the candidate is classified as 159 

MYB (Additional file 1). If most of these bait sequences are outgroup MYBs, the candidate is classified as 160 

a MYB-like sequence (aka non-MYB). All sequences passing this filter are considered clean candidates. 161 

Step 4: A check for the presence of MYB repeats is performed based on regular expressions (see 162 

documentation for details) derived from previously reported alignments [10, 62]. A repeat-based MYB 163 

classification is widely used and also supported here. However, it is important to note that these groups 164 

do not represent monophyletic groups. Step 5: A new phylogenetic tree is constructed with the clean 165 

MYB candidates and all bait sequences. Step 6: An optional step assigns all newly discovered MYBs to a 166 

group of reference MYBs e.g. the well characterized A. thaliana MYBs. Based on the assumptions that 167 

orthologs are likely to have the same functions, this generates hypotheses about the function of the 168 

newly discovered MYBs. Additionally, it is possible to identify the expansion and contraction of specific 169 

MYB lineages compared to this reference. Step 7: It is possible to collapse large groups of very similar 170 

sequences in the analyzed data set and to represent these by only the longest sequence. This option is 171 

intended for transcriptome assemblies which can include large numbers of isoforms caused by 172 

alternative splicing and artifacts. Step 8: A new phylogentic tree of the representative sequences 173 

identified in step 7 and the reference sequence set (e.g. A. thaliana MYBs) is constructed. 174 

 175 
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 176 

Fig.1: Simplified illustration of a pipeline for the automatic annotation of MYBs. Please refer to the177 

text and the documentation on github for additional details about the pipeline. There is an option to run178 

this pipeline across all provided input files in a folder. This enables the generation of summary files that179 

compare the MYB gene families between the analyzed species. 180 

 181 

 182 

Results and Discussion 183 

Proof of concept and benchmarking 184 

e 

n 

t 
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 Several benchmarking data sets were analyzed to ensure that the pipeline performs well for a range of 185 

different plant species. Araport11 sequences of the A. thaliana accession Col-0 [54] were analyzed and 186 

the well characterized MYBs were recovered (example output files on github). This demonstrates that 187 

the pipeline works as expected. The annotated sequences of the A. thaliana accession Nd-1 [63] were 188 

screened for MYBs. As expected, there is a 1:1 relationship between the MYBs of Col-0 and Nd-1 189 

(Additional file 2). This demonstrates that not just identical, but also slightly different sequences are 190 

accurately identified. 191 

 192 

Performance 193 

Benchmarking and performance tests were performed on a compute cluster without control over other 194 

jobs running on the same machine. This prevented a precise and informative calculation of run times, 195 

but also represents realistic conditions. A total of 121 coding sequence sets were downloaded from 196 

Phytozome [64] and screened for MYBs. The average run time per species using default parameters, 4 197 

CPUs, FastTree, and v0.153 of the pipeline was about 8 minutes (Fig. 2, Additional file 3). The memory 198 

requirements of all steps in the pipeline are very low (<1GB). The major factor contributing to the run 199 

time is the construction of a phylogenetic tree. However, the use of RAxML takes substantially longer. If 200 

a job is canceled, the analysis can continue at the last completed check point or at the last analyzed data 201 

set (species), respectively. The required hard disk space is minimal (63.5 MB for A. thaliana). Changes in 202 

the parameters and especially in the number of supplied bait sequences can alter the computational 203 

costs substantially. While there are differences with respect to the run time depending on the number 204 

of predicted species per family and the size of the MYB gene family, this analysis indicates that large 205 

data sets can be processed effectively. 206 
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207 

Fig. 2: Average run time per data set (species) with default parameters based on coding sequences (A)208 

Positive correlation of run time with the number of sequences in the data set (B). 209 

 210 

Discovery of MYBs in the Castanea crenata genome sequence 211 

As a proof of concept, MYBs encoded in the recently sequenced Castanea crenata genome [65] were212 

investigated. The predicted peptide sequences were screened with default parameters and resulted in213 

the identification of 136 MYBs (Fig. 3, Additional file 4). A R2R3-MYB domain was detected in 112 of214 

them. No orthologs of the Cruciferae-specific glucosinolate biosynthesis regulating MYBs AtMYB028,215 

AtMYB029, AtMYB034, AtMYB051, AtMYB076, and AtMYB122 were detected in C. crenata. This is not216 

surprising, because C. crenata belongs to the Fagaceae, and also in line with previous reports about the217 

absence of this MYB linage from non-Cruciferae [3]. Regulators of the flavonoid biosynthesis218 

(AtMYB011/AtMYB012/AtMYB111, Ccr1.0Bg1101.1-S7/Ccr1.0Jg2696.1-S7), anthocyanin biosynthesis219 

(AtMYB075/AtMYB090/AtMYB113/AtMYB114, Ccr1.0Ag5288.1-S6), and proanthocyanidin biosynthesis220 

(AtMYB123, Ccr1.0Ag1758.1 / Ccr1.0Ag1766.1 / Ccr1.0Ag1768.1 / Ccr1.0Ag1770.1 / Ccr1.0Ag1773.1 /221 

Ccr1.0Ag5531.1 / Ccr1.0Ag5542.1 / Ccr1.0Ag5543.1 / Ccr1.0Eg0443.1 / Ccr1.0Eg0444.1 / Ccr1.0Gg0097.1222 

/ Ccr1.0Gg0098.1 / Ccr1.0Hg2677.1 / Ccr1.0Jg0953.1 / Ccr1.0Jg2532.1 / Ccr1.0Lg0385.1 /223 

Ccr1.0Lg3370.1) were detected. In general, copy number differences can be explained by lineage-224 

specific duplication events. Therefore, it is not possible to establish 1:1 relationships between A225 

