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Abstract5

Single cell RNA-sequencing (scRNA-seq) has very rapidly become the new workhorse6

of modern biology providing an unprecedented global view on cellular diversity and7

heterogeneity. In particular, the structure of gene-gene expression correlation con-8

tains information on the underlying gene regulatory networks. However, interpreta-9

tion of scRNA-seq data is challenging due to specific experimental error and biases10

that are unique to this kind of data including drop-out (or technical zeros). To deal11

with this problem several methods for imputation of zeros for scRNA-seq have been12

developed. However, it is not clear how these processing steps affect inference of13

genetic networks from single cell data. Here, we introduce Biomodelling.jl, a tool14

for generation of synthetic scRNA-seq data using multiscale modelling of stochastic15

gene regulatory networks in growing and dividing cells. Our tool produces realistic16

transcription data with a known ground truth network topology that can be used17

to benchmark different approaches for gene regulatory network inference. Using this18

tool we investigate the impact of different imputation methods on the performance of19

several network inference algorithms. Biomodelling.jl provides a versatile and useful20
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tool for future development and benchmarking of network inference approaches using21

scRNA-seq data.22
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1 Introduction23

A gene regulatory network (GRN) or genetic network (GN) refers to a collection of24

interacting genes in a cell which regulate each other indirectly through interaction25

of their protein expression products and regulatory parts of DNA and with other26

signalling systems in the cell, thereby governing the rates at which genes in the cell27

are transcribed into mRNA [1]. GRNs can be represented as graphs or networks,28

where the nodes of the network are genes and the edges between nodes represent gene29

interactions through which the products of one gene affect those of another. These30

interactions can be activating, with an increase in the expression of one leading to an31

increase in the other, or inhibiting, with an increase in one leading to a decrease in32

the other. Learning the structure and behaviour of GRNs is a fundamental problem33

in biology since many cellular processes, such as the cell cycle, cellular differentiation,34

and apoptosis are tightly controlled by GRNs. Hence the elucidation of these GRNs35

is of critical importance in many fields such as medicine and systems biology, however36

progress in deciphering them has been slow.37

In recent years, high-throughput sequencing methods have revolutionised the en-38

tire field of biology. The opportunity to study entire transcriptomes in great detail39

using RNA sequencing (RNA-seq) has catalysed many important discoveries and is40

now a routine method in biomedical research. However, RNA-seq is typically per-41

formed in “bulk”, and the data represent an average of gene expression patterns42

across thousands to millions of cells. This averaging obscures biologically relevant43

differences between cells and limits the possible downstream analyses. Single-cell44

RNA-seq (scRNA-seq) represents an approach to overcome this problem [2]. By iso-45

lating single cells, capturing their transcripts, and generating sequencing libraries in46

which the transcripts are mapped to individual cells, scRNA-seq allows assessment47

of fundamental biological properties of cell populations and biological systems at48

unprecedented resolution.49

3

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464275
http://creativecommons.org/licenses/by-nc/4.0/


Unlike traditional profiling methods that assess bulk populations, scRNA-seq50

offers an insight into biologically relevant cell-to-cell variations in gene expression.51

This includes understanding the tumour microenvironment [3] by revealing complex52

and rare populations [4], facilitating the tracking of trajectories of cell lineages [5]53

and providing insights into heterogeneity of stress response in microbes [6]. As we54

will explore in this paper, it can facilitate the inference of GRNs [7]. Nevertheless,55

many factors contribute to the rise of analysis challenges when dealing with scRNA-56

seq data, such factors can be divided into two main classes: technical variation57

(e.g. batch effect, cell specific capture efficiency, amplification bias and dropout58

events) and biological variation (e.g. stochastic gene expression, cell differentiation,59

environmental niche and cell cycle).60

Over the last decade many inference methods have been developed to harness61

the available high-throughput data such as the RNA-seq data to uncover regula-62

tory interactions in GRNs. GRN inference is usually performed on measurements of63

gene-gene correlation, mutual information or regression models that can be obtained64

from bulk RNA-seq data across multiple conditions or perturbations or scRNA-seq65

across many cells. If a co-expression between two genes is detected, while consid-66

ering the expression of all others genes (conditional information), these genes are67

said to have a regulatory relationship. Several methods have been developed specif-68

ically for scRNA-seq [8, 9] but some reviews and benchmarking studies have shown69

that both bulk and single cell methods perform poorly on scRNA-seq data [10, 11].70

For more accurate GRN reconstruction several authors have remarked that prepro-71

cessing the data is important, mostly due to the sparse nature of the data [12, 13].72

Among different preprocessing steps, normalisation and imputation is of particular73

importance. In order to distinguish between biological and technical zeros (drop-out74

events), several imputation methods have been developed [14, 15, 16, 17, 18, 19] and75

compared in benchmark studies [20, 21]. The imputation step is often integrated76
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with normalisation and other downstream analysis as implemented in these methods77

[22, 19]. However, how imputation affects gene-gene correlations is not entirely clear78

although there have been some studies that have suggested that performing impu-79

tation improves the estimation of gene-gene correlations [18, 23]. So, there seems80

to be some potential for using imputation methods to improve GRN inference from81

scRNA-seq data.82

While many methods have been developed for inference of gene regulatory net-83

works, evaluating the performance of these methods remains challenging due to lack84

of appropriate benchmarks. In general, there are three main strategies to gener-85

ate benchmark networks. A first strategy consists in evaluating network predictions86

made by reverse engineering algorithms on well-studied in vivo pathways from model87

organisms [24, 25]. However, those networks are incomplete maps of the physical in-88

teractions in the cell that are responsible for cellular functions and using them as89

benchmarks will inevitably lead to errors when evaluating network predictions. An-90

other strategy consists of genetically engineering synthetic in vivo networks [26, 27].91

The main drawback of this strategy is that only a few small networks are available.92

The third strategy consists of developing in silico gene regulatory networks that can93

be simulated to produce synthetic gene expression data that can be used in bench-94

marking. The simulation of in silico networks has the advantages of being fast, easily95

reproducible and less expensive than biological experiments and the ground truth is96

exactly known. However, for the synthetic data to be useful, it should have a realis-97

tic assumptions and statistical properties for the underlying GRN topology and gene98

expression.99

Benchmark synthetic data generators such as “artificial gene networks” [28] aim100

to produce in silico gene networks exhibiting topological properties observed in bio-101

logical networks using Erdös-Renyi, Watts-Strogatz (small-world) or Albert-Barabási102

