1 Nonadditive gene expression is correlated with nonadditive phenotypic

2 expression in interspecific triploid hybrids of willow (*Salix* spp.)

- 3 Craig H. Carlson^{*,1}, Yongwook Choi^{†,2}, Agnes P. Chan^{†,2}, Christopher D. Town[†], Lawrence B.
- 4 Smart^{*}
- 5 Author affiliations:
- ^{*}Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
- ⁷ [†]Plant Genomics, J. Craig Venter Institute, Rockville, MD 20850

8 **Current affiliations:**

- ⁹ ¹Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo,
- 10 ND 58102
- ²The Translational Genomics Research Institute, Phoenix, AZ 85004
- 12
- 13

14 **Running title:** Heterosis in triploid hybrids of willow

- 15
- 16 **Keywords:** allele-specific expression, copy number variation, differential gene expression, heterosis,
- 17 hybrid vigor, polyploidy, regulatory divergence, ridge regression

- 19 **Corresponding author:**
- 20 Lawrence B. Smart
- 21 School of Integrative Plant Science
- 22 Cornell University
- 23 630 West North St.
- 24 Geneva, NY 14456
- 25 Phone: 315-787-2490
- 26 E-mail: lbs33@cornell.edu
- 27
- 28 Author contact information:
- 29 CHC: craig.h.carlson@usda.gov (ORCiD: 0000-0003-2050-5455)
- 30 YC: ychoi@tgen.org (ORCiD: 0000-0003-2373-9580)
- 31 APC: achan@tgen.org (ORCiD: 0000-0003-2373-9580)
- 32 CDT: cdtown@jcvi.org (ORCiD: 0000-0003-4653-4262)
- 33 LBS: lbs33@cornell.edu (ORCiD: 0000-0002-7812-7736)
- 34
- 35

36

ABSTRACT

37 Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite 38 the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in 39 undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a 40 dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing 41 with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids 42 produced from crosses between diploid and tetraploid species. Here, we test whether differentially 43 expressed genes are associated with heterosis in triploid families derived from diploid S. purpurea, 44 diploid S. viminalis, and tetraploid S. miyabeana parents. Three biological replicates of shoot tips 45 from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA 46 extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene 47 expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of 48 willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and 49 was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a 50 global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number 51 variation. Importantly, differentially expressed genes between family parents were most predictive of 52 heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress 53 models of heterosis to complement the growing genomic resources available for the improvement of 54 heterozygous perennial bioenergy crops.

55

INTRODUCTION

56 The heritability of gene expression has been attributed to both local *cis*-regulatory elements and 57 distant *trans*-regulatory factors in the cell. Variation in these gene regulators can play dramatic roles 58 in the evolution of gene expression. *Cis*-regulatory variation is thought to account for evolutionarily

59 significant phenotypic differences, whereas *trans*-regulatory variation is thought to account more for 60 adaptive differences (Wray 2007). For instance, *cis*-regulatory variation in promoter regions within-61 species should be minimal, compared to that among species. So, it is more likely that *trans*-effects 62 should account for most of the regulatory variation in the intraspecific hybrid, and *cis*-effects in the 63 interspecific hybrid (Wittkopp *et al.* 2008a). More simply, the greater phylogenetic distance between 64 parents, the more likely it is that differential gene expression in the progeny will be due to gene 65 localized polymorphism. However, it is uncertain whether nonadditive gene expression and 66 regulatory divergence are more commonly observed in plants exhibiting hybrid vigor (heterosis). 67 Many studies on heterosis have focused on hybrids derived from crossing inbred parents (Guo et al. 68 2004; Guo et al. 2006), few on those derived from outcrossing parents (Landry et al. 2005; Zhuang 69 and Adams 2007), and even fewer on hybrids derived from outcrossing parents of different species or 70 ploidy (Wittkopp and Kalay 2011). From early expression studies based on only a few dozen genes 71 to recent research employing RNA-Seq, a common result in maize, wheat, and rice is that additive 72 gene expression in hybrids makes up the greatest proportion of those differentially expressed 73 between the parents (Guo et al. 2006; Stupar and Springer 2006; Stupar et al. 2008; Wei et al. 2009), 74 yet genes with nonadditive expression display allele-specific expression (ASE) (Guo et al. 2004; 75 Springer and Stupar 2007; Wei *et al.* 2009). This differential expression could be due to the presence 76 of remote *trans*-factors, whereby a small number of key regulatory genes could play significant roles 77 in heterosis (Ni et al. 2009; He et al. 2010; Goff 2011). 78 A major ongoing topic in heterosis research is to what extent is nonadditive gene expression 79 correlated with nonadditive phenotypic expression (Birchler et al. 2007), and how this informs

80 combining ability or response to hybridization in the F₁. In most crop plants, heterosis has been

- 81 observed in hybrids bred from inbred parents of contrasting genetic backgrounds (East 1936; Birchler
- 82 *et al.* 2003). In maize, high numbers of low-frequency alleles near conserved *cis*-regulatory regions

83 in the genome have been thought to lead to gene misexpression and are implicated as having a 84 deleterious impact on important component traits (Kremling *et al.* 2018). Dominance may help 85 explain the phenomenon of heterosis in maize (McMullen et al. 2009), and there are efforts to purge 86 these deleterious alleles from breeding material via targeted gene-editing technologies. Answers to 87 questions regarding the genomic basis of heterosis are not only relevant in breeding and selection, but 88 will contribute to our understanding of the evolution of dioecious plant species that regularly undergo 89 interspecific hybridization and polyploidization events. 90 Willow (Salix spp.) is exceptionally diverse, with over 350 species characterized across most of the 91 temperate range, and ploidy levels ranging from diploid to dodecaploid (Kuzovkina et al. 2008), so 92 the genomic basis of heterosis is likely to be different from that of conventional crop plants. 93 Interspecific hybridization has been a key component in shrub willow improvement, as F_1 hybrids 94 often display heterosis for biomass yield (Kopp et al. 2001; Cameron et al. 2008; Serapiglia et al. 95 2014a; Fabio et al. 2016), especially those derived from diploid and tetraploid parents (Smart and 96 Cameron 2008; Serapiglia et al. 2014b; Carlson and Smart 2016). What is promising for the biomass 97 production industry, is that these high-yielding triploids outperform foundational commercial 98 cultivars for dry weight biomass yield and other biomass-related morphological and physiological 99 traits (Fabio et al. 2017). While there is good evidence of heterosis in triploid hybrids of willow 100 (Serapiglia et al. 2014a; Carlson and Smart 2021), the genomic basis of this phenomenon is not well-101 characterized. 102 To support breeding efforts, an Illumina-based reference genome assembly of female S. purpurea

103 94006 was constructed using a F₂ map-guided approach to orient scaffolds into pseudomolecules

104 (Salix purpurea v1.0, DOE-JGI, phytozome-next.jgi.doe.gov/). Recently, sex specific long-read

105 genome assemblies of *S. purpurea* have been completed (*Salix purpurea* v5.1, *S. purpurea* 'Fish

106 Creek' v.3.1, DOE-JGI, phytozome-next.jgi.doe.gov/). The genome size is an estimated 330 Mb and

107 contains approximately 35,125 protein-coding genes (57,462 transcripts), and has proven useful in 108 read alignment, variant discovery, and candidate gene selection (Hyden et al., 2021). There have 109 been a handful of studies in shrub willow that focused on genetic mapping (Gunter et al. 2003; Berlin 110 et al. 2010; Hanley and Karp 2016; Hällingback et al. 2016; Zhou et al. 2018; Carlson et al. 2019) of 111 quantitative trait loci (QTL) associated with biomass yield traits to aid in marker-assisted selection 112 (MAS), but most have been low-resolution. There have also been attempts at correlating cell wall 113 biosynthesis genes with variation in biomass composition in *Salix* spp. (Serapiglia *et al.* 2012), as 114 well as correlating sex dimorphism (Gouker et al. 2021) with gene expression and methylation 115 patterns in F₂ S. purpurea (Hyden et al. 2021). Thus far, family-based ASE in Salix is restricted to a 116 single study of F₁ and F₂ intraspecific S. purpurea (Carlson et al. 2017), where expression-level 117 dominance comprised the greatest proportion of differentially expressed genes between the parents of 118 both families. Overall, there were more genes with ASE in the F₁ compared to F₂, but both families 119 displayed greater levels of *cis*- than *trans*-regulatory divergent expression patterns. In high-yielding, 120 triploid hybrids of bioenergy willow, the heritability of gene expression and its broad influence on 121 modulating heterosis for biomass yield and other traits important for biomass production has not been 122 characterized.

Using willow as a model for understanding heterosis in heterozygous polyploid perennials, the objectives of this study were to: 1) describe the inheritance and regulatory divergence patterns influencing gene expression within and among three interspecific hybrid triploid families, 2) test for dosage effects on parent alleles in triploid progeny, and 3) determine which genes and gene sets are most predictive of heterosis for biomass growth and wood chemical composition traits important for bioenergy production.

129

MATERIALS AND METHODS

130 Plant material and growing conditions

131	Progeny individuals from three full-sib F_1 triploid families included in this study were derived from
132	the interspecific crosses: S. purpurea 94006 × S. miyabeana 01-200-003 (Family 415), S. viminalis
133	07-MGB-5027 × <i>S. miyabeana</i> 01-200-003 (Family 423), and <i>S. miyabeana</i> 01-200-006 × <i>S.</i>
134	viminalis 'Jorr' (Family 430). Herein, we refer to parents of the F ₁ families by their clone identifiers
135	and discriminate the female and male parents as P1 and P2, respectively.
136	The field trial was established May 2014 at Cornell AgriTech (Geneva, NY). All parents and progeny
137	were transplanted from nursery beds as stem cuttings (20 cm) in a randomized complete block design
138	with four replicate blocks. The field perimeter was buffered using S. purpurea genotypes 94006 and
139	'Fish Creek' to avoid edge effects. Each plot consisted of three clones (within-row spacing: 0.4 m;
140	between row spacing: 1.82 m), of which the middle plant was measured. The field trial was evaluated
141	for three years.
142	Parent genotypes and randomly selected progeny were grown from stem cuttings (20 cm) in 12-L
143	plastic pots with peat moss-based potting mix (Fafard, Agawam, MA) to evaluate growth traits under
144	greenhouse conditions over the course of 12 weeks. Plot was defined as a single cutting planted in a
145	pot, which were arranged in a randomized complete block design with four replicate blocks. Two
146	blocks were located on benches in one greenhouse with the other two blocks in an adjacent
147	greenhouse set for identical growing conditions. Supplemental greenhouse lighting was provided on
148	a 14 hr day : 10 hr night regimen with maximum daytime temperature of 26° and a nighttime
149	temperature of 18°. Beyond weekly applications of beneficial insects and mites for pest management,
150	no pesticides were required, as there were no symptoms of biotic or abiotic stress on any plant
151	material throughout the length of the study. Liquid fertilizer (Peter's 15-16-17 Peat-Lite Special®,
152	Scott's, Marysville, OH) was applied weekly beginning four weeks after planting.
153	For more information on the experimental design and phenotypes recorded in the field and

154 greenhouse trial, see Carlson and Smart (2021).

155 **Determination of ploidy level**

156	The relative DNA content (pg 2C ⁻¹) of family parents and progeny was determined by flow
157	cytometry using young leaf material harvested from actively growing shoots in greenhouse
158	conditions. Analysis of 50 mg of mature leaf tissue from parental genotypes and selected progeny
159	was performed at the Flow Cytometry and Imaging Core Laboratory at Virginia Mason Research
160	Center in Seattle, WA. A minimum of four replicates of all samples were independently assessed
161	using the diploid female S. purpurea clone 94006 as an internal standard. Diploid parent clones from
162	multiple runs were averaged and then divided by the 2C-value of the check for that run. This factor
163	was then multiplied by each sample value within the same run as the check. When a clone was
164	analyzed more than once, 2C-values were averaged.

