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ABSTRACT

Aims
Internephron signalling and interaction are fundamental for kidney function. Earlier studies have shown that nephrons signal to
each other over short distances and adjust their activity accordingly. Micropuncture experiments revealed synchronous clusters
of 2-3 nephrons formed from such interactions, while imaging and modelling results suggested the possibility of larger clusters.
Such clusters are expected to play an important role in renal autoregulation, but their presence has not been confirmed and
their size has not been estimated. In this study, we present methodology for high resolution renal blood flow imaging and apply
it to estimate frequency and phase angle differences in kidney blood vessels under normal conditions and after administration
of the vasoactive agents angiotensin II and acetylcholine.
Methods and results
To resolve signals from separate arterioles in a sufficiently large field of view, we developed a method for renal laser speckle
contrast imaging. Our setup provides imaging of blood flow in the kidney cortex with a limit of image resolution at 0.8µm per
pixel and imaging frequency of 160Hz. We used the method to record from 1.5x1.5 mm2 sections of the renal surface in
anaesthetised Sprague-Dawley rats in unstimulated conditions and during IV infusion of the vasoconstrictor angiotensin II or
the vasodilator acetylcholine. In each section, we resolved and segmented 94.8±15.66 individual arterioles and venules, and
analyzed blood flow using wavelet spectral analysis to identify clusters of synchronized blood vessels.
Conclusions
We observed spatial and temporal evolution of blood vessel clusters of various sizes, including the formation of large (>90
vessels) long-lived clusters (>10 periods) locked at the frequency of the tubular glomerular feedback (TGF) mechanism. The
analysis showed that synchronization patterns and thus the co-operative dynamics of nephrons change significantly when
either of the vasoactive agents is administered. On average, synchronization was stronger (larger clusters, longer duration) with
angiotensin II administration than in the unstimulated state or with acetyl choline. While it weakens with distance, increased
synchronization duration spanned the whole field of view, and likely, beyond it. Neighbouring vessels tend to demonstrate
in-phase synchronization, especially in the vasoconstricted condition, which is expected to cause locally increased pressure
variation. Our results confirm both the presence of the local synchronization in the renal microcirculatory blood flow and the
fact that it changes depending on the condition of the vascular network and the blood pressure, which might have further
implications for the role of such synchronization in pathologies development.

1 Introduction
The kidney represents a unique demand-driven, interconnected resource distribution network that is responsible for body
homeostasis maintenance over a broad range of conditions, including variations in blood pressure and fluid intake and loss.
With blood serving as the resource, single-nephron autoregulation mechanisms provide and regulate the demand. Based on
measurements of tubule pressure responses to step changes in arterial pressure1, vascular transfer functions2–7, and renal blood
flow response to arterial pressure forcing8, two critical mechanisms in renal pressure autoregulation, the myogenic mechanism
and tubuloglomerular feedback (TGF), have emerged as the critical components. Their actions combine to regulate blood flow,
serving to maintain the delivery of water and solutes to various regions of the nephron at levels appropriate to their dynamic
ranges. The two mechanisms operate at different time scales, generating spontaneous blood flow and pressure oscillations
at different frequencies: 5-10 seconds (0.1-0.2 Hz) for the myogenic response and 30-50 seconds (0.02-0.033 Hz) for the
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TGF4, 9–12.
Nephrons, however, do not operate as stand-alone units. Within a single kidney all nephrons are linked via the renal vascular

tree, which provides connections of different proximity - from few hundred microns for neighbouring nephrons separated only
by their respective afferent arterioles; to nephrons only connected at the level of the renal artery, which plays a role of a single
supply source for all the nephrons. Nephrons nested in such a network are bound to communicate and affect each other to some
degree. In addition to interaction through the blood flow and pressure, nephrons were found to communicate via electrical
signalling. Such interactions are proven to play a critical role in kidney function and can lead to complex co-operative dynamics
and synchronization between nephrons.