(scale-free) random graph models. Other approaches have been taken in SynTReN [29]103
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and [30] where general network structures were created by extracting parts of known104

in vivo regulatory network structures. These approaches have the advantage of cap-105

turing several structural properties observed in in vivo network structures. In order106

to produce temporal gene expression data, the generated structures are often made107

using dynamical models of gene regulation. Systems of non-linear ordinary differen-108

tial equations (ODEs) are widely used [31]. As current high-throughput technologies109

that simultaneously monitor protein expression are limited, some benchmark gen-110

erators consider mRNA as a proxy for protein expression and thus do not model111

translation independently of transcription [30, 29]. Protein expression in general112

does not correlate well with mRNA expression in many biological systems [32]. To113

overcome this, several benchmark synthetic data generators have accounted for tran-114

scription and translation explicitly such as RENCO [33], GeNGe [34] and GREN-115

DEL [35]. GeneNetWeaver has become a commonly used tool in recent years to116

generate gene expression data and GRN model evaluations [36]. For instance, it was117

selected to generate the “gold standard” networks for the DREAM4 and DREAM5118

network inference challenges, as well as other publications that conducted compar-119

isons of network modelling approaches [37, 38, 39]. GeneNetWeaver uses chemical120

langevin equations to simulate stochastic gene expression and allows for both inde-121

pendent (‘additive’) and synergistic (‘multiplicative’) interactions. Among methods122

that creates statistically realistic synthetic scRNA-seq data generation method is123

splatter [40]. Splatter implements six different simulation models ranging from a124

simple negative Binomial model to a more sophisticated gamma-Poisson hierarchical125

model, however, it assumes no correlation in expression among different genes. Fi-126

nally, MeSCoT was released recently which is a synthetic data generator developed127

in MATLAB for the detailed simulation of genes’ regulatory interactions for variable128

genomic architectures which can also produce a complete set of transcriptional and129

translational data together with simulated quantitative trait values [41]. So, while130
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there are several in silico methods available for simulating gene expression data,131

currently no method produces synthetic scRNA-seq data with realistic expression132

statistics as expected by stochastic gene expression and scRNA-seq protocols.133

In this paper, we propose a novel in silico tool written purely in Julia [42] to gen-134

erate synthetic scRNA-seq data suitable for benchmarking GRN inference methods,135

Biomodelling.jl*1. Our method uses an agent-based method to couple stochastic sim-136

ulations of realistic GRNs in a population of growing and dividing cells. We couple137

cell size to transcription as has recently been observed in different cellular systems138

[43] and include translation, binomial partitioning of molecules upon cell division and139

capture efficiency of the scRNA-seq steps. Here, we used Biomodelling.jl to system-140

atically benchmark the impact of different imputation methods on the performance141

of network inference algorithms.142

The format of this paper is as follows. We begin in section 2 by introducing our143

method of synthetic data generation as well as the different imputation methods and144

network inference methods we wish to assess. We then begin section 3 by presenting145

a toy 5 gene example as an exemplar of our method and use it to illustrate the central146

problem of overcoming the negative impact of downsampling on network inference.147

Next we show that the network inference methods perform better on sparser data148

before going onto show how the different imputation methods and network inference149

methods perform using realistic scale-free topologies. We show that multiplicative150

regulation is the most challenging for accurate network inference. We then show that151

the best choice of imputation method for accurate inference depends on the choice152

of inference method. Finally we show that the number of combination reactions153

(where a gene has multiple regulators) considered rather than the size of the network154

determines overall performance. We end with a discussion in section 4 and make some155

recommendations for how best to pre-process scRNA-seq data for network inference.156

1*https://github.com/ayoublasri/Biomodelling.jl
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2 Methods157

2.1 Biomodelling.jl158

Biomodelling.jl is a tool for multiscale agent-based modelling of scRNA-seq data that159

simulates stochastic gene expression in a population of single cells that are growing160

and dividing, written in the Julia programming language. The unique feature of161

Biomodelling.jl is that it can generate synthetic scRNA-seq from a known underly-162

ing gene regulatory network including global transcription-cell volume relationships.163

In Figure 1, we describe the main steps in order to generate synthetic ground truth164

(GT) data using Biomodelling.jl, which is available to the community as open source165

software. The gene-gene correlation that is exhibited in the Biomodelling.jl synthetic166

data provides benchmarking data for testing the efficiency of network inference meth-167

ods. Details about each step are given in the following sections.168

2.1.1 Network topology, sparsity and simulation169

In this study, we considered two different types of topology. The first one consists170

of random connections allowing genes to be regulated by at most one other gene.171

This topology is referred to in the manuscript as random one regulation (ROR). The172

second topology considered in this study is a scale free (SF) network topology [44].173

Growing evidence has suggested that gene regulatory networks follow a scale free174

topology [45, 46]. The function static scale free() from LightsGraphs Julia Package175

(v1.3.5) was used to generate SF topologies. Introducing this more realistic topology176

means that genes may be regulated by multiple other genes; we allowed for at most177

four regulators for each gene. In this study, 20-gene and 50-gene regulatory networks178

were considered.179

GRNs are known to be sparse [47, 48, 49] and characterised by a relatively small180

fraction of regulatory links between genes. In order to evaluate the effect of network181
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Figure 1: Biomodelling.jl workflow: (1) defining the gene regulatory network topol-
ogy, interactions and parameters related to gene expression (2) choosing the number
of cells and parameters related to cell population such as cell volume control and
division noise, (3) couple a stochastic simulation algorithm of biochemical reactions
with cell growth, size and division and simulate the cell population, (4) track genes
or cells of interest and finally (5) save and export the data in a matrix similar to
scRNA-seq data format. (I) synthetic data are generated using Biomodelling.jl using
different sparsities as described in the Methods section 2.1.1, (II) the obtained data
are downsampled, then imputation and network inference are performed as described
in Methods section 2.3 and 2.4, finally (III) network inference algorithms predictions
are compared with the GT network using metrics presented in Methods section 2.5.
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sparsity on the performance of inference methods, we considered different levels of182

sparsity in the simulated networks defined as percentages of all possible links in183

the GRN excluding self-regulation. Specifically, we used sparsities corresponding to184

2.5%, 5% and 10% of possible connections for 20-genes network and 1%, 2% and185

4% for 50-genes network. We note that by choosing these sparsity levels we make186

sure that the percentage of possible connections is kept the same for both networks.187

Though the graphs generated were directed, in this study we only used undirected188

information since the network inference methods only outputted this information189

(apart from GENIE3). As an example, 2.5% of possible links in a 20-gene network190

corresponds to 5 links that were simulated using the two topologies mentioned in the191

previous paragraph.192

Several chemical reactions stochastic simulation methods have been implemented

in Biomodelling.jl, the stochastic simulation algorithm (SSA), tau leaping, adaptive

tau leaping and non negative poisson tau leaping [50, 51, 52]. For the purpose of this

paper, only tau leaping or SSA have been used to simulate the chemical reactions.

Our single cell level model simulates gene transcription at a rate which depends on

the cell volume, with the transcription rate of a gene in cell i being

k1i = k1Vi

where Vi is the volume of cell i and k1 is the basal transcription rate. This kind193

of transcription scaling has been reported in mammalian and yeast cells [43, 53, 8],194

where the authors showed that the numbers of constitutive and inducible mRNAs195

scale with cell size. We also simulate translation, mRNA decay, protein decay, acti-196

vation and inhibition as shown in Figure 1 (I).197
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2.1.2 Types of reactions simulated198

Activation and inhibition reactions were modelled as Hill functions fact and finh

respectively and defined as follows for a given activator/inhibitor X

fact(X) =
Xn

Kn +Xn
,

finh(X) =
Kn

Kn +Xn
,

with n represents the Hill coefficient and K being the microscopic dissociation con-199

stant. If gene Y is activated or inhibited by gene X its transcription rate becomes200

k1i = k1Vifi(X) for i = act or inh. In the case where a gene X is regulated by multiple201

genes, we considered two scenarios, the first one is independent or additive (where202

we sum the regulators’ Hill functions) and the second scenario is synergistic or multi-203

plicative (where we take the product of the regulators’ Hill functions). By allowing a204

gene to have multiple regulators, we considered three types of combination reactions205

which we refer to as combined activation, combined inhibition and combined action.206