165 Sample preparation and sequencing

166 A total of three biological replicate shoot tips (~ 1 cm) of all triploid progeny individuals, as well as 167 their parents, were excised from the primary stem and immediately flash-frozen in liquid N_2 in the 168 greenhouse, then placed in -80° storage. Shoot tips were defined as the shoot axis that is the most 169 distal part of a shoot system, comprised of a shoot apical meristem and the youngest leaf primordia. 170 For each sample, a single shoot tip was removed from -80° storage, and ground to a fine powder (100-200 mg) prior to RNA isolation using the Spectrum[™] Total Plant RNA Kit with DNase I 171 172 digestion (Sigma, St. Louis, MO). The only modification to manufacturer's 'Protocol B' was that 173 prior to the tissue lysis step, the 2-ME/lysate mixture was incubated at 65° for 5 min, otherwise, the 174 manufacturers' procedures were followed. After elution, cold ethanol precipitations were performed 175 by the addition of 10 μ L acetic acid and 280 μ L 100% cold ethanol to 100 μ L eluate and placed in 176 -80° for 3 h. Samples were centrifuged at $17,000 \times g$ for 30 min at 4°, washed with 80% ethanol, 177 then centrifuged at $17,000 \times g$ for 20 min at 4°. After centrifugation, the supernatant was discarded,

and the pellet resuspended in ribonuclease-free 10 mM Tris-HCl. Quantification of RNA sample

179 quality and concentration was performed using the Experion 'StdSens' kit (Bio-Rad Laboratories,

180 Inc., Hercules, CA). Stranded RNA-Seq libraries were created and quantified by qPCR (2×76 bp or

181 2×151 bp) and sequenced on an Illumina Hi-Seq 2500 at J. Craig Venter Institute. Library sizes

182 ranged from 8.3 to 53 million reads.

183 Read filtering, mapping, and variant discovery

184 Low-coverage paired-end genomic DNA sequencing of the parents of the F_1 families was performed 185 to validate variants from RNA-Seq data. Biallelic SNPs were used to quantify allele-specific 186 expression (ASE) within and among triploid progeny individuals. Parent DNA libraries were 187 sequenced (Illumina HiSeq 2500, 2×101 bp) and aligned to the *S. purpurea* v1 reference genome 188 using BWA mem (Li and Durbin 2009). Subsequent BAM files were sorted, marked for duplicates, 189 and indexed in Picard (broadinstitute.github.io/picard). Indel realignment and variant calling was 190 performed using *HaplotypeCaller* (emit_conf=10, call_conf=30) in the Genome Analysis Toolkit 191 (GATK) (DePristo et al. 2011). Using BBDuk in the BBTools program (https://jgi.doe.gov/data-and-192 tools/bbtools/), raw reads were evaluated for artifact sequences by kmer matching (kmer = 25), 193 allowing 1 mismatch and detected artifact was trimmed from the 3' end of the reads. RNA spike-in 194 reads, PhiX reads and reads containing any Ns were removed. Following quality trimming (phred = 195 Q6), reads under the length threshold were removed (≥ 25 bp or 1/3 original read length). BWA mem 196 was used for alignment of interleaved RNA-Seq reads to the reference. SAMtools was used to filter 197 (-Shb -F 4 -f 0x2 -q 30), sort, and index resulting sequence alignment files. Duplicate reads were 198 flagged using MarkDuplicates in Picard and GATK was used to flag and realign indels with 199 *RealignmentTargetCreator* (minReads = 20) and *IndelRealigner*.

200 Gene expression inheritance classifications

201	To categorize inheritance of gene expression in the hybrid, Negative Binomial (NB) exact tests were
202	performed in edgeR (Robinson et al. 2010) in R (R Core Team 2021), at a False Discovery Rate
203	(FDR) of 0.005, for only genes with a minimum counts-per-million (CPM) ≥ 1 . Prior to NB tests,
204	dispersions were estimated using three biological replicates of each group to account for library-to-
205	library variability. Tests for differential expression were for paired comparisons between 1) diploid
206	and tetraploid parents (P_{2x} and P_{4x}), 2) diploid parent and the triploid hybrid (P_{2x} and H), and 3)
207	tetraploid parent and the triploid hybrid (P_{4X} and H). Gene expression inheritance classifications were
208	based on log_2 fold-change > 1.2 and q-value < 0.005 resulting from exact tests between the parents

and hybrid, according to Carlson et al. (2017).

210 **Regulatory divergence classifications**

211 To determine cis- and trans-effects on gene expression, separate binomial exact tests were performed 212 using library-normalized read counts of diploid (P_{2X}) and tetraploid (P_{4X}) parent alleles in the parents 213 $(P_{2X} \text{ and } P_{4X})$ and the F_1 triploid progeny individual $(H_{2X} \text{ and } H_{4X})$ from the $P_{2X} \times P_{4X}$ cross. For a 214 two-sided binomial test, the null hypothesis is that the expected counts are in the same proportions as 215 the library sizes, or that the binomial probability for the first library is $n_1 / (n_1 + n_2)$. To test the null 216 of independence of rows (P_{2X} vs P_{4X} and H_{2X} vs H_{4X}) and columns (P_{2X} vs H_{2X} and P_{4X} vs H_{4X}), 217 Fisher's exact test was performed on a 2×2 matrix comprised of P_{2X} and P_{4X} and H_{2X} and H_{4X} 218 normalized read counts. For all tests, a fixed FDR was applied at a level of 0.005. Filtering 219 parameters required ≥ 20 reads summed between the parents, and two alleles at a locus, such that 220 each allele corresponds to either the diploid or tetraploid parent. 221 For each site, significant differences (FDR = 0.005) on the expression of parent alleles can occur

- 222 either between the parents (P, binomial exact test), the hybrid (H, binomial exact test), or all (F,
- 223 Fisher's exact test). Categories of regulatory functions considered *cis*-only, *trans*-only, *cis* + *trans*,

224	$cis \times trans$, compensatory were assigned following previously described methods (Landry <i>et al.</i>
225	2005; McManus et al. 2010). Conservation of expression was attributed to cases where no significant
226	differences could be observed. Ambiguous cases were observed when only one of the three tests (P,
227	H, or F, described above) were deemed significant. While ambiguous cases could somewhat be
228	resolved by lowering the significance threshold (e.g., $FDR = 0.05$), approximately equal proportions
229	of ambiguous assignments were observed across regulatory divergence classes and triploid
230	individuals. However, parent-only (P)-ambiguous genes were more common than the other
231	ambiguous cases, of which, F-ambiguous genes were the least frequent.

232 **Copy number variation**

233 Copy number variation (CNV) was analyzed on a chromosome-wide scale, using median $\log_2(P_{2X} / P_{2X})$

 P_{4X}) difference of logs in the parents and the median percentage of reads attributable to the P_{2X} allele

in the triploid hybrid (diploid %). Diploid % was calculated as $H_{P2X} / (H_{P2X} + H_{P4X}) \times 100$, where

236 H_{P2X} is a vector of library-normalized counts of the P_{2X} allele in the hybrid and H_{P4X} is that of the P_{4X}

allele in the hybrid. The expected CN of each homeolog in the hybrid was either determined to be

238 deficient, normal, or replete, depending on these two parameters (Figure S1). To avoid over-

estimating CNV in triploids, binned coverage of paired-end Illumina DNA-Seq reads of the parents

240 was compared to validate RNA-Seq results.

241 Gene ontology analysis

242 Gene ontology (GO) term enrichment was performed in agriGO (Du et al. 2010) using the subset of

243 the S. purpurea v1 transcriptome (reference set) that passed filtering, prior to tests of differential

244 expression. Only significant ontologies (FDR = 0.05) were reported. *Salix purpurea* gene models and

associated GO-terms which were annotated as hypothetical proteins were inferred using the best-hit

246 (blastp e-value ≤ 0.01) to *Populus trichocarpa* (Phytozome v10.3) and *Arabidopsis thaliana*

247 (TAIR10 and Araport11 annotations) proteomes.

248 Gene-trait correlations and prediction of heterosis using selected and random gene sets

- 249 Gene-trait correlations were performed for each family using scaled log₂ (CPM + 1) library-
- 250 normalized gene expression values (File S1) and midparent heterosis values for field and greenhouse
- collected traits (File S2), which were calculated as the percent deviation of the F₁ from the midparent
- value, as described in Carlson and Smart (2021). Ridge regression ($\alpha = 0$) was used to predict
- 253 midparent heterosis trait values with different gene sets using 10 replications of nested cross
- validation (tenfold inner and outer) with cv.glmnet in glmnet (Friedman et al. 2010). Gene sets were
- comprised of scaled log₂ (CPM + 1) library normalized expression values of: 1) 5,000 randomly
- sampled genes, 2) the top 5,000 most highly expressed genes, 3) 4,986 genes which were
- differentially expressed between at least one pair of family parents, and 4) 379 genes that were
- commonly differentially expressed between all three family parent pairs. Prediction accuracy was
- assessed via linear regression of mean predicted and observed values.
- 260

RESULTS

261 Transcriptome analysis

After quality filtering and alignment of triploid F_1 progeny and parent paired-end RNA-Seq reads to the *S. purpurea* v1 reference, the library sizes ranged from 10 to 56 million. Of the 105 libraries sequenced, there were two identified as outliers (13X-430-035, greenhouse plot 59, biological replicate 1; 12X-415-074, greenhouse plot 278, biological replicate 3) and removed prior to downstream statistical analyses. In a multi-dimensional scaling plot of normalized transcriptomewide gene expression of all triploid F_1 progeny individuals and their parents (Figure 1A), the first

dimension represents sample distances based on species pedigree (Ve = 27%), with individuals

269 containing *S. viminalis* in their background clustering to the right of the first dimension, *S.*

270 *miyabeana* in the center, and *S. purpurea* to the left, such that the *S. viminalis* parents (07-MBG-5027

- and 'Jorr') and *S. purpurea* 94006 are at extremes, or most distantly related. While family 415 and
- 423 individuals share the common tetraploid *S. miyabeana* parent 01-200-003, the proximity of
- family 423 and 430 clusters indicates that common parent species (S. viminalis and S. miyabeana) is
- a more important factor contributing to transcriptome-wide distances. The second and third
- dimensions further separate sample libraries by pedigree (Ve = 11%) and ploidy (Ve = 7%),

276 respectively (Figure 1C). For all three triploid families, the respective diploid and tetraploid parents

277 flank clusters of family individuals and are relatively equidistant from the offspring cluster centers.

278 Taking the first two dimensions into account, Euclidean distances approximated here implies

transcriptome-wide gene expression inheritance is mostly conserved or additive.

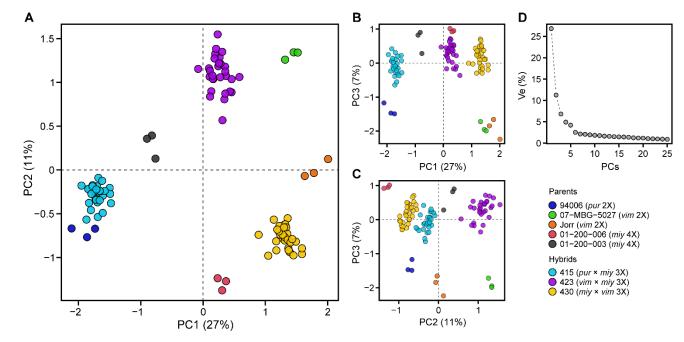


Figure 1. Multi-dimensional scaling plot of library-normalized transcriptome-wide gene expression of all triploid F_1 progeny individuals (families 415, 423, and 430) and their diploid (94006, 07-MBG-5027, and 'Jorr') and tetraploid (01-200-006 and 01-200-003) parents. Panel (A) PC1 versus PC2, (B) PC1 versus PC3, (C) PC2 versus PC3, and (D) percent variance explained (% Ve) by the first 25 PCs. Euclidean distances on

the two-dimensional plot approximate leading \log_2 fold-changes between samples, using the top 500 genes with the largest standard deviations. Parents and progeny libraries are colored according to the legend.