Micropuncture experiments13–16 showed that neighbouring nephrons (originating from a common artery) adjust their TGF-
mediated tubular pressure oscillations to attain a synchronised regime. Although these experiments confirmed the existence of
synchronisation, only pairs or triplets of nephrons could be sampled at any one time. Assessment of cooperative efforts of
a larger number of nephrons required a different approach. To address this challenge, several groups adopted laser Speckle
Contrast Imaging (LSCI)17. In LSCI, media with moving light scattering particles, e.g. red blood cells, are illuminated with a
near-infrared laser. The backscattered light, recorded by a camera, forms an interference pattern, which appears more or less
blurred depending on the speed of the particles. This pattern is then analysed to obtain qualitative maps of particle velocity and
thus a blood flow estimate18, 19. First applied by Holstein-Rathlou et al. to map TGF oscillations over a large field of view, this
method was later used to explore periodic activity in the myogenic frequency band20, analyse spatial correlations in the renal
blood flow21, and study intra-renal drug distribution22, 23. Although these results encouraged the large-scale synchronisation
hypothesis, the method lacked resolution, both spatial and temporal, as well as signal-to-noise ratio, to confirm it convincingly.

In this paper, we further advance renal blood flow imaging methodology and confirm the presence of synchronised clusters
spanning multiple nephrons for the first time at the level of individual arterioles and venules. Our LSCI setup and data
processing approach allow imaging renal microcirculation with at 0.8 µm per pixel spatial resolution and imaging frequency to
160 Hz for 1024x1024 pixels. We apply it to study synchronous cluster formation.

2 Methods
2.1 Animal preparation
All experimental protocols were approved by the Danish National Animal Experiments Inspectorate and were conducted
according to the American Physiological Society guidelines. Male Sprague Dawley rats (Taconic, Denmark) with average
weight ≈290 g (n=5) were used. Before starting surgical procedures, animals were anaesthetized in a chamber with 8%
sevoflurane. During the surgery, sevoflurane concentration was reduced to a final concentration of ≈2%. Two catheters were
inserted in the right jugular vein to allow continuous systemic infusion of drugs and saline. Another catheter was inserted in
the carotid artery to measure mean arterial pressure with a pressure transducer (Statham P23-dB, Gould, Oxnard, CA). Then
tracheotomy was performed, after which the rat was placed on a servo-controlled heating table maintaining body temperature at
37 ◦C and connected to a mechanical animal ventilator (60 breaths/min; 8 ml/kg bodyweight). To avoid secondary heartbeat
and breathing artefacts, Nimbex (muscle relaxant, Sigma) was administered in a concentration of 0.85 mg/ml, first as a bolus
injection of 0.5 ml, followed by a continuous intravenous infusion at a rate of 20 µl/min. The left kidney was then exposed,
and the left ureter was catheterized to ensure free urine flow. To reduce motion artifacts and avoid drying the kidney surface
during the experiment, we placed the kidney in a plastic fixation holder, covered it with warm agarose solution (1% Agarose,
Sigma, 99% saline) and put a thin (0.1mm) cover glass on top of the kidney. Metal thread (40 micrometres in diameter) was
bent in a "U" shape and positioned on top of the cover glass at the flattest location of the kidney surface, marking the region of
interest for imaging procedures. Following the surgical procedures, the animal was left to stabilize for 20 minutes. Experiments
were continued only if the mean arterial pressure remained within 100–120 mmHg during the control period. At the end of the
experiment, animals were euthanized by overdose of sevoflurane, followed by cervical dislocation.
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Figure 1. Schematics of the imaging setup and blood flow data example. (A),(B) Top and side view of the experimental setup
and its key components. (C) Normalized flow map with microcirculatory vessels. Yellow and blue colours correspond to high
and low blood flow, respectively. (D) Relative blood flow dynamics in four vessels, which are outlined in (C) with
corresponding colours. (E) Dominant frequency in the TGF band of the blood flow oscillations is shown in (D). (F) Phase value
at the dominant frequency. One can see that there are two vessels pairs in which blood flow is synchronized for more than 90%
of time. Synchronization between the pairs is also well observed but breaks down when TGF activity change its frequency at
850–1050 s). These exemplary graphs reflect the dadata