Combined activation refers to the case where all regulators are activating the gene,207

combined inhibition refers to the case where all regulators are inhibiting the gene208

and combined action refers to the case where some of the regulators activate the gene209

and some of them inhibit the gene.210

For example, if Y activates X and Z inhibits X then the transcription rate of X

becomes in the multiplicative case (multiplicative combined action)

k1i = k1Vifact(Y )finh(Z),

or can be written for the additive case (additive combined action) as follow

k1i = k1Vi(fact(Y ) + finh(Z)).
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2.2 Parameters for mammalian cells211

In [54], the authors simultaneously measured absolute mRNA and protein abun-212

dance and turnover by parallel metabolic pulse labelling for more than 5000 genes in213

mammalian cells and reported data for protein and mRNA numbers as well as half-214

lives, transcription and translation rates. To select realistic parameters for accurate215

GRN simulations, we fitted multivariate Log Normal distributions to data extracted216

from the aforementioned study using maximum likelihood estimation technique and217

presented the results in Figure 2. Samples of Protein decay, transcription and trans-218

lation rates are presented in Figure 2 panels (B), (C) and (D) respectively. We found219

little correlation between any of the parameters and that the marginal distributions220

are positively skewed meaning that the majority of the data consists of lower values221

and the majority of outliers are higher values. To avoid computations taking too222

long, we also excluded parameter sets that resulted in protein numbers greater than223

100,000.224

Furthermore, we constrained the choice of the remaining parameters to be realistic225

and in accordance with experiments. Cell numbers were uniformly sampled from226

[2000, 3000] which is consistent with typical scRNA-seq experiments [55]. We note227

that breakthroughs in technology have allowed even higher numbers of cells to be228

studied [56]. The cell growth rate was fixed to correspond to a 50 hours doubling229

time, though we note that we tried a range of doubling times between 24 and 50230

hours, which is consistent with mammalian cell doubling times but did not find any231

consequence for network inference performance. The Hill coefficient n was sampled232

from a log uniform distribution with lower bound 1 and upper bound 10 and the233

microscopic dissociation constant K was chosen to be proportional to the mean value234

of the steady-state of the regulator in absence of regulation. Finally, we note that235

the exponent of the power-law degree distribution was sampled from the uniform236

distribution with bounds [2, 3], which is consistent with [57]. For reproducibility237
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Figure 2: Density plots, scatter plots and correlations of 1000 parameter sets sampled
from a multivariate normal distribution fitted to experimental data [54]. Diagonals
show distributions of protein decay rates, mRNA decay rates, transcription and
translation rates respectively. Lower left scatter plots show relationships between
parameter values and upper right plots show Pearson correlation values.

purposes, a list of the 100 parameter sets used can be found here* 2.238

2*https://github.com/ayoublasri/Biomodelling.jl/tree/master/parameters
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2.2.1 Cell population: growth, division and partitioning239

Without loss of generality, cells were assumed to grow from approximately V =240

1 at birth to V = 2 at division with cell growth rates chosen to correspond to241

biologically feasible doubling times as explained above. Cell growth was modelled to242

be exponential243

dVi(t)

dt
= µi(t)Vi(t), (1)

where µi(t) is the growth rate at time t in cell i.244

To model division noise we adopt the approach of [58, 59] where the final volume245

of the cell at generation n was found to follow a noisy linear map, i.e., the final246

volume VF of a given cell was assumed to follow247

VF = aVI + b+ η1, (2)

where VI is the initial volume of the cell, a and b are linear function parameters, we248

note that a and b have the same value for all cells, and η1 is the final volume noise.249

The value of parameter a defines the size control strategy of the cell. It is known that250

many cell types, including mammalian cells show a so-called adder behavior giving251

a value of a = 1 [60]. For simplicity, η1 was set to 0 in this study. Given the value252

of a and the birth size of about V = 1, the value of b is also set to be 1.253

A dividing cell of volume VF is assumed to divide into two daughter cells with254

volumes VI1 and VI2 defined by255

VI1 = VF × η2, (3)

and256

VI2 = VF × (1− η2), (4)

where η2 represents division noise and is sampled from N (0.5, σ2). We assumed the257

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464275
http://creativecommons.org/licenses/by-nc/4.0/


contents of the cell are binomially distributed (using η2) between daughter cells upon258

division [61]. We note that η1 and η2 embed both intracellular stochastic phenomena259

and also the stochastic influence of extracellular signals. As in [62, 63, 64], in order260

to keep the population size capped, after a cell division event the new offspring261

displaces another cell in the population picked at random. Simulating a capped262

sized population is computationally cheaper than simulating a growing population263

and leads to more accurate results than using an isolated lineage based approach264

[65].265

To couple the reactions with the exponential growth equation, we ran the stochas-266

tic simulation algorithm for a fixed time step before updating the volumes of cells267

and checking for cell division. This was typically set to τ = 0.1 h but we note that we268

tried smaller time steps as far as τ = 0.01 h and found no observable consequences269

on the simulation output.270

2.2.2 Genes tracking and ground truth data271

Following the modelling approach described above, genes in the regulatory network272

were tracked for a given simulation time and data were saved in typical scRNA-seq273

format (where rows represent genes and columns represent cells). We refer to these274

data as ground truth (GT) data. In addition, our modelling approach does not only275

simulate gene expression, it also tracks protein levels in a single cell and stores cell276

volumes (which are used in data scaling).277

2.3 Downsampling, scaling and imputation278

Given a GT data set and in order to mimic scRNA-seq experiment, as in [19, 66]279

we assume that the number of transcripts observed in a cell j follows a Binomial280

model with probability βj (the cell’s specific capture efficiency), which represents281

the probability of original transcripts in a cell being captured by the sequencing282
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method [66]. In order to simulate downsampling of GT data, the cells’ specific283

capture efficiencies were obtained from a log-normal distribution centred in β, where284

β ∈ {0.03, 0.1, 0.2, 0.3, 0.5}, with a variance set to 0.2, this is consistent with values285

reported in [67]. The downsampled data from a given capture efficiency β is referred286

to as noisy data (ND-β).287

In order to perform data scaling, we define the scaling factor (θ) for a cell i as

follows

θi = βi ×
Vi
Vmax

,

where Vi is cell i volume, Vmax is the maximum volume in the cell population and288

βi is cell i capture efficiency. The scaled data (SD-β) are obtained by dividing the289

noisy data by the cell’s specific scaling factor. Our scaling approach is similar to a290

global-scaling normalisation strategy, where the expected value of the read count for291

a gene in a cell is proportional to a gene specific expression level and a cell specific292

scaling factor [68]. The cell specific scaling factor in the data will be proportional to293

the cell size and cell specific capture efficiency, which motivates the form chosen for294

θ. In the following we describe, briefly, the imputation methods that are considered295

in this study.296

bayNorm [19] is a Bayesian approach to perform imputation. bayNorm gener-297

ates for each gene in each cell a posterior distribution of original expression counts,298

given the observed scRNA-seq read count for that gene and the cell specific capture299

efficiency assuming a binomial model for transcript capture in the RNA-seq process.300