287 Differential gene expression

288	Exact tests (FDR = 0.005) of differential gene expression between triploid family parent genotypes
289	yielded similar numbers of differentially expressed genes, but the P1:P2 ratios differed (Table 1). The
290	comparison of family 415 parents, S. purpurea 94006 (P1) versus S. miyabeana 01-200-003 (P2), had
291	5,166 differentially expressed genes, with 2,661 genes greater in 94006 and 2,505 genes greater in
292	01-200-003 (P1:P2 = 1.06). The family 423 parents, S. viminalis 07-MBG-5027 (P1) versus S.
293	miyabeana 01-200-003 (P2), had 5,523 differentially expressed genes, with 2,469 genes greater in
294	07-MBG-5027 and 3,054 genes higher expressed in 01-200-003 (P1:P2 = 0.81). The family 430
295	parent comparison, S. miyabeana 01-200-006 (P1) versus S. viminalis 'Jorr' (P2), yielded 5,155
296	differentially expressed genes, with 2,467 genes greater in 01-200-006 and 2,688 genes greater in
297	Jorr (P1:P2 = 0.91). Globally, the parents of family 423 had a greater percentage of genes that were
298	differentially expressed (22.1%), compared to the parents of families 415 (20.8%) and 430 (20.5%).
299	A total of 379 genes were differentially expressed in common among all three family parent duos.
300	For those genes differentially expressed between parents, inheritance patterns were determined based
301	on both the parent expression values and those observed in the hybrids (Table 2). The percentage of
302	differentially expressed genes showing nonadditive inheritance ranged from 27% to 39% (mean =
303	33.5%) (Figure S2) in family 415, 40% to 56% (mean = 49.8%) in family 423, and 34% to 60%
304	(mean = 50.3%) in family 430. Transgressively expressed genes (under- and overdominant) averaged
305	just 0.7%, 1.1%, and 1.0%, for families 415, 423, and 430, respectively. The percentage of genes
306	with underdominant expression out of total transgressively expressed genes was 98%, 74%, and 80%
307	for families 423, 430, and 415, respectively. All individuals had a greater percentage of genes with

expression level dominance in the direction of the tetraploid parent, ranging from 66% to 88% and a
mean of 70% across all triploid families.

There were fewer numbers of diploid parent dominant genes (15) (Table S1) than tetraploid parent dominant genes (89) (Table S2) that were common across all families and individuals. Due to the low number of common diploid parent dominant genes, there were no significant functional enrichments. Tetraploid dominant genes were enriched for GO molecular functions: beta-glucosidase activity and catalytic activity. In addition, tetraploid parent dominant genes were enriched for the KEGG pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, biosynthesis of secondary metabolites, metabolic pathways, and starch and sucrose metabolism (Table S3).

317 Allele-specific expression

318 To determine the extent of regulatory divergent expression, tests for ASE were conducted using

319 expression data on biallelic sites that were first called with parent DNA-Seq and RNA-Seq libraries

320 prior to calling parent alleles in the progeny. Family averages for the total number of genes assigned

to at least one regulatory class were 15,391 (\pm 114), 16,800 (\pm 72), and 16,711 (\pm 113), for families

415, 423, and 430, respectively (Table 3). On average, the percentage of genes assigned to non-

323 conserved regulatory classes was 12%, 11%, and 10%, for families 415, 423, ad 430, respectively

324 (Figure S3). Family 415 had the greatest percentage of non-conserved genes with *cis*-regulation

325 (65%), compared to families 423 (58%) and 430 (54%). The greatest mean percentage of genes with

326 *trans* (24.6%), *cis* × *trans* (7.4%), and compensatory (10.8%) regulatory divergence patterns was for

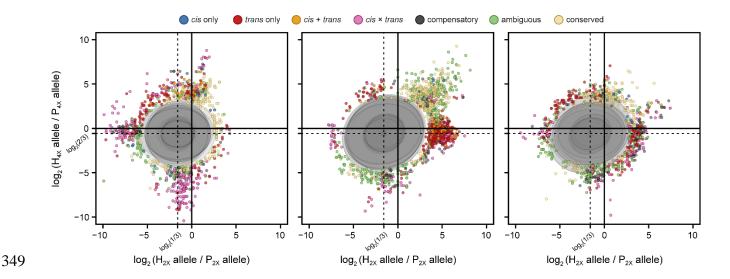
327 family 430, whereas family 415 had the greatest mean *cis* + *trans* (5.1%). Across all triploid

328 individuals, a total of 49 genes were in common, having either *cis*, *trans*, *cis* + *trans*, *cis* × *trans*, or

329 compensatory regulatory classifications (Table S4). In addition, higher proportions of overdominant

and underdominant expression coincided with higher proportions of *cis* × *trans* and compensatory

regulatory classes. Further, a higher proportion of *cis* + *trans* divergence coincided with a lower
proportion of underdominant expression, most notably for the comparison of families 423 and 430
with family 415.


334 Gene activation and silencing

The presence (CPM > 1) or absence (CPM = 0) of transcripts in the parent and triploid hybrid was compared for each family. Overall, more genes were silenced than activated in the triploid hybrids, especially for families 415 and 430, in which nearly five-times the number of genes were silenced than activated (Figure S4). Family 423 had a greater number of genes activated than the other two families, whereas family 430 had the greatest number of genes silenced. There were no GO-terms enriched for either activated or silenced gene-sets.

Dosage effects on gene expression

To test whether there was a dosage effect on parent alleles in triploid progeny, ASE ratios were compared within and among families. Only extreme deviations from expected dosage ratios (Pr = 1×10^{-5}) were included in the analysis and considered to be dysregulated. Since it is expected that the triploid hybrid has inherited a single copy of the diploid parent allele and two copies of the tetraploid parent allele, if there was no deviation in expression of the parent alleles in the hybrid, all loci would be represented by a single point at the intersection of expected P_{2X} / P_{4X} difference of logs, log₂ (P_{2X} / P_{4X}) (Figure 2).

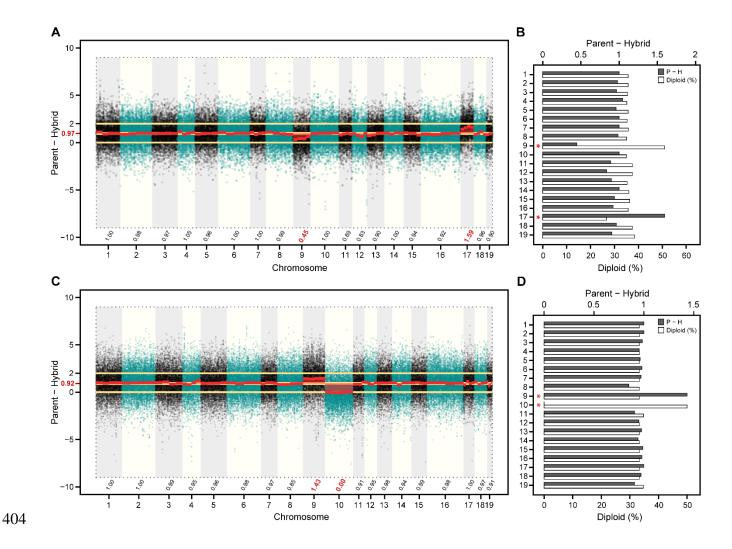
bioRxiv preprint doi: https://doi.org/10.1101/2021.10.13.464325; this version posted October 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 Internation

350 Figure 2. Superimposed dosage differential scatterplots of 10 individuals from each of the families 415, 423, 351 and 430 (left to right, respectively). Each point depicts the \log_2 ratio of the diploid parent allele in the hybrid 352 and the diploid parent allele in the parent against the \log_2 ratio of the tetraploid parent allele in the hybrid and 353 the tetraploid parent allele in the parent. Points are colored according to their regulatory assignment. Ellipses 354 mask most of the distribution of \log_2 dosage ratios (Pr = 1×10⁻⁵), such that points sitting outside ellipses are 355 extreme outliers from expected dosage. Dotted lines at $\log_2(1/3) = -1.585$ and $\log_2(2/3) = -0.585$ represent 356 distribution averages for diploid and tetraploid ratios, which is where the average distribution of dosage ratios 357 is expected to occur.

358 While the dosage ratios were comparable within in families, and all genome-wide family means fell 359 within expected ranges, there were significant departures from expected dosage. For dosage ratio 360 outliers, all three triploid families exhibited unique patterns. There was an abundance of genes 361 showing up- and down-regulation of the tetraploid parent allele in family 415, a majority of which 362 showed *cis* × *trans* regulatory divergence. Family 423 outliers featured up-regulation of the diploid 363 parent allele in the hybrid, as well as high expression levels of both diploid and tetraploid parent alleles in the hybrid (i.e., trans). Many outliers with greater diploid and tetraploid ASE in the hybrid 364 365 were classified ambiguous, and those ratios were not different for the tetraploid parent allele, but a 366 greater diploid ratio had either *trans* or $cis \times trans$ regulatory patterns. All regulatory patterns were 367 represented in family 430, which had the greatest number of unique genes among the families that 368 had dosage ratio outliers from at least one individual. Unlike family 423, there were few genes with 369 greater expression for both diploid and tetraploid parents in family 430. In general, common dosage

370 dysregulated genes showed significant enrichment for response to stress, transcription, small

371 molecule activity, and binding activity (Table S5).


372 Genes with the greatest mean expression coincided with greater gene expression variance. Those 373 genes with a $\mu/\sigma < 1$ (n = 338) were significantly (q-value < 0.005) enriched for: GO biological 374 functions of photosynthesis, translation, and response to stimulus; GO molecular functions of 375 structural molecule activity, structural constituent of the ribosome, tetrapyrrole binding, and 376 chlorophyll binding; GO cellular components of chloroplast, cytoplasm, chloroplast thylakoid, 377 photosystem, and apoplast; KEGG pathways of photosynthesis, photosynthesis - antenna proteins, 378 ribosome, metabolic pathways, and flavonoid biosynthesis. Over 50% of the top 50 most variable 379 genes are either class I chaperonin heat shock proteins or ribosomal complex subunits, with the latter 380 being most prominent. On the converse, the most highly expressed but *least* variable genes were 381 enriched for the GO molecular function of ADP binding, of which most are annotated as stress-382 associated or disease resistance proteins (e.g., receptor-like kinases) and pentatricopeptide repeat-383 containing proteins.

384 Chromosomal copy number variation

385 The difference in $\log_2 (P_{2X} / P_{4X})$ expression of parent alleles in the hybrid from respective diploid 386 and tetraploid progenitors can help determine if major departures from expected dosage in the hybrid 387 are a result of copy number variation (CNV) in the tetraploid parent. For instance, it is expected that 388 triploids inherit one chromosome copy from the diploid parent, and two copies from the tetraploid 389 parent, such that the difference of the hybrid $\log_2 (P_{2x} / P_{4x})$ from the parent is equal to 1. Although 390 these ratios are tetraploid parent informative, an euploidy in the diploid parent cannot easily be 391 determined, because at least one diploid parent copy must be present to infer chromosomal 392 inheritance patterns in triploid progeny. Further, these ratios are not fully informative because any

393	copy number in the tetraploid parent $(1/4, 2/4, 3/4, 4/4)$ can potentially exist in four observable cases
394	in the triploid (4/3, 3/3, 2/3, 1/3). However, the percentage of reads attributable to the diploid parent
395	in the triploid hybrid (i.e., percent diploid) can be utilized as a second parameter to rectify
396	overlapping parent-hybrid ratios of different parent and hybrid combinations (Figure S1; Figure 3).
397	While chromosome-wide $\log_2 (P_{2X} / P_{4X})$ expression of the female diploid (S. purpurea 94006 and S.
398	viminalis 07-MBG-5027) and male tetraploid (S. miyabeana 01-200-003) parents showed consistent
399	median values approximately equal to 0, Salix chr09 significantly deviated from the expected
400	(Wilcoxon <i>p</i> -value < 1×10^{-16}), with a log ₂ (P _{2X} / P _{4X}) of 0.49. This suggests that only three copies of
401	chr09 were present in S. miyabeana parent 01-200-003. This was the case for both families 415 and
402	423, which share the male tetraploid parent 01-200-003. No significant deviations from the expected

403 was observed for the parents of family 430 (S. miyabeana 01-200-006 × S. viminalis 'Jorr').