2.2 Laser Speckle Contrast Imaging data acquisition
To assess microcirculation in the kidney cortex, we built a high resolution laser speckle contrast imaging setup. A single-mode
fibre-coupled laser diode (785nm, LP785-SF100, Thorlabs, USA) controlled with a laser driver, and temperature controller
(CLD1011LP, Thorlabs, USA) was used to deliver coherent light onto kidney surface with a power density of approximately
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10mW/cm2, providing an optimal signal to noise ratio24. Backscattered light was collected by a zoom imaging lens (VZM
1000i, Edmund Optics) at 5x magnification and recorded with a CMOS camera (Basler acA2000-165umNIR, 2048x1088 pixels,
5.5 µm pixel size) at an exposure time of 5 ms. A subset of 1024x1024 pixels was used for recording, from a 1.5x1.5mm region
of the renal surface. In addition, a linear polarizing filter was placed in front of the objective to reduce artefacts from reflected
light. While the imaging set up in this configuration allows imaging resolution1 of ≈ 0.8µm/px at the frame-rate of 160 frames
per second (fps), in our experiments, we found it optimal, in terms of the field-of-view and data storage, to acquire images at 50
fps and resolution of ≈ 1.5µm/px.

Imaging was performed in a non-stimulated state (control) and following administration of angiotensin II (AngII), and
acetylcholine (ACh), respectively. After collecting 20 min (2400 frames) of the baseline data, we initiated continuous
administration of AngII at a concentration of 4 ng/ml and an infusion rate of 20 µl/min to cause systemic vasoconstriction.
The infusion lasted for 30 min, out of which the first 10 min were allocated for blood flow to stabilize, and the following 20
minutes were recorded. Fifteen min after completion of the AngII infusion, we infused ACh at a concentration of 0.0375mg/ml
and a rate of 20 µl/min, first permitting 10 minutes for blood flow to stabilize, and then recorded subsequent 20 minutes.
Across all experiments, average arterial pressure was 112±2, 127±6 and 100±4 during the control, vasoconstrited (AngII) and
vasodilated (ACh) conditions respectively.

2.3 Data analysis
Image registration. To allow high-resolution laser speckle contrast imaging of the renal microcirculation, we needed to reduce
motion artefacts, as any lateral motion larger than 5-10 micrometres will prevent accurate estimation of the blood flow and
further segmentation of microcirculatory vessels. Unlike brain imaging, when working with the kidney, there is no bone tissue
that can be fixed to reduce respiratory motion, and applying even slight pressure on the kidney might result in abnormal blood
flow due to the occlusion of the small vessels on its surface. At the same time, raw laser speckle images, or contrast images
without temporal averaging, are not suitable for automated registration due to the absence of clear intensity landmarks25. To
resolve this issue, we placed a "U" shaped metal marker on the cover glass, which moves along with the kidney, as described
above. As the first step of analyzing the data, the marker is segmented in all frames via thresholding and then used to estimate
the translation type geometrical transformation required to register images. Estimated geometrical transformation is then
applied to the raw laser speckle images prior to performing the contrast analysis.

Contrast analysis. Registered laser speckle images were processed to calculate temporal contrast K = σ(I)
<I> , where σ(I)

and < I > are standard deviation and mean of pixel intensity over 25 frames25. Contrast values were then converted to the
blood flow index as BFI = 1/K2, which are then used in the ensuing analysis.

Vessels segmentation. To segment individual microcirculatory vessels, we calculated averaged in time BFI images and
applied adaptive thresholding (MATLAB) to them. Automated segmentation was followed by manual clean-up, where we
removed artefacts and occasional large surface vessels. We then calculated blood flow dynamics for each segmented individual
microcirculatory vessel by averaging BFI values in pixels belonging to this vessel.

Synchronization analysis. To study synchronization patterns between microcirculatory vessels and, thus, obtain insight
into inter-nephron communication, we apply continuous wavelet transform analysis (Morse wavelet, MATLAB) to segmented
vessels’ BFI. We identified the frequency and phase of dominant periodic activity in the 0.015-0.05Hz frequency band
associated with the TGF mechanism. Vessels with less than 10% prominence of the activity peak were discarded and not used
for synchronization analysis. In this study, we consider blood flow in different segmented vessels to be synchronized whenever
their dominant frequencies match. To quantify blood flow synchronization over the field of view, we analyzed phase differences
between synchronized vessels, average synchronization duration and its dependency on the distance between vessels, and the
probability of the vessel’s blood flow to be synchronized with N% of the vessels in the field of view. To provide a "single-value"
characterization of the synchronization at a given moment of time, we also introduced the synchronization degree parameter S:

S(t) =
√

L(t)/(N ∗ (N−1)), (1)

where L is a number of frequency matching pairs of vessels, N is a total number of observed segmented vessels, and t is the
time. S represents the relation of the observed number of frequency matching pairs to their maximum possible number. Thus
S = 1 corresponds to all segmented blood vessels having the same dominant frequency, while S = 0 to all segmented blood
vessels having a different dominant frequencies. However, it is important to notice that S = 0 is impossible to reach due to the
discrete nature of the measured data and the analysis. In our case, the 0.015 to 0.05 Hz range is split into 18 fixed values, so
that if there were more than 18 vessels, it became unavoidable for some of them to have an identical dominant frequencies. In
practice, for 100 vessels with randomly chosen dominant frequencies, the minimum observed S would be ≈ 0.25±0.06, which
can be confirmed with a simple computational experiment.

Statistical analysis. Paired t-test was applied to compare results between control, AngII infusion and ACh infusion.
P-values greater than 0.05 are reported as not significant. Results were expressed as mean ± standard deviation (SD) unless
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indicated otherwise.

Figure 2. Examples of instantaneous frequency patterns. Each circle location corresponds to a segmented vessel with
color-coded frequency. Bottom panels show normalized blood flow in each segmented vessel over 5 minutes centered around
the time corresponding to the frequency pattern snapshot. (A) High synchronization degree S = 0.97 - large cluster covers the
whole field of view. (B) Moderate synchronization degree S = 0.65 - most of the vessels are split between two clusters. (C)
Low synchronization degree S = 0.23 - no clear clustering pattern, some vessels do not have pronounced TGF activity
(frequency colour-coded as black). All data were captured in the same animal but under different conditions: control (A), AngII
infusion (B), ACh infusion (C). Black-colored circles represent vessels where TGF activity was considered too weak (less than
10% prominence of the activity peak).
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3 Results
3.1 Synchronization patterns
An example of a high-resolution blood flow map with segmented microcirculatory vessels is shown in Fig. 1,(c). Fig. 1,(d)
shows RBF of four vessels outlined in (c) with corresponding colours (red, green, orange and black). From the corresponding
dominant frequency and phase (Fig. 1,(e) and (f)), it can be seen that these vessels form two frequency-locked clusters
(red-green and black-orange) that are synchronous most of the time. Moreover, there are long periods when these clusters
synchronize, forming a larger cluster, interrupted with an asynchronous interval (from ≈ 850 to ≈ 1050 seconds).

We generalized this approach to the full-field blood flow imaging of the kidney surface. Figure 2 shows examples of
high (A), moderate (B), and low (C) instantaneous synchronization degree, with S = 0.97, 0.65, and 0.23 respectively. In the
first case, flow in almost all of the identified vessels oscillates at the same TGF frequency, forming a cluster of >100 vessels
within the field of view. This cluster is likely to be even larger since it can spread outside the view field and in-depth in the
kidney cortex. In the case of moderate synchronization degree - several frequency clusters with ≈ 10− 60 vessels can be
identified, while for the low S there are multiple groups of 2-3 vessels displaying the same frequency but no distinct pattern
over the field of view. All three regimes were observed in the same animal during control, vasoconstricted (AngII infusion) and
vasodilated (ACh infusion) conditions respectively. Averaged over the whole observation period and all animals (N=5, 20 min
per condition) synchronization degree has moderate to high (S = 0.54±0.09) values during AngII infusion, low to moderate
(S = 0.36±0.1) during ACh, and low to high in control (S = 0.45±0.22).

Figure 3. Probability of a randomly chosen vessel displaying the same dominant TGF frequency as X% of the vessels in the
field of view. (A) Any duration of frequency matching is considered, and (B) dominant frequency should match for at least 3
TGF periods. It can be seen that infusion of AngII significantly (p<0.05) increases the prevalence of clusters covering 20-50%
of the vessels - chances that a randomly chosen vessel belongs to such a cluster at any given moment are ≈ 50%, while for
control and ACh infusion they are ≈ 20%.N=5 animals were used to create these graphs. Paired t-test was used to produce
P-values. P-values smaller than 0.05 are considered to be significant and marked with "*".