 

. 

e 

n 

f 

, 

t 

e 

s 

s 

s 

/ 

1 

/ 

-

. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2021.10.16.464636doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.16.464636
http://creativecommons.org/licenses/by/4.0/


9 

 

thaliana and C. crenata. Interestingly, there are multiple homologs of AtMYB123 in C. crenata which226 

could indicate a high importance of proanthocyanidins in this species. Further investigations could227 

analyze the transcription of these genes to exclude unexpressed copies. The reduced number of PAP228 

homologs could suggest a lower importance of anthoycanins. While the copies of the anthocyanin229 

regulator show different functions in A. thaliana [66], loss of MYB114 in several A. thaliana accessions230 

including Col-0 [67] and Nd-1 [68] suggest that there is functional redundancy between them. 231 

 232 

233 

Fig. 3: Relationships of Castanea crenata MYB candidates and well characterized Arabidopsis thaliana234 

MYBs. This figure was constructed with iTOL [69]. 235 
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 236 

Discovery of MYBs in the Croton tiglium transcriptome assembly 237 

To demonstrate that the pipeline also works for inherently incomplete transcriptome assemblies, MYBs 238 

were investigated in the transcriptome assembly of Croton tiglium [70]. An analysis with default 239 

parameters revealed 140 MYBs (Fig. 4, Additional file 5). This includes 103 candidates with a complete 240 

R2R3-MYB domain. Transcriptome assemblies are known to be rich in isoforms of the same genes, which 241 

can be due to alternative splicing or artifacts. Clusters of these isoforms were represented by the 242 

longest sequence among them. This reduced the number of MYB candidates to 79 including 69 with a 243 

R2R3 domain. Not all A. thaliana MYBs are matched by orthologs in C. tiglium. Although this 244 

transcriptome assembly is based on paired-end RNA-seq data sets representing leaf, root, stem, seed, 245 

and inflorescence, some not or lowly expressed MYBs might not be represented in the assembly. 246 

Therefore, they cannot be identified in this analysis. Again, the absence of orthologs of the glucosinolate 247 

regulating MYBs aligns well with previous reports [3], because C. tiglium belongs to the Euphorbiaceae. 248 

The conserved regulators of the flavonoid biosynthesis (AtMYB011/AtMYB012/AtMYB111, TRINITY-249 

DN21046-c0-g1-i2-S7) and proanthocyanidin biosynthesis (AtMYB123, TRINITY-DN31260-c4-g2-i2-S5) 250 

were detected. These findings are in line with previous reports of the flavonol regulators and 251 

proanthocyanidin regulator being detectable in this transcriptome assembly [71]. The absence of a PAP 252 

ortholog from the assembly is not surprising, because none of the sampled tissues showed a 253 

pigmentation by anthocyanins [70]. Anthocyanin regulators are well known to be lowly expressed in 254 

tissues without anthocyanin pigmentation [72, 73] thus a lack of expression is a likely explanation of this 255 

result. 256 

 257 
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258 

Fig. 4: Relationships of Croton tiglium and well characterized Arabidopsis thaliana MYBs. This figure was259 

constructed with iTOL [69]. 260 

 261 

Limitations and next steps 262 

The collection of bait sequences distributed with the tool should be appropriate for most applications263 

This collection covers a large taxonomic range including chlorophytes, charophycean algae, bryophytes,264 

and vascular plants. The dominance of sequences belonging to vascular plants can be explained by the265 

generally larger MYB families in these species. The major MYB lineages are represented in this266 
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collection, but MYB lineages that are restricted to certain taxonomic groups could be missing. While the 267 

initial identification based on overall sequence similarity is a robust approach, the precise classification 268 

and functional annotation of such MYBs could be less accurate due to the lack of close orthologs. The 269 

only critical step is the separation between MYBs and MYB-like sequences. Emerging and species-270 

specific MYB clades embedded in widely distributed clades are not a major concern, because it is 271 

possible to adjust the parameters of the analysis when analyzing isolated species e.g. members of the 272 

Lycophytes or Magnoliidae (see documentation for technical details). Only sequences at the basis of the 273 

MYB gene family tree could be at risk of being missed. 274 

There are constrains that influence the size of the bait sequence collection. A narrower set of bait 275 

sequences could reduce the run time if a comprehensive investigation of numerous genome sequences 276 

of one taxonomic group is planned. An analysis with a more comprehensive set of MYB sequences could 277 

improve the quality of the results, but would also substantially increase the run time of the analysis. The 278 

generation of an ideal bait sequence set which represents the complete phylogenetic diversity of MYBs 279 

with a minimal number of sequences is a task for future studies. 280 

Most steps are deterministic, but minor variations might occur as part of the tree building. However, no 281 

biologically relevant differences were observed during the analyses of 121 benchmarking datasets. 282 

Additionally, the results of analyses with BLAST-based selection of candidates were consistent with the 283 

results of corresponding analyses using HMMER for the identification of initial candidates. 284 

 285 

Conclusions 286 

This approach only relies on standard tools which should be installed on most systems and are also easy 287 

to install if not available already. Technical checks on A. thaliana datasets indicate that the pipeline is 288 

accurately identifying MYBs. The performance allows the investigation of one species within minutes on 289 

ubiquitously available hardware. An investigation of the MYB gene families in Castanea crenata and 290 

Croton tiglium revealed expected patterns and demonstrated the potential to analyze transcriptome 291 

and genome sequence assemblies. While this approach is dedicated to the analysis of MYBs, it could be 292 

adjusted to investigate other transcription factor gene families. 293 

 294 

 295 

Availability and requirements 296 

Project name: MYB_annotator 297 
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