405 Figure 3. Manhattan plot (A) chromosome-wide differences of $\log_2 (P_{2X} / P_{4X})$ expression (parent – hybrid) 406 between the family 415 parents (female diploid 94006 and male tetraploid 01-200-003) and the triploid hybrid 407 12X-415-031. Median parent – hybrid values are shown above chromosome identifiers (x-axis). The barplot 408 (B) depicts the median parent – hybrid difference (dark grey bars, scale top x-axis) and the percent expression 409 in the hybrid attributable to the diploid parent allele (white bars, scale lower x-axis) by chromosome (y-axis). 410 The Manhattan plot in panel (C) and barplot in panel (D), represent the same analyses, but between the family 411 423 parents (female diploid 07-MBG-5027 and male tetraploid 01-200-003) and the triploid hybrid 12X-423-412 070. Red text on x-axes in panels (A) and (D) correspond to red asterisks on y-axes in panels (B) and (C), which denote significant differences (Wilcoxon *p*-value $< 1 \times 10^{-16}$). 413

414 For family 415, five triploid individuals had a median $\log_2 (P_{2X} / P_{4X})$ parent – hybrid difference of

415 1.43 and approximately 34% of the reads which could be attributed to the diploid parent for chr09,

416 which is expected, given the male parent was limited to three chr09 copies. The other five individuals

- 417 had a $\log_2 (P_{2X}/P_{4X})$ difference of 0.45 for chr09 and were ~50% diploid over all loci for the
- 418 chromosome. Thus, the latter group in family 415 inherited two of the three tetraploid parent copies

419 of chr09 and the former inherited only one. A total of six individuals in family 423 had a $\log_2 (P_{2X} / P_{4X})$ difference of 1.44 and were 33.3% diploid on average for chr09, which is expected if they 420 inherited two copies from the tetraploid, because family 415 and 423 share the same male tetraploid 422 *S. miyabeana* parent. The other four individuals in family 423 had a $\log_2 (P_{2X} / P_{4X})$ difference of 423 0.47 and were 50% diploid on average, so these individuals only inherited one of the three tetraploid 424 parent copies of chr09.

425 It was not uncommon for individuals to possess an additional tetraploid copy of a chromosome and

426 lack another. For instance, the family 415 individual, 12X-415-031, had a $\log_2 (P_{2X} / P_{4X})$ difference

427 of 1.59 for chr17, but only 25% diploid, which suggests that 12X-415-031 inherited an additional

428 copy of the male tetraploid parent 01-200-003 chr17. Stunningly, the same individual also lacked one

429 copy of the male chr09 (log₂ (P_{2X} / P_{4X}) = 0.45 and 50% diploid) (Figure 3A, Figure 3B). Another

430 example was for the family 423 individual 12X-423-070 (Figure 3C, Figure 3D). While 12X-423-

431 070 inherited two copies of chr09 from the tetraploid parent 01-200-003 ($\log_2 (P_{2X} / P_{4X}) = 1.43$ and

432 33.3% diploid), this individual lacked one copy of the tetraploid parent chr10 ($\log_2 (P_{2X} / P_{4X}) = 0.0$

433 and 50% diploid), which seems to be spurious, given there was no DNA-Seq or RNA-Seq coverage

to indicate that 01-200-003 lacked a copy of chr10.

435 Unequal inheritance of chr09 in families 415 and 423 was unexpected, yet it permitted a test for

436 genes insensitive to changes in dosage for this chromosome, as well as common genes up- or down-

437 regulated in each group. Three individuals each from families 415 and 423 with a 33% diploid

438 attribution and three each from both families with a 50% diploid attribution for chr09 were

439 compared. Individuals with spurious tetraploid CN (e.g., 12X-415-031 and 12X-423-070) were not

440 included in the analysis. As previously stated, there is a global dosage effect in triploids, irrespective

441 of CN, but dosage sensitive genes, which are most likely to be misexpressed, should show consistent

442 and directional fold-changes. To avoid any buffering effects from the diploid parent (P_{2X}), allele-

specific expression of P_{4X} in the parent and hybrid were compared with a binomial exact test to reject the null hypothesis that the expression of P_{4X} allele in the triploid hybrid is half (Pr = 0.5) that of P_{4X} allele in the tetraploid parent.

446 Gene–trait correlations

447 Since CNV in triploids may posit drastic phenotypic consequences, Pearson correlations (r) were 448 made for mean genome-wide diploid (%) and heterosis for important biomass-related growth traits 449 collected in the field and greenhouse (Table S6). In general, diploid % was positively correlated with 450 heterosis for foliar traits and inversely correlated with heterosis for biomass stem growth traits (Table 451 4; Figure 4) described in Carlson and Smart (2021). Diploid % was positively correlated with the 452 field-collected leaf growth traits (length, perimeter, ratio, specific leaf area) and inversely correlated 453 with stem growth traits (height, basal diameter, area, volume). For greenhouse-collected traits, 454 diploid % was positively correlated with specific leaf area only, but inversely correlated with biomass 455 yield, stem growth traits, and vegetative phenology. Field and greenhouse collected traits most 456 positively correlated with diploid % were crown form (r = 0.65) and specific leaf area (r = 0.65), 457 respectively, and inversely were plot height (r = -0.82) and root dry mass (r = -0.73), respectively. 458 The only foliar field trait with an inverse relationship with diploid % was leaf shape factor (r =-0.51), which is a measure of leaf symmetry. Diploid % had a strong inverse relationship with the 459 460 proportion of differentially expressed genes showing nonadditive inheritance (r = -0.71).

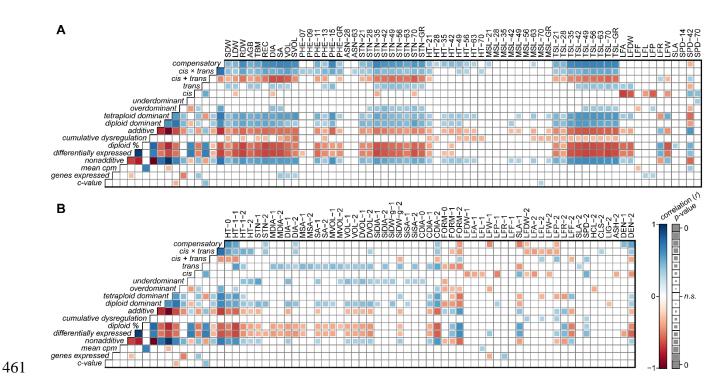


Figure 4. Correlations of nonadditive, regulatory divergent, and cumulative expression dysregulation with heterosis for (A) greenhouse and (B) field phenotypes. Pearson correlation coefficients (r), positive correlations are illustrated by filled blue squares and negative correlations by filled-red squares. Nonsignificant correlations (p-value > 0.01) were left blank. Significance levels (p-values) were used to scale the area of each square, such that smaller squares represent correlation coefficients with lower significance and larger squares represent those with greater significance.

468 Overall, there were stronger associations in the greenhouse trial than the field trial. The proportions

469 of additive expression, and *cis*- and *cis*+ *trans* divergence, were inversely correlated with heterosis

470 for nearly all biomass traits in the greenhouse trial, as well as the total proportion of differentially

471 expressed genes, cumulative expression dysregulation, and the proportion of differentially expressed

472 genes with additive expression inheritance. For both the field and greenhouse trials, *trans*-

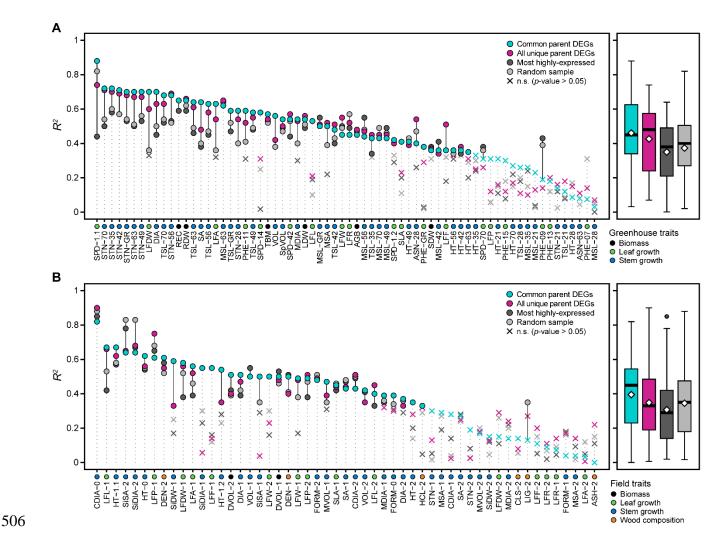
473 divergence, differential expression, and the proportion of diploid- and tetraploid-parent dominant

474 genes were positively correlated with heterosis for total stem volume. Heterosis for hemicellulose

475 content was positively correlated with the proportion of *cis*-divergence and inversely with

476 overdominance. Heterosis for cellulose and lignin content were positively and inversely correlated

- 477 with the proportion of differentially expressed genes with diploid parent dominant expression.
- 478 Chlorophyll content (SPAD) in both trials was inversely correlated with the proportion of


479 nonadditive expression, *trans*, and compensatory regulatory divergence, and the proportion of 480 differentially expressed genes with tetraploid parent dominant inheritance. Cis-divergence was 481 positively correlated with the proportion of differentially expressed genes with additive inheritance, 482 but inversely correlated with the proportion of diploid parent dominant and overdominant expression. 483 The proportion of differentially expressed genes with *trans*-divergent expression was inversely 484 correlated with the proportion of additive inheritance, but positively correlated with dominant and 485 overdominant proportions. Finally, mean normalized expression levels (CPM) had the greatest 486 positive association with cumulative dysregulation (r = 0.68); however, nonadditive inheritance and 487 regulatory proportions lacked any significant associations with cumulative dysregulation. 488 Genes most commonly associated with heterosis for biomass growth traits were a peripheral-type 489 benzodiazepine receptor (PBR, SapurV1A.0155s0220; r = 0.64 to 0.81) located on Salix chr02 and a 490 squamosa promoter-binding-like protein (SPL10, SapurV1A.0056s0240; r = 0.67 to 0.73) on chr03 491 (File S3). Most common inverse gene associations with biomass growth traits were mediator of RNA 492 polymerase II subunit 7 (MED7, SapurV1A.0616s0090; r = -0.74 to -0.81) on chr06 and a NLI 493 interacting factor-like serine/threonine specific protein phosphatase (NIF, SapurV1A.0546s0050; r =494 -0.67 to -0.78) on chr15. Genes with a strong positive relationship with total biomass yield (r > 0.6, 495 n = 189) were enriched for GO molecular functions: catalytic activity, transferase activity, and 496 acyltransferase activity, and those inversely associated (r < -0.6, n = 94) were enriched for GO 497 molecular functions: structural molecule activity and structural constituent of the ribosome (Table 498 S7).

499 Prediction of heterosis with random and selected gene expression sets

500 For most traits, genes that were differentially expressed between the F_1 parents were more predictive

501 of midparent heterosis than those 5,000 genes either randomly sampled or most highly expressed

- 502 (Figure 5). Prediction accuracies of midparent heterosis using genes commonly differentially
- 503 expressed between all three family parent pairs (n = 379) were akin to the larger set of genes
- 504 differentially expressed between at least one pair (n = 4,986), yet there were cases in which one gene
- 505 set performed substantially better, vice versa.

Figure 5. Prediction accuracies (R^2) of heterosis values for (A) greenhouse and (B) field phenotypes using selected and random gene expression sets. These four gene sets were: differentially expressed genes common among parent pairs (cyan, n = 379), differentially expressed genes in at least one parent pair (magenta, n = 4,978), the most highly expressed genes (dark grey, n = 5,000), and a random sampling of genes (light grey, n 510 = 5,000). Boxplots to the right of each panel depict the distribution of prediction accuracies, with means 512 represented as yellow diamond points. Traits are colored according to respective classes described in the lower 513 left legend of each panel.

514 Overall, mean prediction accuracies were greater for greenhouse traits (Figure 5A) than field traits

515 (Figure 5B), of which the common, overlapping differential expression gene set had better prediction

516	accuracies on average. This can partly be explained by more frequent repeated measurements
517	recorded in the greenhouse and the impact of pest damage on field phenotypes not present in the
518	greenhouse. In addition, lower R^2 values were observed for second year post-coppice measurements
519	in the field compared to those taken the first year following coppice. Across all four gene sets, basal
520	crown diameter had the highest prediction accuracies ($R^2 = 0.82 - 0.90$), followed by leaf perimeter,

521 chlorophyll content, primary stem number, and basal stem diameter.