The resulting posterior distribution of the original counts relised on emperical based301

method of estimating a prior on each gene by pulling information across all cells. To302

perform imputation on ND-β, we used bayNorm() function from bayNorm R package303

(v1.6.0). The output data are referred to as BD-β.304

MAGIC [18] shares information across similar cells, via data diffusion, to fill in305

missing transcripts. This is achieved in four steps: (i) building a nearest neighbor306
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graph based on cell–cell expression distance, (ii) defining an affinity matrix by ap-307

plying a Gaussian kernel on the principal components of the graph, (iii) applying a308

diffusion process on the similarity matrix to obtain a smoothed affinity matrix, (vi)309

computing the new expression of each gene as a linear combination of the same ex-310

pression in similar cells, weighted by the similarity strength obtained in the previous311

steps. To perform imputation on ND-β, we used magic() function from Rmagic R312

package (v2.0.3). The output data are referred to as MD-β.313

SAVER [14] pools information across genes and cells to provide accurate expres-314

sion estimates for all genes and impute the missing values. SAVER assumes that the315

count of each gene in each cell follows a Poisson–gamma distribution mixture. The316

Poisson distribution approximates the technical noise, whereas the uncertainty in the317

true expression is modelled as a gamma distribution. The recovered expression is a318

weighted average of the normalized observed counts and the predicted true counts.319

To perform imputation on ND-β, we used saver() function from SAVER R package320

(v1.1.2). The output data are referred to as SAD-β.321

We refer the reader to [69], a recently published review and benchmarking study322

that assesses performance, the code quality and the computational time for the above323

mentioned methods.324

2.4 Network inference algorithms325

We consider four different methods: Information Measurement (PIDC) [9], Emperical326

Bayes (EB) [70], Context Likelihood of Relatedness (CLR) [9], and GENIE3 [71],327

see Figure 1(II). The overall workflow of the aforementioned methods focuses on328

modelling the relationship between genes using different correlation metrics.329

PIDC and EB were developed by the same authors with EB presented as an330

improvement of PIDC. Both methods use partial information decomposition (PID)331

as follows: (i) compute the mutual information between two genes X and Y and332
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the unique mutual information between X and Y given a third gene Z, (ii) define333

the proportional unique contribution (PUC) between two genes X and Y as the334

sum of the ratio of unique to mutual information calculated using every other gene335

Z in a network, (iii) an empirical probability distribution is estimated from the336

PUC scores for each gene, and the confidence of an edge between a pair of genes is337

given . EB provides an additional step to smooth the empirical distributions using338

a regression-based mode-matching method. The methods output a ranked list of339

undirected edges using the confidence scores obtained. The Julia implementation340

of these methods was used: InformationMeasures.jl (v0.3.1), NetworkInference.jl341

(v0.1.1) and EmpiricalBayes.jl342

CLR computes the mutual information between two genes and calculates the sta-343

tistical likelihood of each mutual information value within its network context. Then,344

the pairwise genes mutual information is compared to the background distribution of345

mutual information scores for all possible gene pairs. The most probable interactions346

are those whose mutual information scores stand significantly above the background347

distribution of mutual information scores. The Julia implementation of this method348

in the following packages InformationMeasures.jl (v0.3.1) and NetworkInference.jl349

(v0.1.1) was used.350

Originally developed for bulk RNA-seq and best performer in the Dialogue for351

Reverse Engineering Assessments and Methods (DREAM4) challenge, GENIE3 is352

widely applied to scRNA-seq. Unlike many methods in the same category that look353

at gene pairs or gene triplets, GENIE3 takes into account the interaction of an arbi-354

trary number of genes in one calculation and can capture the nonlinear dependencies355

between genes by decomposing the prediction of a regulatory network between p356

genes into p different regression problems. Although GENIE3 can return a directed357

network, for the sake of comparison with the other methods, we considered the358

undirected network option. We used GENIE() function from GENIE3 R package359
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(v1.10.0).360

As control we also report random inference (RAND), which returns for a given361

sparsity random links in the GRN. We note that in this systematic study we matched362

the network’s sparsity to the inference method algorithms’ threshold, meaning that363

if for a given sparsity the GT network has N links, we chose the inference algorithms’364

threshold that returns the top N predicted links.365

We refer the reader to [11], a recently published review that assesses the code366

implementation and usability and the computational time of the above mentioned367

methods, with the exception of CLR.368

2.5 Network inference performance evaluation369

To evaluate the network inference algorithms performance, we consider two metrics:370

Area Under Receiver Operating Characteristic curve (AUROC) [72] and Area Under371

Precision-Recall curve (AUPR) [73], see Figure 1(III).372

The ROC curve is defined as a plot of False Positive Rate (FPR) versus True

Positive Rate (TPR) (also known as sensitivity or recall) which are given in function

of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative

(FN) as follow

FPR =
FP

FP + TN
,

TPR =
TP

TP + FN
.

The AUROC is then easily obtained from the ROC curve, many options are available,373

we used AUC() function from DescTools R package (v0.99.39) that takes as input the374

ROC curve and the method to compute the area, we chose ’trapezoid’. AUROC is375

characterised by the absence of bias toward models that perform well on the minority376

class at the expense of the majority class, in other words AUROC does not favour377

methods that are good at identifying interactions between genes while failing to378

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464275
http://creativecommons.org/licenses/by-nc/4.0/


detect the absence of interactions [74].379

The PR curve is defined as a plot of TPR against Precision (P) which is given as

P =
TP

TP + FP
.

The AUPR is obtained from PR curve using AUC() function as described above.380

Using AUPR we are able to assess the performance of a method on the minority381

class, in other words, since the gene regulatory networks are sparse, we can assess382

the performance of a given method on how it does in detecting existing interactions383

between genes [74].384
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3 Results385

3.1 Synthetic scRNA-seq data for a toy example: unscaled386

expression leads to uniformly high and positive correla-387

tions388

We used the pipeline described in Figure 1 to investigate different scenarios for389

network inference. We begin in this section by presenting a toy example using our390

method of synthetic scRNA-seq data generation (Figure 1). This example serves to391

show typical output of our simulation pipeline and also illustrates the difficulties of392

performing accurate network inference using scRNA-seq data.393

While we only make use of the final time point for mRNA and cell volume in this394

study (as scRNA-seq is obtained in a time snap-shot), we present plots of the full395

volume time series for a single cell along with the corresponding levels of mRNA and396

protein in Figure 3A-C. For initial conditions we chose the steady state mean value397

of mRNA and protein species in the absence of any regulation. Furthermore, by398

using only the final time point for network inference, we ensured all simulated cells399

are uncorrelated from the initial condition. As we made clear in Methods section 2.2400

our choice of parameters such as cell doubling time, transcription, translation and401

decay rates keep the mRNA and protein numbers within biologically feasible levels402

for mammalian cells. However, we note that our approach can also be adapted for403

any other cell type by using different parameterisations.404

In Figure 3D, we show gene-gene correlations computed from the cell population405

at the final time point across the 5 genes. Strikingly we found that without scaling406

the raw mRNA copy numbers by cell volume, gene correlations are dominated by407

cell volume (see Figure 3D). This is because gene expression scales with cell size and408

therefore mRNA levels for different genes therefore have a global positive correlation409

due to cell size scaling. Hence any correlations due to activations or inhibitions are410
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obscured by the cells position in the cell cycle. This information can be retrieved by411

dividing the raw mRNA copy numbers by the cell volumes (as shown in Figure 3E).412

Inspecting Figure 3E we can observe a strong positive correlation between gene 1413

and gene 2 and a strong negative correlation between gene 3 and gene 4. This is414

consistent with what we would expect from the ground truth network (illustrated in415