To visualize clustering tendencies, we calculate the probability of a randomly chosen vessel at any given moment of time
to have the same dominant frequency as X% of the vessels in the field of view. From Fig. 3 it can be seen that during AngII
infusion, vessels are significantly more likely to be synchronized with 20−50% of the field of view than in control or during
ACh infusion. In the latter condition probability of a vessel being synchronized with less than 15% are significantly higher than
during AngII infusion (p<0.05). Such behaviour is observed both with no restriction on minimum synchronization duration (A)
and when only frequency-locking for 3 TGF periods and longer is taken into account.

3.2 Phase waves and spatial localization
Another distinct feature that we have observed is that the phase of oscillations within a cluster is space-dependent - it is mostly
the same for the closely positioned vessels and gradually changes with distance. Figure 4 illustrates how phase within clusters
evolves in space and time, forming the phase waves. Note that both (A) and (B) panels are from the same animal as was shown
in Fig. 3 in control and vasoconstricted conditions, respectively, and that only vessels belonging to the largest cluster are shown.
Change of the wave direction by ≈ 90◦ in the same animal with constant vascular structure suggests different synchronization
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centres where phase waves originate. Propagation speed is ≈ 0.37 and 0.30 mm/s for (A) and (B) respectively and spatial
period of the phase waves is ≈ 8.85 and 3.95 mm (respective phase difference |δ | ≈0.71 and 1.59 rad was observed over 1 mm
distance). The possibility of such phase-waves was previously hinted at in our earlier laser speckle contrast imaging study,
where spatial correlations in renal blood flow were analysed21. See supplementary videos for more examples of phase waves
dynamics.

Figure 4. Phase waves. (A) and (B) show the spatio-temporal evolution of TGF activity phase in vessels that belong to the
largest cluster observed during control and AngII infusion. Both observations are from the same animal as shown in Fig. 2(A)
and (B). Arrows indicate the wave direction.

Phase difference distribution (Fig. 5, A), calculated over all of the frequency matching vessels in all animals, shows the
prevalence of in-phase synchronization (|∆| ≤ π

12 , rad). This result is in good agreement with experimental micropuncture
observations, where it is explained by the presence of fast electrical coupling acting over short distances. In all conditions, the
larger phase differences are less prevalent, with the anti-phase synchronization (|∆| ≥ 11π

12 , rad) observed over just 1% of time
in control and during ACh infusion. However, AngII infusion increases this number to 5%, showing a statistically significant
difference with other conditions. Phase difference grows with distance, as can be seen from Fig. 5 (B), reflecting the presence of
phase waves. While change is relatively small in the control and vasodilated conditions (≈ 0.3 and 0.25 rad/mm), it is strongly
enhanced in the vasoconstricted condition, reaching, on average, ≈ 1 rad over 1 mm distance. As we showed with mathematical
modelling26, such difference can be explained by strengthened hemodynamic coupling, which the increased vascular tone
should cause.
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Figure 5. Localization of phase and synchronization in space. (A) Phase differences prevalence for synchronized vessels. (B)
Phase differences distribution over the distance between vessels. (C) Synchronization duration normalized by the total
observation time for different distances between vessels.N=5 animals were used to create these graphs. Paired t-test was used to
produce P-values. P-values smaller than 0.05 are considered to be significant and marked with "*". Values between 0.05 and
0.1 are shown as p < 0.1, where relevant, to highlight a trend in the data.

Since synchronization in renal blood flow is extended far beyond a pair of nephrons and is unlike synchronization in
relatively homogeneous media, one would expect some space localization due to the topological features of the vascular
network. Figure 5(C) illustrates how average synchronization duration changes with distance. It is clear that synchronization is
stronger in the vasoconstricted condition, with average duration reaching ≈ 40±13% of the observation time for neighbouring
vessels and gradually reducing to 24±6% for vessels located at more than 1 mm distance. In control, synchronization duration
varies greatly, but on average, it also reduces with distance, although at a slower rate than during AngII infusion - from ≈ 30%
to≈ 21%. During the ACh infusion the synchronization duration is≈ 15−13%, with only 2% reduction over 1 mm of distance.
Higher synchronization duration in control and during AngII infusion compared to ACh infusion suggests a long-distance
nephron-to-nephron communication or a common driving force.