522

DISCUSSION

523 Differential gene expression is both additive and nonadditive

524 Using microarrays of maize, Stupar and Springer (2006) determined that approximately 20% of the 525 genes that were differentially expressed between inbred parents were nonadditively expressed in the 526 hybrid, although very few were above the high parent (overdominant) or below the low parent 527 (underdominant). Swanson and Wagner (2006) found all inheritance categories in the hybrid 528 represented among differentially expressed genes between two inbred parents of maize. In our study, 529 there were very few genes that were differentially expressed between diploid and tetraploid parents 530 and were outside the parental range in the triploid hybrid, especially overdominant genes, which were 531 three-times less-frequent on average than underdominant genes. In contrast, differentially expressed 532 genes between heterozygous thistle (C. arvense) parents were more frequently overdominant than 533 underdominant in intraspecific hybrids (Bell et al. 2013). Expression-level dominance was most-534 prominent in both shoot tip and stem internode tissues of F_1 and F_2 diploid S. purpurea families 535 (Carlson *et al.* 2017) and was primarily biased in the direction of the female parent, especially in 536 shoot-tip tissues. Very little additive gene expression was observed in *S. purpurea*, which is a unique 537 result, compared with model crop plants (Guo et al. 2006; Stupar and Springer 2006; Song et al. 538 2013).

539 Among the triploid *Salix* families investigated in this study, expression-level dominance was 540 prominent, as was established in diploid S. purpurea, but the percentage of differential expression 541 attributed to dominance inheritance ranged from 28% to 60%. Progeny from reciprocal crosses 542 between *Salix* Sections Vimen and Helix, showed the greatest percentage of dominant expression, 543 which was 50% of those genes expressed differently between diploid and tetraploid parents. Cases of 544 expression-level dominance in polyploid crops have been described in intraspecific thistle (Bell et al. 545 2013), interspecific coffee (Combes et al. 2015), as well as in allotetraploids of both rice (Xu et al. 546 2014) and Arabidopsis (Shi et al. 2012). This preferential expression is thought to be orchestrated by 547 allelic interactions, which functions to silence one of the parent alleles in a parent-of-origin manner 548 (Chen and Pikaard, 1997; Stupar et al. 2007; Donoghue et al. 2014; Baldauf et al. 2016). 549 Further analysis of allele-specific expression in triploid hybrids of willow indicated that gene 550 expression variation was associated with both *cis*- and *trans*-regulatory divergence, and that *cis*-*trans* 551 compensatory interactions accounted for up to 25% of the variation. Allele-specific expression has 552 been extensively studied in model species, most notably, in interspecific hybrids and allopolyploids 553 of Arabidopsis (Shi et al. 2012) and Drosophila (Landry et al. 2005; Wittkopp et al. 2008a; Wittkopp 554 et al. 2008b; McManus et al. 2010). There is a general trend that cis-regulatory divergence accounts 555 for a greater proportion of expression variation in interspecific hybrids and that *trans*-regulatory 556 divergence is more frequent in intraspecific hybrids (Wittkopp et al. 2004). In hybrids of inbred 557 maize, *cis*-acting variation accounted for most of the divergent expression between parents and was 558 largely attributed to additive expression patterns (Stupar and Springer 2006). Greater sequence 559 divergence was proposed to promote the flexibility of *trans*-factors in their binding to interacting 560 factors and *cis*-elements in *Arabidopsis thaliana* and *A. arenosa* parent alleles (Shi *et al.* 2012). 561 McManus et al. (2010) hypothesized that greater transgressive inheritance is associated with greater 562 proportions of $cis \times trans$ divergence. Likewise, what was identified in triploid Salix hybrids, greater

563	proportions of overdominant and underdominant (transgressive) expression inheritance did coincide
564	with greater proportions of $cis \times trans$ and compensatory regulatory classes. Further, a greater
565	proportion of <i>cis</i> + <i>trans</i> divergence coincided with a lower proportion of underdominant expression.

566 Global dosage balance with local sensitivities

567 Dosage in all three triploid families appeared to behave in an extraordinarily additive manner, 568 irrespective the number of parent copies inherited. However, a handful of genes did depart from 569 expected dosage in triploids, most notably, those coding for heat shock proteins. In this study, genes 570 annotated as coding for heat shock proteins displayed greater expression in individuals with normal 571 chr09 copies, whereas those null for a tetraploid parent copy had greater expression of stress- or 572 senescence-associated genes. Overall, there were greater proportions of loci showing *cis* × *trans* and 573 compensatory regulatory patterns in family 415 and 423 individuals that were aneuploid with only 574 one tetraploid parent copy (e.g., chromosomes 2, 9, 10, and 17), or a greater average diploid %. 575 While the quantity of a translation product (protein subunit) may impact the assembly of a particular 576 complex, the mere involvement in a complex can also impact protein stability (Veitia et al. 2007). It 577 may be that null mutations in metabolic functions are tolerated in a heterozygous state, but only 578 weak, loss-of-function, dosage-sensitive genes can survive negative selection as heterozygotes 579 (Birchler and Veitia 2010). The balance of regulatory hierarchies (dosage balance) (Birchler et al. 580 2005) are sensitive to gene dosage and changes in individual components can influence phenotype. In 581 macromolecular complexes, dosage balance is essential, because partial aneuploidy of a dosage-582 sensitive gene can change the stoichiometry of the complexes and lead to fitness defects (Veitia et al. 583 2008). In maize, greater proportions of nonadditive expression was observed in triploid and tetraploid 584 hybrids with genome dosage effects (Guo et al. 1996; Auger et al. 2005; Birchler et al. 2005; Riddle 585 et al. 2010).

586 Previous gene expression studies in inbred and outcrossing species have regularly pooled F_1 progeny 587 libraries prior to sequencing. While this is not an issue for inbred crops, out results show that pooled 588 RNA-Seq can underestimate factors contributing to the inheritance of gene expression in 589 heterozygous species, especially for families derived from natural polyploids. For instance, without 590 sequencing individual libraries, we would not have detected aneuploidy for chromosomes of 591 polyploid progenitors in the F₁ based on pooled RNA-Seq data alone, which could distort 592 assumptions about the evolution of gene expression inferred from inheritance and regulatory 593 assignments. Even if the expected ploidy in the hybrid is based on chromosome counts or DNA-Seq 594 of the parents, there may not be equal inheritance, and binomial tests for ASE between the parents 595 and the hybrid would be incorrect if based on a fixed probability estimate. Thus, prior to tests for 596 ASE, a simple adjustment could be made, which would first require that each chromosome (or 597 scaffold) be tested independently. Utilizing median fold-changes in the parents and the percentage of 598 reads in the hybrid attributable to the diploid parent, a probability of success under the null could be 599 properly assigned.

600 Beyond the fact that the parents in this study were highly heterozygous, it is possible that CNV or 601 aneuploidy can help explain some of the variation in heterosis observed within and among triploid 602 families. In aneuploid studies, changing numerous chromosome segments can alter quantitative 603 characters (Guo and Birchler 1994). Here, genome-wide averages of ASE attributable to the diploid 604 parent (diploid %) in triploids was inversely correlated with heterosis for important stem growth 605 traits (e.g., total harvestable biomass), but positively with foliar traits. The dosage balance hypothesis, outlined by Birchler (2005), may very well apply to slight deviations in the global 606 607 inheritance of parent ASE or major differences in chromosomal copy number, as was observed for 608 Salix chr09 aberrations in families 415 and 423. Genetic mapping in F₂ S. purpurea (Carlson et al. 609 2019) identified QTL on chr09 for leaf length, leaf perimeter, and specific leaf area, so positive

610 correlations between diploid % and foliar traits could indicate a dosage sensitivity of genes

611 controlling the variation for these traits.

612 A cluster of genes collocated on a 50 kb interval on chr10 contained genes highly-expressed in 613 tetraploid *S. miyabeana* parents and triploid progeny, but with very low expression in diploid parents. 614 These genes included duplicates, annotated as 3'-N-debenzoyl-2'-deoxytaxol N-benzoyltransferase 615 (DBTNBT, TAX10), which catalyzes the final step in biosynthesis of the anti-cancer compound Taxol (Walker et al. 2002). The constitutive high expression levels of DBTNBT in triploids and 616 617 tetraploid S. miyabeana parents could suggest involvement in the synthesis of an important defensive 618 compound in Salix. There are multiple copies of genes with this annotation in the Salix genome and a 619 number of them collocate with QTL for variation in tremuloidin on chr08, 10, 15, and 16 (Keefover-620 Ring *et al.*, in preparation). The abundance of tremuloidin or a related phenolic glycoside could be a 621 source of broad-spectrum pest and/or disease resistance conferred to triploid hybrids by S. miyabeana 622 parents, as all triploid genotypes in Carlson and Smart (2021) displayed field resistance to most 623 willow pests and pathogens, but not intra- and interspecific diploids. In a F₂ S. purpurea mapping 624 population, Carlson et al. (2019) identified QTL associated with many important traits for biomass 625 production. One QTL for willow leaf rust (Melampsora spp.) incidence was identified on chr10, and 626 DBTNBT genes described here fall within that confidence interval, meriting further investigation.

627 Nonadditive gene expression correlates with nonadditive phenotypic expression

One of the major challenges in molecular genetics is disentangling the relationship of transcriptomewide expression patterns to phenotypic effects (Birchler *et al.* 2007). Rather than concentrating on
the terminologies of heterosis models (e.g., dominance, overdominance, or pseudo-overdominance),
Birchler (2010) promoted a progression to a more nuanced quantitative and interactive or networkoriented framework for dissecting the phenomenon of heterosis. We utilized DNA-Seq and RNA-Seq

633 to unravel the underlying regulatory architecture of differential expression and improve our 634 understanding of heterosis in high-yielding triploid hybrids of willow. We showed that the proportion 635 of genes differentially expressed between diploid and tetraploid parents attributable to nonadditive 636 gene expression in the triploid hybrid (namely expression-level dominance) was positively correlated 637 with heterosis for biomass yield as well as biomass-related growth traits collected in the greenhouse 638 and in the field. In addition, we corroborate some of the key findings reported in Kremling et al. 639 (2018), for example that cumulative expression dysregulation is inversely correlated with heterosis 640 for biomass; and that individuals with greater absolute expression tended to display greater levels of 641 dysregulation.

642 Importantly, tetraploid parent dominant genes among triploid hybrids were enriched for the following 643 pathways: phenylpropanoid biosynthesis, cyanoamino acid metabolism, biosynthesis of secondary 644 metabolites, and starch and sucrose metabolism. Some of the most intriguing tetraploid parent 645 dominant genes identified in this study were those annotated as uridine diphosphate (UDP) 646 glycosyltransferases (UGTs). UGTs catalyze the transfer of sugars to a wide range of acceptor 647 molecules, including plant hormones, and all classes of plant secondary metabolites (Ross et al. 2001). Both tetraploid parent dominant genes and those genes positively correlated with biomass 648 649 yield and stem growth traits were enriched for the GO molecular function of catalytic activity. 650 Further analysis of these candidate genes and gene sets, with regards to their relevance in overlapping 651 support intervals from mapping experiments or regulatory patterns in other high-yielding triploid 652 hybrid individuals, will prove useful in the genetic improvement of shrub willow as a bioenergy crop.

653 Parent differentially expressed genes are most predictive of heterosis in F₁ hybrids

Here, we tested whether parent differentially expressed genes are predictive of heterosis in three

655 interspecific triploid F₁ Salix crosses, by comparing prediction accuracies of those gene sets to a

656 random sampling of genes as well as a selection of genes most highly expressed. While it would be 657 assumed that the most highly expressed genes would also be the most variable, these genes had the 658 lowest mean prediction accuracies for most traits and performed similarly as did a random sampling 659 of genes of equal size. Differentially expressed genes were most predictive of heterosis, and often 660 moreso using a reduced gene set of only common, overlapping differentially expressed genes among 661 family parent pairs. However, there were a handful of traits where prediction accuracies of all gene 662 sets were not considerably different from that of a random sample. This could mean that midparent 663 heterosis values are attributable to population structure and/or highly quantitative in nature, such that 664 a random gene sample is sufficient to illustrate the inherent transcriptome-wide differences between 665 parent species. Thus, strong family-specific responses to hybridization and transgressive phenotypic 666 expression would result in higher prediction accuracies for specific traits that have high among but 667 not within family variances. Yet, this was not often the case. The phenotypes used in this study were 668 from Carlson and Smart (2021), which reported both hybrid vigor and hybrid necrosis within all 669 intra- and interspecific F₁ families in field and greenhouse conditions. Midparent heterosis values 670 were normally distributed, besides traits with low variance, like later vegetative phenology dates. 671 Genes that were differentially expressed between the parents showed primarily additive and 672 dominant inheritance patterns among F_1 progeny, but segregated within families. Progeny individuals 673 with a greater frequency of genes with dominant expression patterns were more apt to display 674 heterosis for biomass growth. Further, genes that were differentially expressed between parents were 675 more predictive of heterosis in F_1 progeny compared to a random sampling of genes, irrespective of 676 expression level. These gene sets could be used to aid in the selection of genotypes or breeding 677 populations in the greenhouse by utilizing expression levels as an indicator of performance based on 678 prior related datasets. While only three species were assayed in this study, the inclusion of additional, 679 diverse parent species of varying heterozygosity would help determine if there is a core set of genes

680 and/or transcriptional regulators that, when differentially expressed, comprise a network predictive of 681 triploid heterosis in F₁ crosses.