Figure 3G). While, most scRNA-seq protocols do not measure cell size (see [6] for an416

exception), one can correct for cell size scaling in real scRNA-seq data by normalising417

by total transcript counts per cell, which is expected to scale with cell size [6].418

Drop-out events are one of the most important features of single cell data. While419

their technical origin is hotly debated, the evidence for zero-inflation has been ques-420

tioned as the statistics of drop-out events are consistent with a simple model of421

binomial capture of original transcripts during scRNA-seq protocols [19]. To investi-422

age the effect of drop-outs, We next artificially induced drop-out events to the final423

mRNA data (before scaling by final cell volume). We downsampled our data using424

a Binomial distribution with capture efficiency of 20%, see Methods section 2.3 for425

more details. This approach is similar to the method used to generate single cell sim-426

ulation data for network evaluation that was published recently [75]. As shown in427

Figure 3F downsampling in this manner removes a significant level of the correlation428

information.429

Finally, we present two network inference results. In Figure 3(H) we show the430

network inferred using the PIDC algorithm with the final mRNA data divided by431

final cell volume as input. We selected the threshold parameter to be equal to the432

sparsity of the network (as we do for the rest of the results presented in this paper).433

We show in Supplemental Figure 1 that this is the most appropriate parameter434

choice. By making this choice we focus our study on the impact of imputation on435

inference accuracy rather than the choice of inference algorithm parameters. We436

note that in applications to real data, of course the true sparsity will not be known437
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and a best guess should be used. For this simple toy example, we can see that438

PIDC identified the whole network correctly (comparing Figure 3(H) and (I)). We439

note that this network is not representative of a real biological network due to its440

small size. However as shown in Figure 3(I) even in this simple case downsampling441

the data affects the results significantly and PIDC no longer predicts any correct442

links. Hence, we observe that downsampling of the data that is associated with low443

capture efficiency and drop-out in scRNA-seq data represents a challenge for network444

inference. In the following, we investigate this issue systematically in bigger networks445

and ask if imputation methods could help to resolve this challenge.446
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Figure 3: Synthetic scRNA-seq data generated for 5 gene network example. The
network was simulated using 500 cells over a 500 hour time period with parameters
sampled as described in Methods section 2.2. (A) Plot of the volume time series
of a single representative cell. Early divisions are due to replacement in order to
keep number of tracked cells constant. (B) Plot of corresponding mRNA time series
for the 5 genes modelled. (C) Plot of corresponding protein time series for the 5
genes modelled. (D) Heatmap of mRNA pearson correlations taken from final time
point. (E) Heatmap of mRNA pearson correlations scaled by cell volume taken from
final time point. (F) Heatmap of mRNA pearson correlations scaled by cell volume
and subsequently downsampled using Binomial downsampling with 20% capture ef-
ficiency. (G) Graph of ground truth network where a blue arrow represents a link
with an activating reaction and an orange arrow represents a link an inhibiting reac-
tion. (H) Graph of inferred reaction network obtained from PIDC algorithm using
mRNA data scaled by cell volume at final time point as input. Predicted links are
represented by solid black lines. (I) Graph of inferred reaction network obtained
from PIDC algorithm using mRNA data scaled by cell volume at final time point
and downsampled (using Binomial downsampling with 20% capture efficiency) as
input. Predicted links are represented by solid black lines.
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3.2 Network inference algorithms tend to perform better for447

sparser networks448

In this section we present the performance of 4 commonly used network inference449

algorithms using ground truth data (i.e., no downsampling is performed) as input450

from 100 different simulated networks with 20 genes. Each network was randomly451

sampled in terms of the links generated, number of cells and parameter values used.452

For simplicity, we limited the number of links between genes to at most one (i.e.,453

we use a ROR network topology, see Methods section 2.1.1). Though this case is454

biologically infeasible, we used this to gauge the best case performance of the different455

algorithms and focus on the impact of network sparsity on network inference. The456

sparsity parameter relates to the number of links in the network, where a larger457

parameter leads to more links. We considered network sparsities that correspond to458

5, 10 and 19 links present in the network (out of a possible 190). We present the459

results of commonly used network inference metrics in Figure 4.460

Our first observation is that in general all 4 network inference algorithms perform461

significantly better than the random classifier (across all measures considered). In462

terms of ranking, for this data set, it appears that GENIE3 performs the best, fol-463

lowed by PIDC then CLR and finally Empirical Bayes. This is consistent with other464

studies where it was found that GENIE3 has the best network inference performance465

for many different data sets [39].466

With respect to the GENIE3 algorithm, we observed no clear relationship between467

the AUROC score and network sparsity (Figures 4A). Similarly, we see that the468

AUPR score stays relatively constant with respect to sparsity (Figures 4B). However,469

we noticed a clear trend regarding the number of true positives (Figures 4C) versus470

network sparsity. As the sparsity parameter is increased, while the number of true471

positives increases, the overall fraction of average correctly identified true positives472

decreases (0.8, 0.6, 0.47 for 0.025, 0.05 and 0.1 sparsities respectively). We found a473
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similar trend for the false positives and false negatives (Figures 4E and F) while the474

true negatives decrease with increasing sparsity parameter (Figures 4D). We note475

also that the variance in the number of true positives, true negatives, false positives476

and false negatives increases with sparsity, implying GENIE3 is less reliable for larger477

sparsity values.478

We next considered the PIDC and CLR algorithms which perform similarly in this479

case. In contrast to the GENIE3 algorithm, we observed an increase in the AUROC480

score for both these algorithms as the sparsity is increased (Figure 4A). The AUPR481

score did not change with sparsity (Figure 4B) and the number of true positives482

increases with sparsity (while the overall fraction of average correctly identified true483

positives decreases) for both algorithms (Figure 4C). We found a similar trend for484

the false positives and false negatives (Figures 4E and F) while the true negatives485

decrease with increasing sparsity parameter (Figures 4D). We note that the CLR486

algorithm appears to have a constant variance for the number of true positives, true487

negatives, false positives and false negatives for the different sparsities considered488

while the same metrics for the PIDC algorithm increases in variance for the highest489

sparsity.490

Unlike the other algorithms considered, Empirical Bayes produces similar trends491

for both the AUROC and AUPR scores with both increasing with the sparsity param-492

eter. For the lower sparsities considered (0.025, 0.05), the number of true positives,493

true negatives, false positives and false negatives is similar to the random classifier.494

However, for the largest sparsity (0.1) the Empirical Bayes algorithm improves upon495

the random classifier but with very large variance.496
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Figure 4: Network inference results using ground truth data (without downsam-
pling) from 100 different simulated random one regulation networks with 20 genes
for 3 different network sparsities. Each network was simulated over 500 hours using
parameters sampled as described in Methods section 2.2. (A) shows a barplot of the
AUROC score for the 4 different network inference algorithms considered as well as a
random classifier (RAND). (B) shows a barplot of the AUPR score for the 4 different
network inference algorithms considered as well as a random classifier. Confidence
intervals for barplots were computed by subsampling 35 out of 100 networks 100
times. (C) shows a boxplot of the true positives found for each network inference
algorithm and random classifier for 3 different sparsity levels. The horizontal lines
depict the actual number of true positives for reference. (D) shows a boxplot of the
true negatives found for each network inference algorithm and random classifier for
3 different sparsity levels. Again, the horizontal lines depict the actual number of
true negatives for reference. (E) shows a boxplot of the false positives found for each
network inference algorithm and random classifier for 3 different sparsity levels. (F)
shows a boxplot of the false negatives found for each network inference algorithm
and random classifier for 3 different sparsity levels.