4 Discussion
In this study, we have designed a methodology for high-resolution blood flow imaging in renal microcirculation and applied it
to study the synchronization of TGF oscillations in control, vasoconstricted (AngII infusion) and vasodilated (ACh infusion)
conditions. Our data confirm that blood flow in renal microcirculation tends to demonstrate clustered, frequency-locked activity,
with the clustering size and tendencies changing depending on the animal condition. Synchronization tends to be stronger,
and cluster size is larger during AngII infusion, with synchronization degree S = 0.54± 0.09 and average synchronization
duration ranging from≈ 40±13% to 24±6% of the observed time depending on the distance between vessels. During the ACh
infusion, on the contrary, synchronization seems to be disrupted, with (S = 0.36±0.1) and average synchronization duration
≈ 15±7−13±7% of the observed time. Finally, in the normotensive condition, we observed mixed behaviour with highly
variable synchronization degree S = 0.45±0.22 and duration ranging from ≈ 30±27% to 21±21%. A possible explanation
for the stronger synchronization during the AngII infusion will be a stronger hemodynamic coupling due to increased vascular
resistance. It is also supported by the increased number of vessels synchronized in anti-phase during the infusion, which, as we
predicted using mathematical modelling26, is a natural consequence of stronger hemodynamic coupling.

We also observed phase waves that travel over the TGF-frequency clustered vessels (Figs 4, and 5(B)). Interestingly, the
direction of the phase waves is not predetermined by the vascular structure - depending on the flow dynamics and other,
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yet unknown factors, it can change even within the same animal (see Fig. 4). Such behaviour might be related to diffusive
interaction between nephrons or the formation of synchronization centres (pacemakers) at different locations. The presence
of phase waves supports the deterministic nature of synchronization rather than random entrainment at the same dominant
TGF frequency. Similar effects are well studied in excitable media with diffusion interaction mechanisms such as brain27, 28

and heart29 tissues. Such similarity might suggest a presence of a diffusive mechanism in the inter-nephron interaction or a
long-distance fast electrical signalling, e.g. via conducted vasoreactivity.

In our experiments, we imaged 1.5x1.5 mm2 field of view in 5 animals with 94.8±15.66 individual segmented vessels on
average, each of which is 10−30µm in diameter. While it provides an estimate of synchronization in the nephrons activity,
direct translation from individual segmented vessels to nephrons is challenging and requires further exploration. Factors that
are critical to consider are (i) penetration depth of LSCI when applied to renal imaging, (ii) type of the vessels in the field
of view, and (iii) topology of the nephro-vascular network. While in theory, LSCI can collect the blood flow signal from as
deep as 300-400 µm, in practice, visually resolvable signal typically comes from top 50-150 µm of the vascular structure30, 31.
Considering high vascular density close to the renal surface, it would mean that LSCI is likely limited to imaging vessels
originating from ≈ 10000 nephrons in outer 30% of rat renal cortex32, which would result in ≈40 nephrons in the 1.5x1.5µm
field of view. The larger number of segmented vessels can be explained by their mixed type - afferent and efferent arterioles as
well as venules are likely to be segmented. Distinguishing vessels types in LSCI images will require further exploration and
registration with high-resolution structural imaging. It, however, does not mean that the observed clusters were limited to, at the
most, 40 nephrons. When considering renal vascular topology, it is to be expected that within the 1.5x1.5µm field of view, we
observe arterioles that arise from different non-terminal arteries33. Depending on the branching order, each of such arteries can
branch into ten-several hundreds of nephrons, but only a small number of these nephrons will have arterioles reaching close
enough to the surface to be segmented from LSCI images. Thus, when a synchronous cluster is observed with LSCI, it is likely
to extend several branching orders in depth and reach the size of hundreds and even thousands of nephrons.

While the exact role of inter-nephron communication, co-operative dynamics and synchronization in kidney-related pathol-
ogy development is still unclear and requires further exploration, it is evidently altered by the blood pressure and vascular tone.
Strong local coupling and in-phase synchronization, while being not evident at the renal artery level22, are likely to increase
pressure variation at the level of afferent arterioles26, 34, thus increasing chances of local damage and aggravating pathological
condition.
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