682	This work highlights regulatory factors influencing differential expression, as well as genes and gene
683	sets predictive of heterosis for biomass growth, physiological, and wood chemical composition traits
684	collected in the greenhouse and field. It is vital that we apply our ever-improving understanding of
685	heterosis from studies of well-characterized diploid crop species, such as maize, tomato, and rice to
686	the improvement of yield and biomass quality of undomesticated crops, including willow and poplar,
687	which provide sustainable sources of lignocellulosic biomass for bioenergy, biofuels, and
688	bioproducts. Additional characterization of the genomic basis of heterosis in related genera or more
689	diverse Salix crosses will be valuable in understanding the broad evolutionary benefits of wide
690	hybridization and incidence of polyploidy.
691	DATA AVAILABILITY STATEMENT
692	The gene expression data (File S1), heterosis values (File S2), and gene-trait correlations (File S3)
693	used in this paper, as well as Supplementary Tables S1-S7 and Figures S1-S4 are available online:
694	www.github.com/Willowpedia/Carlson2021_TriploidHeterosis.
695	ACKNOWLEDGEMETS
696	We are grateful to Lauren Carlson and Dawn Fishback for their excellent technical assistance, and to
697	Dr. Fred Gouker and Dr. Eric Fabio for their assistance with harvest, processing, and tissue
698	collection.
699	FUNDING

This research was supported by U.S. Department of Energy Office of Science, Office of Biological
and Environmental Research, grant DE-SC0008375.
CONFLICTS OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

705 AUTHOR CONTRIBUTIONS

- 706 CHC wrote the manuscript, performed DNA and RNA isolations, phenotyping, bioinformatics, and
- statistics, YC and APC conducted sequencing and bioinformatics, CT and LBS devised the study and
- managed research programs. All authors participated in reviewing and editing the manuscript.

710	LITERATURE CITED
711	Auger, D. L., A. D. Gray, T. S. Ream, A. Kato, E. H. Coe et al., 2005 Nonadditive gene expression
712	in diploid and triploid hybrids of maize. Genetics 169: 389-397.
713	Baldauf, J. A., C. Marcon, A. Paschold, and F. Hochholdinger, 2016 Nonsyntenic genes drive tissue-
714	specific dynamics of differential, nonadditive, and allelic expression patterns in maize hybrids.
715	Plant Phys. 171: 1144-1155.
716	Bell, G. D., N. C. Kane, L. H. Rieseberg, and K. L. Adams, 2013 RNA-seq analysis of allele-specific
717	expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from
718	natural populations. Gen. Biol. Evol. 5: 1309-1323.
719	Berlin, S., U. Lagercrantz, S. von Arnold, T. Öst, and A. Rönnberg-Wästljung, 2010 High-density
720	linkage mapping and evolution of paralogs and orthologs in Salix and Populus. BMC Genomics
721	11: 129.
700	Direction I.A. D.L. August and N.C. Diddle, 2002 In second of the molecular basis of betanosis
722	Birchler, J. A., D. L. Auger, and N. C. Riddle, 2003 In search of the molecular basis of heterosis.
723	Plant Cell 15: 2236-2239.
724	Birchler, J. A., N. C. Riddle, D. L. Auger, and R. A. Veitia, 2005 Dosage balance in gene regulation:
725	biological implications. Trends Genet. 21: 219-226.
726	Birchler, J. A., and R. A. Veitia, 2007 The gene balance hypothesis: From classical genetics to
727	modern genomics. Plant Cell 19: 395-402.
728	Birchler, J.A., 2010 Heterosis. Plant Cell 22: 2105-2112.

- 729 Birchler, J. A., and R. A. Veitia, 2010 The gene balance hypothesis: Implications for gene regulation,
- 730 quantitative traits and evolution. New Phytol. 186: 54-62.
- 731 Cameron, K. D., I. S. Phillips, R. F. Kopp, T. A. Volk, C. A. Maynard et al., 2008 Quantitative
- genetics of traits indicative of biomass production and heterosis in 34 full-sib F₁ Salix
- 733 *eriocephala* families. BioEnergy Res. 1: 80-90.
- Carlson, C. H., and L. B. Smart, 2016 Electrical capacitance as a predictor of root dry weight in
 shrub willow (*Salix*; Salicaceae) parents and progeny. Appl. Plant Sci. 4: e1600031.
- 736 Carlson, C. H., Y. Choi, A. P. Chan, M. J. Serapiglia, C. D. Town et al., 2017 Dominance and sexual
- dimorphism pervade the *Salix purpurea* L. transcriptome. Gen. Biol. Evol. 9: 2377-2394.
- Carlson, C.H., F.E. Gouker, C. R. Crowell, L. M. Evans, S. P. DiFazio *et al.*, 2019 Joint linkage and
 association mapping of complex traits in shrub willow (*Salix purpurea* L.). Ann. Bot. 124: 701740 716.
- Carlson, C. H., and L. B. Smart, 2021 Heterosis for biomass-related traits in interspecific triploid
 hybrids of willow (*Salix* spp.). BioEnergy Res. doi: 10.1007/s12155-021-10305-0
- 743 Chen, C. Z., and C. S. Pikaard, 1997 Transcriptional analysis of nucleolar dominance in polyploid
- 744 plants: Biased expression/silencing of progenitor rRNA genes is developmentally regulated
- 745 in *Brassica*. Proc. Natl. Acad. Sci. U. S. A. 94: 3442-3447.
- Combes, M. C., Y. Hueber, A. Dereeper, S. Rialle, J. C. Herrera *et al.*, 2015 Regulatory divergence
 between parental alleles determines gene expression patterns in hybrids. Mol. Biol. Evol. 7:
- 748 1110-1121.

749	DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire et al., 2011 A framework for
750	variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43:
751	491-498.

- 752 Donoghue, M. T., A. Fort, R. Clifton, X. Zhang, P. C. McKeown, et al., 2014 C(m)CGG
- 753 methylation-independent parent-of-origin effects on genome-wide transcript levels in isogenic
- reciprocal F1 triploid plants. DNA Res. 21: 141–151.
- 755 East, E. M., 1936 Heterosis. Genetics 21: 375-397.
- 756 Fabio, E. S., T. A. Volk, R. O. Miller, M. J. Serapiglia, H. G. Gauch et al., 2016 Genotype x
- environment interactions analysis of North American shrub willow yield trials confirms superior

performance of triploid hybrids. Glob. Change Biol. Bioenergy 9: 445-459.

- 759 Fabio, E. S., A. R. Kemanian, F. Montes, R. O. Miller, and L. B. Smart, 2017 A mixed model
- approach for evaluating yield improvements in interspecific hybrids of shrub willow, a dedicated

761 bioenergy crop. Ind. Crop Prod. 96: 57-70.

- Friedman, J., T. Hastie, and R. Tibshirani, 2010 Regularization paths for generalized linear models
 via coordinate descent. J. Stat. Soft. 33: 1-22.
- Goff, S. A, 2011 A unifying theory for general multigenic heterosis: energy efficiency, protein
- metabolism, and implications for molecular breeding. New Phytol. 189: 923-37.
- Gouker, F. E., C. H. Carlson, J. Zou, L. M. Evans, C. R. Crowell *et al.*, 2021 Sexual dimorphism in
 the dioecious willow *Salix purpurea*. Am. J. Bot. 108: 1374-1387.

- Gunter, L. E., G. T. Roberts, K. Lee, F. W. Larimer, and G. A. Tuskan, 2003 The development of
- two flanking SCAR markers linked to a sex determination locus in *Salix viminalis* L. J. Hered.
 94: 185-189.
- Guo, M., and J. A. Birchler, 1994 Trans-acting dosage effects on the expression of model gene
- systems in maize aneuploids. Science 266: 1999-2002.
- Guo, M., D. Davis, and J. A. Birchler, 1996 Dosage effects on gene expression in a maize ploidy
 series. Genetics 142: 1349-1355.
- Guo, M., M. A. Rupe, C. Zinselmeier, J. Habben, B. A. Bowen et al., 2004 Allelic variation of gene

expression in maize hybrids. Plant Cell 16: 1707-1716.

- Guo, M., M. A. Rupe, X. Yang, O. Crasta, C. Zinselmeier *et al.*, 2006 Genome-wide transcript
 analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor. Appl.
 Genet. 113: 831-845.
- 780 Hallingbäck, H. R., J. Fogelqvist, S. J. Powers, J. Turrion-Gomez, R. Rossiter et al., 2016
- 781 Association mapping in *Salix viminalis* L. (Salicaceae) identification of candidate genes
- associated with growth and phenology. Glob. Change Biol. Bioenergy 8: 670-685.
- Hanley, S. J., and A. Karp, 2013 Genetic strategies for dissecting complex traits in biomass willows
 (*Salix* spp.). Tree Physiol. 34: 1167-1180.
- He, G.M., X. P. Zhu, A. A. Elling, L. B. Chen, X. F. Wang *et al.*, 2010. Global epigenetic and
 transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22: 1733.

- 788 Hyden, B., C. H. Carlson, F. E. Gouker, J. Schmutz, K. Barry et al., 2021 Integrative genomics
- reveals paths to sex dimorphism in *Salix purpurea* L. Hort. Res. 8: 170.
- Kopp, R. F., L. B. Smart, C. A. Maynard, J. G. Isebrands, G. A. Tuskan et al., 2001 The development
- 791 of improved willow clones for eastern North America. Forest. Chron. 77: 287-292.
- 792 Kremling, K. A. G., S. Y. Chen, M. H. Su, N. K. Lepak, C. Romay et al., 2018 Dysregulation of
- expression correlates with rare allele burden and fitness loss in maize. Nature 555: 520-523.
- 794 Kuzovkina, Y. A., M. Weih, M. A. Romero, J. Charles, S. Hust et al., 2008 Salix: Botany and global
- horticulture, pp. 447-489 in *Horticulture Reviews*, edited by J. Jannick. John Wiley & Sons, New
 Jersey.
- Landry, C. R., P. J. Wittkopp, C. H. Taubes, J. M. Ranz, A. G. Clark *et al.*, 2005 Compensatory *cis trans* evolution and the dysregulation of gene expression in interspecific hybrids of *Drosophila*.
 Genetics 171: 1813-1822.
- 800 Langfelder, P., and S. Horvath, 2008 WGCNA: An R package for weighted correlation network
- analysis. BMC Bioinform. 9: 559.
- Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform.
 Bioinform. 25: 1754-1760.
- 804 McManus, C. J., J. D. Coolon, M. O. Duff, J. Eipper-Mains, B. R. Graveley et al., 2010 Regulatory
- divergence in *Drosophila* revealed by mRNA-seq. Genome Res. 20: 816-825.
- 806 McMullen, M. D., S. Kresovich, H. S. Villeda, P. Bradbury, H. Li et al., 2009 Genetic properties of
- the maize nested association mapping population. Science 325: 737-740.