3.3 Scale-free topologies are challenging for accurate net-497

work inference498

Here we build on the previous sections by considering realistic scale-free topologies.499

In this case, since more than one link can be made between genes (we allow up to 4500

genes to activate/inhibit another gene) using scale-free topologies, we must consider501

how this regulation occurs. To explore this, we considered two different kinds of502
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regulation, multiplicative or additive (for details see Methods section 2.1.1). We503

present the results of multiplicative versus additive regulation in Figure 5.504

Overall, we found the performance is poorer compared to the ROR network505

topologies results presented in Figure 4, i.e., the results were closer to the ran-506

dom classifier for all algorithms considered. This is due to the scale-free nature of507

the networks considered as we found very little difference in the performance of the508

networks produced using additive versus multiplicative regulation. Both forms of509

regulation display the inverse relationship between the network sparsity parameter510

and accuracy that we observed in the previous section. This inverse relationship is511

also reflected in the AUPR scores in Figures 5B and F. Interestingly, the AUROC512

scores show an opposite trend for additive and multiplicative regulation, with the513

AUROC score increasing for higher sparsities (apart from the GENIE3 algorithm514

for multiplicative regulation). We also highlight that the overall ranking of the net-515

work inference algorithms were preserved from the ROR case, with GENIE3 again516

performing the best, followed by PIDC, CLR then Empirical Bayes (which is only517

slightly better than random classification). While the overall accuracy is diminished518

from the ROR case, the results appear more robust (i.e., the variance is decreased).519

Due to inconsistencies we observed using the common AUROC and AUPR scores,520

we use an easier to interpret score, the precision, for the remainder of the paper. Since521

we fix the threshold used in the network inference algorithms to the sparsity of the522

network, the precision can be interpreted simply as the fraction of correctly identified523

true positives.524

3.4 Different imputation methods perform better for differ-525

ent network inference methods526

To address the question of which imputation method is best for the purpose of ac-527

curate network inference we generated synthetic scRNA-seq data for 100 scale-free528
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network topologies using 20 genes. For simplicity, we only present results for the529

middle sparsity case from previous sections (i.e., sparsity = 0.05 or 10 out of 190530

possible reactions have links) and use multiplicative regulation (since both additive531

and multiplicative regulation gave similar results). To reflect real scRNA-seq data,532

we downsampled our data using capture efficiencies that reflect current technologi-533

cally possible average capture efficiencies [76]. We present the results as boxplots in534

Figure 6 where the first row corresponds to the precision scores for different network535

inference algorithms using different imputation methods.536

Overall we found that no imputation method is able to completely recapitulate537

the network inference results obtained using the ground truth data. There is also538

a general trend where as the capture efficiency decreases, the performance of the539

network inference decreases, with no network inference method/imputation method540

combination improving upon random classification for capture efficiencies less than541

10%. Another general trend we notice is that MAGIC and SANITY imputation542

methods lead to very poor network inference accuracy for all network inference meth-543

ods studied and all capture efficiencies. We also note that the SANITY imputation544

algorithm failed to converge for capture efficiencies lower than 30%. We also high-545

light that we ordered the results on the x-axes by average score and highlight that546

‘downsampled’ corresponds to no imputation performed, hence every method to the547

right of ‘downsampled’ is beneficial for inference.548

Inspecting each individual network inference algorithm, we found that no one im-549

putation method works best for every network inference algorithm. In Figure 6A we550

observe that the SAVER imputation method works best on average when combined551

with the PIDC algorithm with scaled data and bayNorm performing very similarly.552

For the CLR algorithm, bayNorm performs best on average, followed closely by553

SAVER (see Figure 6B). For GENIE3 which produces the best ground truth perfor-554

mance, scaled data gives the best results followed by bayNorm (see Figure 6C). Re-555
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markably for the 50% capture efficiency scaled case, there is a single network which556

is inferred exactly. Figure 6D shows the Empirical Bayes algorithm results which557

works best when combined with SAVER imputation, though it should be noted that558

even for ground truth data Empirical Bayes performance is only marginally better559

than random classification.560

We next investigated how well different imputation methods preserved gene-gene561

correlations. To do this we first computed gene-gene Pearson correlations in the562

ground truth data for the 100 synthetic scRNA-seq data sets. We then computed563

the corresponding Pearson correlations for various imputation methods for different564

capture efficiencies. We show one such example for each imputation method and565

for three different capture efficiencies in Supplemental Figure 2. From this figure566

we see a general trend where the gene-gene correlations become less correlated with567

the ground truth data as the capture efficiency was decreased. We can also notice568

a pattern emerging with inhibition reactions (highlighted in grey) being less well569

preserved than other reaction types. We also noticed that the SAVER imputation570

method seemed to artificially inflate correlations. To test these observations more571

robustly, we computed the mean squared deviation between gene-gene correlations572

obtained using the ground truth data and those obtained using various imputation573

methods for all 100 data sets. We present these mean squared deviations as boxplots574

in the second row of Figure 6.575

In general, the bayNorm imputation method preserved the gene-gene correlations576

best (see Figure 6E). The only other method improving on ’downsampled’ was the577

scaled method which performed similarly well. MAGIC, SANITY and SAVER per-578

formed poorly in preserving gene-gene correlations, however SAVER appeared to579

improve with increasing capture efficiency. In Figure 6F we show the mean squared580

deviations found using only activation type reactions, and here we found that only581

bayNorm improves over the gene-gene correlations found using the downsampled582
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data. We also observed that SAVER and MAGIC do not improve in performance583

with increasing capture efficiency for activation type reactions. In Figure 6G, we584

show that the scaled method performed best at preserving gene-gene correlations of585

inhibition type reactions, followed closely by bayNorm which also improved upon586

the downsampled data. Finally we observed that bayNorm is best at preserving587

gene-gene correlations for non-reactions (see Figure 6H).588

3.5 Overall performance of network inference algorithms is589

inversely related to number of combination reactions590

considered591

To examine the impact of the number of genes on overall network inference per-592

formance, in this section we extended the size of the networks analysed from 20 to593

50 gene networks. We used sparsities such that the fracton of links present in the594

network were consistent with the 20 gene case from previous sections. This also595

prevented the maximum degree of the network from exceeding the maximum of 4596

which is currently supported in Biomodelling.jl. We present the results for spar-597

sity = 0.02 as boxplots in Figure 7, as in the previous section, where the first row598

corresponds to the precision scores for different network inference algorithms using599

different imputation methods.600

We found a general deterioration in the performance of all network inference601

algorithms with the medium sparsity for the 50 gene case performing worse than602

medium sparsity for the 20 gene case (compare Figure 7A to D with (Figure 6A603

to D). While GENIE3 still performed the best overall, CLR performed better than604

PIDC in this case. Empirical Bayes was found again to be only marginally better605

than random classification. In terms of imputation methods, we found that SAVER606

worked best when combined with PIDC or Empirical Bayes and the scaled method607

worked best for CLR or GENIE3 algorithms. This is broadly consistent with the 20608
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gene case.609

Surprisingly, the gene-gene correlations are very closely aligned with the 20 gene610

case (compare Figure 7E to H with Figure 6E to H), even for different reaction types.611

This implies that the source of the deterioration in network inference is elsewhere. To612

further investigate this, we also examined the number of combination reactions (see613