- Ni, Z. F., E. D. Kim, M. S. Ha, E. Lackey, J. X. Liu et al., 2009 Altered circadian rhythms regulate
- growth vigour in hybrids and allopolyploids. Nature 457: 327.
- 810 R Core Team, 2021 R: A language and environment for statistical computing. Vienna, Australia: R
- 811 Foundation for Statistical Computing.
- 812 Riddle, N. C., H. M. Jiang, L. L. An, R. W. Doerge, and J. A. Birchler, 2010 Gene expression
- analysis at the intersection of ploidy and hybridity in maize. Theor. Appl. Genet. 120: 341-353.
- 814 Ross, J., Y. Li, E. K. Lim, and D. J. Bowles, 2001 Higher plant glycosyltransferases. Genome Biol.
- 815 2: reviews3004.1-3004.6.
- 816 Robinson, M. D., D. J. McCarthy, and G. K. Smyth, 2010 edgeR: a Bioconductor package for
- 817 differential expression analysis of digital gene expression data. Bioinform. 26: 139-140.
- 818 Serapiglia, M. J., K. D. Cameron, A. J. Stipanovic, and L. B. Smart, 2012 Correlations of expression
- 819 of cell wall biosynthesis genes with variation in biomass composition in shrub willow (*Salix* spp.)
- biomass crops. Tree Genet. Genome 8: 775-788.
- Serapiglia, M. J., F. E. Gouker, J. F. Hart, F. Unda, S. D. Mansfield *et al.*, 2014a Ploidy level affects
 important biomass traits of novel shrub willow (*Salix*) hybrids. BioEnergy Res. 8: 259-269.
- 823 Serapiglia, M. J., F. E. Gouker, and L. B. Smart, 2014b Early selection of novel triploid hybrids of
- shrub willow with improved biomass yield relative to diploids. BMC Plant Biol. 14: 74.
- 825 Shi, X., D. W. K. Ng, C. Zhang, L. Comai, W. Ye et al., 2012 Cis- and trans-regulatory divergence
- between progenitor species determines gene-expression novelty in *Arabidopsis* allopolyploids.
- 827 Nat. Comm. 3: 950.

828	Smart, L. B., and K. D. Cameron, 2008 Genetic improvement of willow (Salix spp.) as a dedicated
829	bioenergy crop, pp. 377-396 in Genetic Improvement of Bioenergy Crops, edited by W.
830	Vermerris. Springer Science, New York.

831 Song, G., Z. Guo, Z. Liu, O. Cheng, X. Ou et al., 2013 Global RNA sequencing reveals that

- 832 genotype-dependent allele-specific expression contributes to differential expression in rice F₁
- 833 hybrids. BMC Plant Biol. 13: 221.

- 834 Springer, N. M., and R. M. Stupar, 2007 Allele-specific expression patterns reveal biases and
- 835 embryo-specific parent-of-origin effects in hybrid maize. Plant Cell 19: 2391-2402.
- 836 Stupar, R. M., and N. M. Springer, 2006 Cis-transcriptional variation in maize inbred lines B73 and

837 Mo17 leads to additive expression patterns in the F1 hybrid. Genetics 173: 2199-2210.

838 Stupar, R. M., P. J. Hermanson, and N. M. Springer, 2007 Nonadditive expression and parent-of-

839 origin effects identified by microarray and allele-specific expression profiling of maize

- 840 endosperm. Plant Physiol. 145: 411-425.
- 841 Stupar, R. M., J. M. Gardiner, A. G. Oldre, W. J. Haun, V. L. Chandler et al., 2008 Gene expression 842 analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol. 8: 33.
- 843 Swanson-Wagner, R. A., Y. Jia, R. DeCook, L. A. Borsuk, D. Nettleton et al., 2006 All possible
- 844 modes of gene action are observed in a global comparison of gene expression in a maize F_1
- 845 hybrid and its inbred parents. Proc. Nat. Acad. Sci. U. S. A. 103: 6805-6510.
- 846 Veitia, R. A., S. Bottani, and J. A. Birchler, 2008 Cellular reactions to gene dosage balance:
- 847 Genomic, transcriptomic and proteomic effects. Trends Genet. 24: 390-397.

- Walker, K., R. Long, and R. Croteau, 2002 The final acylation step in Taxol biosynthesis: Cloning of
 the taxoid C13-side-chain *N*-benzoyltransferase from *Taxus*. Proc. Nat. Acad. Sci. U. S. A. 99:
 9166-9171.
- 851 Wei, G., Y. Tao, G. Z. Liu, C. Chen, R. Y. Luo et al., 2009 A transcriptomic analysis of superhybrid
- rice LYP9 and its parents. Proc. Nat. Acad. Sci. U. S. A. 106: 7695-7701.
- Wittkopp, P. J., B. K. Haerum, and A. G. Clark, 2004 Evolutionary changes in *cis* and *trans* gene
 regulation. Nature 430: 85-88.
- 855 Wittkopp, P. J., B. K. Haerum, and A. G. Clark, 2008a Regulatory changes underlying expression
- differences within and between *Drosophila* species. Nat. Genet. 40: 346-350.
- 857 Wittkopp, P. J., B. K. Haerum, and A. G. Clark, 2008b Independent effects of cis- and trans-
- regulatory variation on gene expression in *Drosophila melanogaster*. Genetics 178: 1831-1835.
- 859 Wittkopp, P. J., and G. Kalay, 2011 Cis-regulatory elements: molecular mechanisms and
- 860 evolutionary processes underlying divergence. Nat. Rev. Genet. 13: 59-69.
- 861 Wray, G., 2007 Evolutionary significance of *cis*-regulatory mutations. Nat. Rev. Genet. 8: 206-216.
- Xu, C., Y. Bai, Y. Lin, N. Zhao, L. Hu *et al.*, 2014 Genome-wide disruption of gene expression in
 allopolyploids but not hybrids of rice subspecies. Mol. Biol. Evol. 31: 1066-1076.
- 864 Zhou, R., D. Macaya-Sanz, E. Rodgers-Melnick, C. H. Carlson, F. E. Gouker et al., 2018
- 865 Characterization of a large sexually dimorphic genome interval in *Salix purpurea* L. (Salicaceae).
- 866 Mol. Genet. Genom. 293: 1437-1452.

- 867 Zhuang, Y., and K. L. Adams, 2007 Extensive allelic variation in gene expression in *Populus* F₁
- 868 hybrids. Genetics 177: 1987-1996.

- 870
-
- 871
- 872

TABLES

873

874	Table 1. Number of differentially exp	pressed genes between	triploid family parents.
-----	---------------------------------------	-----------------------	--------------------------

-	Family	Female (P1) parent	Male (P2) parent	P1 > P2 (%)	P1 < P2 (%)	P1 = P2 (%)	Total
	415	94006 [2 <i>x</i>]	01-200-003 [4 <i>x</i>]	2,661 (10.7)	2,505 (10.1)	19,641 (79.2)	24,807
	423	07-MBG-5027 [2x]	01-200-003 [4 <i>x</i>]	2,469 (9.86)	3,054 (12.2)	19,519 (77.9)	25,042
	430	01-200-006 [4 <i>x</i>]	Jorr $[2x]$	2,467 (9.81)	2,688 (10.7)	19,993 (79.5)	25,148
875							
876							
877 878							
879 880							
881 882							
883 884							
885 886							
887 888							
889 890							
891 892							
893 894							
895 896							
897 898							
899 900							
901 902							
903 904							
905 906							
907 908							
909 910							
911 912							
913 914							

915 **Table 2.** Number of genes assigned to inheritance classifications in triploid F₁ progeny individuals

916 and their averages by family.

E	P1-	Р2-	Over-	Under-	A 11141	<u></u>
Family	dominant	dominant	dominant	dominant	Additive	Conserved
415 (S. purpur	ea × S. miyabean	a)				
415-018	236	960	0	28	3,010	20,573
415-020	376	1,109	0	31	2,786	20,505
415-023	336	1,024	0	23	2,842	20,582
415-031	343	1,209	1	40	2,760	20,454
415-038	308	1,048	0	35	2,887	20,529
415-054	414	945	0	20	2,882	20,546
415-073	326	1,038	0	34	2,864	20,545
415-074	280	869	0	18	3,034	20,606
415-082	334	1,208	2	29	2,702	20,532
415-257	331	1,298	2	44	2,633	20,499
Mean	328	1,071	1	30	2,840	20,537
423 (S. vimina)	lis × S. miyabeand	<i>a</i>)				
423-004	447	1,219	14	51	1,544	21,767
423-034	268	895	7	12	1,759	22,101
423-043	302	1,282	5	31	1,513	21,909
423-048	325	1,428	7	27	1,447	21,808
423-051	286	1,055	8	19	1,681	21,993
423-063	422	1,116	8	21	1,593	21,882
423-066	278	1,021	7	21	1,707	22,008
423-067	317	1,247	10	22	1,543	21,903
423-070	491	1,337	26	29	1,466	21,693
423-072	324	1,332	3	34	1,495	21,854
Mean	346	1,193	10	27	1,575	21,892

430 (S. miyabeana	$\times S.$	viminalis)
-------------------	-------------	------------

Mean	1,154	314	6	24	1,452	22,198
430-035	704	207	3	16	1,780	22,438
430-034	1,519	351	14	21	1,295	21,948
430-033	1,007	458	6	31	1,496	22,150
430-031	1,026	279	6	20	1,482	22,335
430-025	1,175	283	2	25	1,380	22,283
430-018	1,162	291	6	14	1,410	22,265
430-016	1,067	285	7	16	1,492	22,281
430-006	867	274	5	22	1,609	22,371
430-005	1,517	340	4	29	1,249	22,009
430-004	1,498	370	5	41	1,330	21,904

- ---

- 940 **Table 3.** Number of genes assigned to regulatory divergence classifications (FDR = 0.005) in triploid
- 941 F_1 individuals and their means by family.

Family	cis	trans	cis + trans	cis × trans	Compensatory	Ambiguous	Conserved
415 (S. purpure	a × S. miyal	peana)					
415-018	152	210	21	34	36	1,151	13,692
415-020	412	123	32	36	44	1,084	13,447
415-023	384	105	34	35	28	1,084	13,984
415-031	316	119	29	32	30	1,109	14,004
415-038	328	109	29	29	20	1,089	13,802
415-054	381	122	35	32	31	1,049	13,839
415-073	354	116	23	41	32	1,097	14,025
415-074	288	76	24	22	19	1,201	12,841
415-082	359	91	27	25	28	1,125	13,924
415-257	329	95	17	22	22	1,131	13,896
Mean	330	117	27	31	29	1,112	13,745
423 (S. viminali	is × S. miyab	eana)					
423-004	252	105	26	28	29	1,224	15,071
423-034	317	108	14	48	50	1,219	15,116
423-043	306	103	11	33	45	1,248	15,112
423-048	178	94	10	14	18	1,284	15,472
423-051	316	117	16	38	59	1,225	15,051
423-063	292	124	17	24	30	1,218	15,096
423-066	187	84	11	24	26	1,351	14,519
423-067	283	99	16	33	45	1,238	15,094
423-070	252	113	20	36	56	1,237	15,199
423-072	274	85	13	35	43	1,261	15,216
Mean	266	103	15	31	40	1,251	15,095

430 (S. miyabeana × S. viminalis)

Mean	218	100	14	30	44	1,130	15,176
430-035	144	96	10	17	24	1,187	14,399
430-034	206	94	15	19	40	1,126	15,301
430-033	265	107	14	47	79	1,126	14,884
430-031	174	105	5	22	26	1,171	15,366
430-025	180	79	12	16	30	1,182	15,615
430-018	252	95	14	42	62	1,118	15,210
430-016	245	117	24	34	47	1,086	15,501
430-006	219	115	13	27	31	1,095	15,298
430-005	203	77	10	32	37	1,110	15,386
430-004	295	111	21	47	63	1,095	14,797

955 **Table 4.** Pearson correlation coefficients (*r*) of heterosis for biomass-related traits and the mean

956	percentage of each locus in	n triploid progeny	v attributable to the res	pective diploid	parent (diploid %).

Гrait	Trait Description	Trait Class	Time ^a	Year 1 ^b	Yea	r 2
Field stud	y					
HT	Plot height	Stem growth	1, 2	-0.82 **	** -0.53	**
STN	Stem number	Stem growth	1	-0.41 *	-	n.s.
MDIA	Mean stem diameter	Stem growth	1, 2	-0.47 *	-0.40	*
DIA	Stem diameter	Stem growth	1, 2	-0.54 **	* -0.51	**
MSA	Mean stem area	Stem growth	1	-0.41 *	-	n.s
SA	Stem area	Stem growth	1, 2	-0.51 **	* -0.47	*
VOL	Stem volume	Stem growth	1, 2	-0.53 **	* -0.52	**
LFL	Leaf length	Leaf growth	2	- n.	s. 0.45	*
LFP	Leaf perimeter	Leaf growth	2	- n.	s. 0.5	**
LFR	Leaf ratio	Leaf growth	2	- n.	<i>s</i> . 0.42	*
LFF	Leaf shape factor	Leaf growth	2	- n.	<i>s</i> . –0.51	**
SLA	Specific leaf area	Leaf growth	1	0.58 **	*	n.s
CDIA	Basal crown diameter	Architecture	1, 2	-0.40 *	-0.65	**:
FOR M	Crown form	Architecture	1, 2	0.46 *	0.65	**:
DEN	Wood density	Composition	2	- n.	s0.41	*
DVOL	Wood density \times stem volume	Biomass	1, 2	-0.56 **	* -0.58	**
Greenhou	se study					
SDW	Stem dry mass	Biomass	70	-0.52 **	*	
LDW	Leaf dry mass	Biomass	70	-0.57 **	*	
RDW	Root dry mass	Biomass	70	-0.73 **	**	
AGB	Aboveground dry mass	Biomass	70	-0.56 **	*	
TBM	Total dry mass	Biomass	70	-0.65 **	**	
HT	Plot height	Stem growth	42, 21-56	-0.68 **	**	

MSL	Mean stem length	Stem growth	42, 21-56	-0.60	***
TSL	Total stem length	Stem growth	42, 21-56	-0.59	**
SA	Stem area	Stem growth	70	-0.48	**
VOL	Stem volume	Stem growth	70	-0.60	***
SLA	Specific leaf area	Leaf growth	70	0.31	*
PHE	Vegetative phenology	Leaf growth	11, 13	-0.52	**
SPAD	Chlorophyll content	Leaf growth	14	-0.39	*

^aTime in years since coppice (field study) or days after planting (greenhouse study).

^bAsterisks ***, **, * denote significant at *p*-value < 0.001, < 0.01, and < 0.05, respectively.

- /05

- ...

973

974

FIGURE CAPTIONS

975 Figure 1. Multi-dimensional scaling plot of library-normalized transcriptome-wide gene expression 976 of all triploid F₁ progeny individuals (families 415, 423, and 430) and their diploid (94006, 07-MBG-977 5027, and 'Jorr') and tetraploid (01-200-006 and 01-200-003) parents. Panel (A) PC1 versus PC2, 978 (B) PC1 versus PC3, (C) PC2 versus PC3, and (D) percent variance explained (% Ve) by the first 25 979 PCs. Euclidean distances on the two-dimensional plot approximate leading \log_2 fold-changes 980 between samples, using the top 500 genes with the largest standard deviations. Parents and progeny 981 libraries are colored according to the legend. 982 Figure 2. Superimposed dosage differential scatterplots of 10 individuals from each of the families 983 415, 423, and 430 (left to right, respectively). Each point depicts the log₂ ratio of the diploid parent 984 allele in the hybrid and the diploid parent allele in the parent against the log₂ ratio of the tetraploid 985 parent allele in the hybrid and the tetraploid parent allele in the parent. Points are colored according 986 to their regulatory assignment. Ellipses mask most of the distribution of $\log_2 dosage ratios$ (Pr = 1×10^{-5}), such that points sitting outside ellipses are extreme outliers from expected dosage. Dotted 987 988 lines at $\log_2(1/3) = -1.585$ and $\log_2(2/3) = -0.585$ represent distribution averages for diploid and 989 tetraploid ratios, which is where the average distribution of dosage ratios is expected to occur.

Figure 3. Manhattan plot (**A**) chromosome-wide differences of $\log_2 (P_{2X} / P_{4X})$ expression (parent – hybrid) between the family 415 parents (female diploid 94006 and male tetraploid 01-200-003) and the triploid hybrid 12X-415-031. Median parent – hybrid values are shown above chromosome identifiers (x-axis). The barplot (**B**) depicts the median parent – hybrid difference (dark grey bars, scale top x-axis) and the percent expression in the hybrid attributable to the diploid parent allele (white bars, scale lower x-axis) by chromosome (y-axis). The Manhattan plot in panel (**C**) and

barplot in panel (**D**), represent the same analyses, but between the family 423 parents (female diploid 07-MBG-5027 and male tetraploid 01-200-003) and the triploid hybrid 12X-423-070. Red text on xaxes in panels (**A**) and (**D**) correspond to red asterisks on y-axes in panels (**B**) and (**C**), which denote significant differences (Wilcoxon *p*-value < 1×10^{-16}).

1000 **Figure 4.** Correlations of nonadditive, regulatory divergent, and cumulative expression dysregulation

1001 with heterosis for (A) greenhouse and (B) field phenotypes (Table S6). Pearson correlation

1002 coefficients (r), positive correlations are illustrated by filled blue squares and negative correlations by

1003 filled-red squares. Non-significant correlations (p-value > 0.01) were left blank. Significance levels

1004 (*p*-values) were used to scale the area of each square, such that smaller squares represent correlation

1005 coefficients with lower significance and larger squares represent those with greater significance.

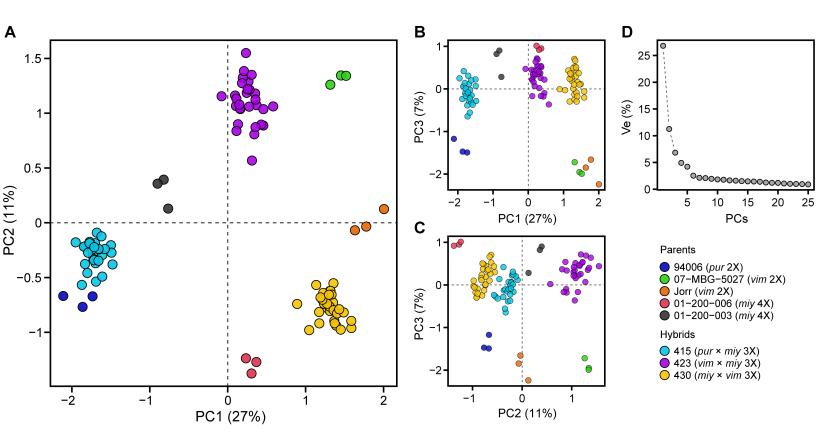
1006 Figure 5. Prediction accuracies (R^2) of heterosis values for (A) greenhouse and (B) field phenotypes

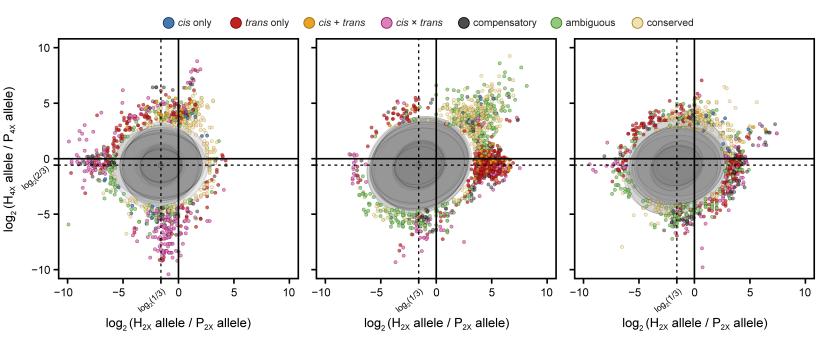
1007 using selected and random gene expression sets (Table S6). These four gene sets were: differentially

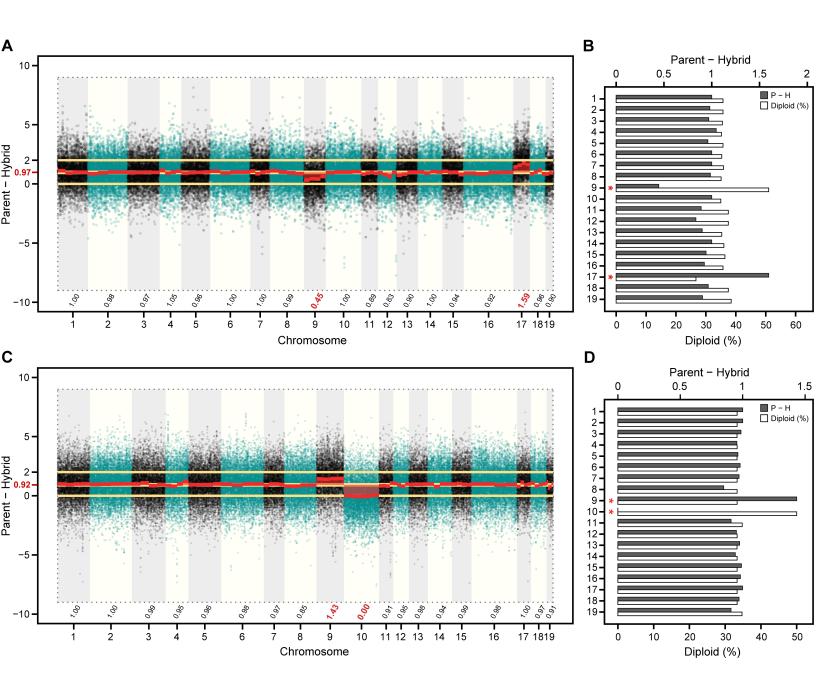
1008 expressed genes common among parent pairs (cyan, n = 379), differentially expressed genes in at

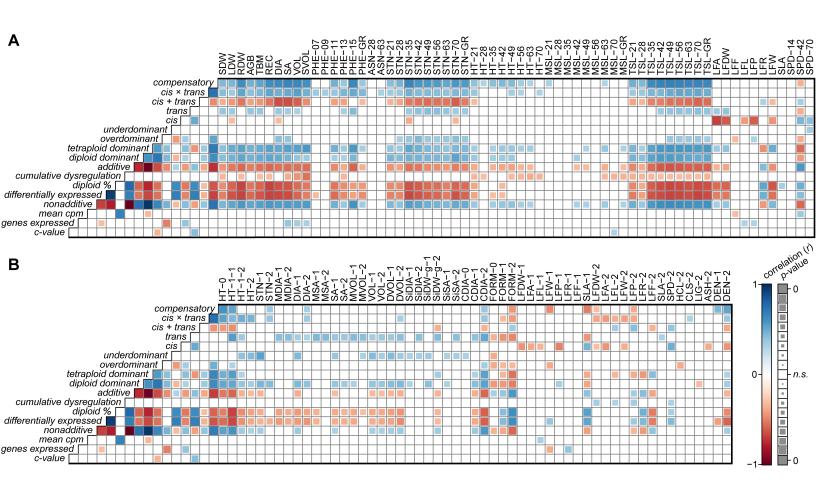
1009 least one parent pair (magenta, n = 4,978), the most highly expressed genes (dark grey, n = 5,000),

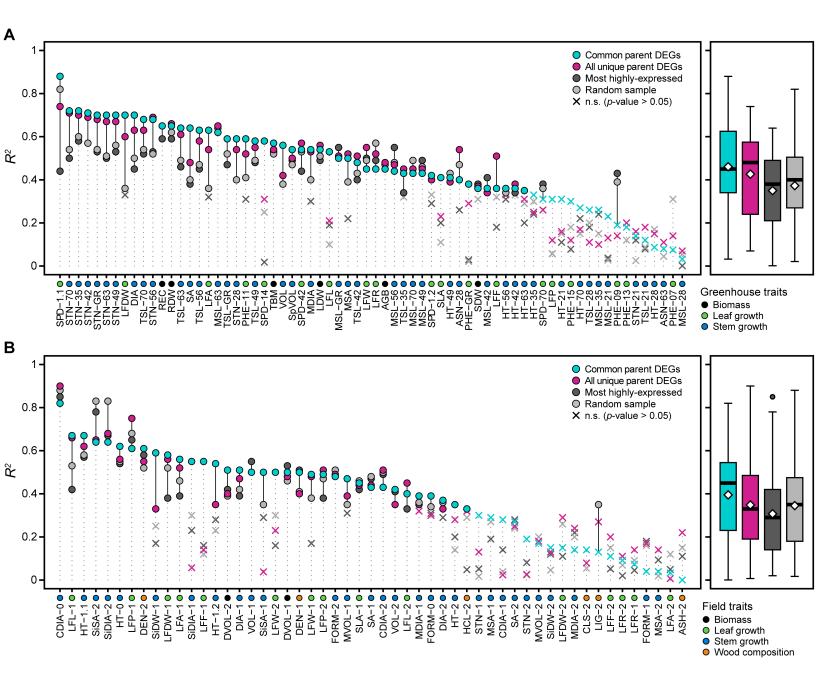
1010 and a random sampling of genes (light grey, n = 5,000). Boxplots to the right of each panel depict the


1011 distribution of prediction accuracies, with means represented as yellow diamond points. Traits are


1012 colored according to respective classes described in the lower left legend of each panel.


1013


1014


1015