Methods section 2.1.1 for details). We present the number of combination reactions614

for the 20 gene and 50 gene cases in Supplemental Figure 6. We found a significant615

increase in the total number of combination reactions in the 50 gene case versus616

the 20 gene case. Furthermore, we found that if we approximately matched the617

number of combination reactions for different number of genes (e.g. 0.02 sparsity for618

the 50 gene case and 0.1 sparsity for the 20 gene case) we observed a very similar619

performance (compare Supplemental Figure 7). Hence, this implies that it is not the620

gene number that dictates the overall performance but the number of combination621

reactions present in the network.622
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Figure 5: Network inference results using ground truth data (without downsampling)
from 100 different simulated scale-free networks with 20 genes for 3 different network
sparsities using additive or multiplicative regulation. Each network was simulated
over 500 hours using parameters sampled as described in Methods section 2.2. (A)
and (E) show barplots of the AUROC score for the 4 different network inference
algorithms considered as well as a random classifier (RAND) for additive and multi-
plicative regulation respectively. (B) and (F) show barplots of the AUPR score for
the 4 different network inference algorithms considered as well as a RAND classi-
fier for additive and multiplicative regulation respectively. Confidence intervals for
barplots were computed by subsampling 35 out of 100 networks 100 times. (C) and
(G) show boxplots of the true positives found for each network inference algorithm
and random classifier for 3 different sparsity levels for additive and multiplicative reg-
ulation respectively. The horizontal lines depict the actual number of true positives
for reference. (D) and (H) show boxplots of the true negatives found for each network
inference algorithm and random classifier for 3 different sparsity levels for additive
and multiplicative regulation respectively. Again, the horizontal lines depict the ac-
tual number of true negatives for reference. (E) and (I) show boxplots of the false
positives found for each network inference algorithm and random classifier for 3 dif-
ferent sparsity levels for additive and multiplicative regulation respectively. (F) and
(J) show boxplots of the false negatives found for each network inference algorithm
and random classifier for 3 different sparsity levels for additive and multiplicative
regulation respectively.
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Figure 6: Impact of imputation on network inference performance and gene-gene
correlation preservation for 100 different simulated 20 gene networks using sparsity
= 0.05 with multiplicative regulation for various capture efficiencies. Figures (A) to
(D) show boxplots of precision scores obtained for different imputation algorithms
displayed on x-axes for PIDC, CLR, GENIE3 and Empirical Bayes respectively.
RAND corresponds to precision obtained using random classification and GT data
corresponds to precision obtained without downsampling (i.e., capture efficiency is
set to 1). Figures (E) to (H) show the mean squared deviation between gene-gene
correlations obtained using the ground truth data and those obtained using various
imputation methods displayed on x-axes (with results plotted on a log-scale). Figure
(E) show results obtained using all reaction types, while Figure (F), (G) and (H) show
results obtained using only activation, inhibition and non-reacting type reactions
respectively.
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Figure 7: Impact of imputation on network inference performance and gene-gene
correlation preservation for 100 different simulated 50 gene networks using sparsity
= 0.02 with multiplicative regulation for various capture efficiencies. Figures (A) to
(D) show boxplots of precision scores obtained for different imputation algorithms
displayed on x-axes for PIDC, CLR, GENIE3 and Empirical Bayes respectively.
RAND corresponds to precision obtained using random classification and GT data
corresponds to precision obtained without downsampling (i.e., capture efficiency is
set to 1). Figures (E) to (H) show the mean squared deviation between gene-gene
correlations obtained using the ground truth data and those obtained using various
imputation methods displayed on x-axes (with results plotted on a log-scale). Figure
(E) show results obtained using all reaction types, while Figure (F), (G) and (H) show
results obtained using only activation, inhibition and non-reacting type reactions
respectively.
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4 Discussion623

Here we have introduced Biomodelling.jl, an open source julia package, for producing624

synthetic scRNA-seq datasets based on a known gene-regulatory network. Biomod-625

elling.jl simulates realistic stochastic gene expression coupled to cell size in growing626

and dividing population of cells using an agent-based approach. Downsampling using627

a binomial distribution is used to model capture efficiency and drop-out in scRNA-628

seq protocols. While there are other methods available for generating synthetic629

scRNA-seq datasets such as GeneNetWeaver and Splatter, these do not account for630

gene-gene correlations that arise due to an underlying gene regulatory network and631

cell growth. Hence, Biomodelling.jl can be used for benchmarking network inference632

methods. In this study, we investigated the effectiveness of imputation on recovering633

gene-gene correlations that are lost due to drop-out.634

We first demonstrated the use of Biomodelling.jl by presenting results from a toy635

5 gene network example. This showed that to uncover true gene-gene correlations it636

was necessary to scale the raw mRNA numbers by cell volume, otherwise gene-gene637

correlations would be uniformly high and positive. Without scaling by cell volume,638

the mRNA numbers per cell for each gene are dominated by their position in the cell639

cycle. While, there are several methods that have been developed to remove cell cycle640

effects for scRNA-seq studies [77, 78, 79], we propose for the purpose of removing641

cell size effects one could use a total count normalisation. We matched the threshold642

parameter of the network inference algorithms with the sparsity of the network, as643

this yields the best performance and simplifies the interpretation of the performance.644

For this simple network, PIDC was able to correctly identify the whole network if645

the volume scaled mRNA data was used. However we found that drop-out events646

simulated by downsampling lead to poor network inference performance, implying647

even for very simple networks imputation may help. We note that in general the648

sparsity of network is not known, but we suggest the threshold could be derived649
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from the number of known transcription factors present in the considered network.650

We then explored the performance of common network inference algorithms for651

simple topologies (ROR) using 20 genes network topologies. We found that all the652

network inference algorithms considered performed significantly better than random653

classification (apart from Empirical Bayes). Furthermore, GENIE3 performed best654

in this setting and sparser networks were generally easier to infer. Introducing scale-655

free topologies led to a general deterioration in the performance of the network656

inference algorithms but the overall ranking of the algorithms was retained from657

the ROR network topologies case. We also observed very little difference using658

additive or multiplicative regulation. Hence we decided to use multiplicative scale-659

free topologies for evaluating the impact of imputation methods on the performance660

of network inference algorithms.661

We next examined the impact of performing imputation prior to applying the662

network inference algorithms for a range of experimentally feasible capture efficien-663

cies. In general we found that inference performance was inversely related to the664

capture efficiency regardless of imputation method used and that even for higher665

capture efficiencies the imputation methods were never able to completely recapitu-666

late the ground truth data case, though they frequently improved upon just using the667

downsampled data. The best choice of inference algorithm depended on the choice of668

imputation method, i.e., there was no one best imputation method for every network669

inference algorithm. Though we found clear evidence that some imputation methods670

should not be used for network inference. SAVER, bayNorm and the scaled method671

can be used depending on the choice of inference algorithm, for example SAVER and672

PIDC worked well together. We found that MAGIC and sanity imputation meth-673

ods never improved upon using the downsampled data for any network inference674

algorithms that we considered.675

To better understand the network inference results we also examined how well676
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gene-gene correlations were preserved using several imputation methods. Overall, we677

found that bayNorm was the best at preserving the gene-gene correlations found in678

the ground truth data. We also examined the gene-gene correlations for specific reac-679

tion types. Only bayNorm performed better than downsampled data for activation680

type reactions, while bayNorm and the scaled method performed better than down-681

sampled data for inhibition and non-reacting type reactions. The fact that SAVER682

performs so poorly here is inconsistent with the performance we found for network683

inference. Therefore we examined this further, and while the gene-gene correlations684

are in general higher than the ground truth gene-gene correlations, we found that685

they are off by a constant (approximately the median correlation). In other words,686

the overall order or ranking of correlations is preserved which may explain why the687

network inference algorithms such as PIDC worked well with SAVER.688

We also examined the impact of increasing the size of the gene network simulated.689

Across all network inference algorithms, we found a deterioration in the quality of690

the inference. We also computed the gene-gene correlations for various imputation691

methods for these larger networks but unexpectedly found no difference compared692

to the smaller gene networks, implying the source of the deterioration was elsewhere.693

We found that the performance of the network inference seemed to be proportional694

to the number of combination reactions (where it is possible to have a gene activated695

and inhibited simultaneously) with similar performance recorded for 20 gene networks696

and 50 gene networks with the same number of combination reactions. We speculate697

that incorporating protein information into inference may help improve performance698

in such networks.699

Finally, we compared our results with two recent complementary studies that in-700

vestigated the impact of imputation on network reconstruction performance [80, 81].701

In contrast to our study, we note that both these studies used experimental scRNA-702

seq data sets where it is usually difficult to determine the ground truth network. In703
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[80], scRNA-seq data of seven different cell types were included, imputation meth-704

ods such as MAGIC and SAVER as well as inference methods such as PIDC and705

GENIE3 were evaluated in this study. The authors found that MAGIC introduced706

high positive correlations and combining SAVER with PIDC led to an increase in707

network reconstruction performance, these findings are consistent with our results708

(see Supplemental Figures 2, 3, 4 and 5). However, some disagreements with our709

results were also observed. For example, while in this study it was reported that710

combining SAVER with PIDC gave better results than combining SAVER with GE-711

NIE3, we found these combinations of imputation method and network inference712

algorithm are comparable regardless of the network sparsity and topology (Supple-713

mental Figures 3, 4 and 5). We also found that combining SAVER and GENIE3714

does not improve the network inference precision over downsampled data (Supple-715

mental Figures 3(C),(G),(K), 4(C),(G) and 5(C),(G)), unlike what was reported in716

the aforementioned study where the authors observed that combining SAVER and717

GENIE3 does improve network inference performance in some cases. In [81], it was718

reported that low capture efficiencies pose a challenge for imputation and network719

inference methods and that some imputation methods, namely DCA [23], preserve720

the gene-gene correlations structure even though false positive correlations are in-721

troduced, these findings are consistent with our results (Supplemental Figures 3, 4722

and 5) where we found that for low capture efficiencies, regardless of the imputation723

and network inference method, the network inference precision is poor and we also724

found that SAVER similar to DCA preserves the gene-gene correlations structure as725

mentioned above.726

In summary, biomodelling.jl uses mechanistic models of gene regulatory network727

and stochastic agent-based models of gene expression in cell populations to simulate728

realistic scRNA-seq data. This kind of approach is complementary to methods that729

are purely statistical and use deep neural networks (see e.g. [82]). As illustrated in730
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this study, this kind of approach that is based on a known ground truth is useful731

for bench-marking and development of novel methods for the analysis of scRNA-seq732

data and gene-regulatory network inference.733
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Supplemental material for “Benchmarking1030

imputation methods for network inference using a1031

novel method of synthetic scRNA-seq data1032

generation”1033

1 Choosing threshold parameter for network in-1034

ference algorithms1035

Supplemental Figure 1: Impact of varying threshold parameter for network inference
algorithms: plot showing PIDC inference error (as defined by the l2 norm of predicted
adjacency matrix with ground truth adjacency matrix) as a function of the algorithm
threshold for a 5-gene network toy example. The orange solid line is the network
sparsity and the blue solid line represents the network inference algorithm error.
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2 Example gene-gene correlations1036
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3 Inference precision: 20 gene additive regulation1037

4

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464275
http://creativecommons.org/licenses/by-nc/4.0/


0.0

0.2

0.4

0.6

0.8

1.0

SANITY

RAND

MAGIC
Downsampled

bayNorm

Scaled

SAVER

GT data

precision

A

0.0

0.2

0.4

0.6

0.8

1.0

SANITY

RAND

MAGIC
Downsampled

Scaled

bayNorm

SAVER

GT data

precision

B

0.0

0.2

0.4

0.6

0.8

1.0

RAND

SANITY

MAGIC

SAVER
Downsampled

bayNorm

Scaled

GT data

precision

C

0.0

0.2

0.4

0.6

0.8

1.0

bayNorm

RAND

MAGIC

Scaled

GT data

SANITY
Downsampled

SAVER

precision

D

0.0

0.2

0.4

0.6

0.8

1.0

SANITY

MAGIC

RAND
Downsampled

bayNorm

Scaled

SAVER

GT data

precision

E

0.0

0.2

0.4

0.6

0.8

1.0

SANITY

MAGIC

RAND
Downsampled

bayNorm

Scaled

SAVER

GT data

precision

F

0.0

0.2

0.4

0.6

0.8

1.0

SANITY

RAND

MAGIC

SAVER

bayNorm
Downsampled

Scaled

GT data

precision

G

0.0

0.2

0.4

0.6

0.8

1.0

MAGIC

RAND

bayNorm

SANITY

GT data
Downsampled

Scaled

SAVER

precision

H

0.0

0.2

0.4

0.6

0.8

1.0

MAGIC

SANITY

RAND
Downsampled

bayNorm

Scaled

SAVER

GT data

precision

I

0.0

0.2

0.4

0.6

0.8

1.0

SANITY

MAGIC

RAND
Downsampled

SAVER

bayNorm

Scaled

GT data

precision

J

0.0

0.2

0.4

0.6

0.8

1.0

RAND

MAGIC

SANITY

SAVER
Downsampled

bayNorm

Scaled

GT data

precision

K

0.0

0.2

0.4

0.6

0.8

1.0

SANITY

RAND
Downsampled

bayNorm

Scaled

MAGIC

SAVER

GT data

precision

L

capture efficiency
00.03

0.1
0.2

0.3
0.5

1

P
ID

C
C

LR
G

E
N

IE
3

E
B

sparsity = 0.025sparsity = 0.05sparsity = 0.1

S
u
p
p
lem

en
tal

F
igu

re
3:

Im
p
act

of
im

p
u
tation

on
n
etw

ork
in

feren
ce

p
erform

an
ce

for
100

d
iff

eren
t

sim
u
lated

20
gen

e
n
etw

ork
s

u
sin

g
sp

arsity
=

0.025,
0.05

an
d

0.1
w

ith
a
d
d
itiv

e
re

g
u
la

tio
n

for
variou

s
cap

tu
res

effi
cien

cy.
R

A
N

D
corresp

on
d
s

to
p
recision

ob
tain

ed
u
sin

g
ran

d
om

classifi
cation

an
d

G
T

d
ata

corresp
on

d
s

to
p
recision

ob
tain

ed
w

ith
ou

t
d
ow

n
sam

p
lin

g
(i.e.,

cap
tu

re
effi

cien
cy

is
set

to
1).

P
lots

(A
)

to
(D

)
sh

ow
b

ox
-p

lots
of

p
recision

scores
ob

tain
ed

for
d
iff

eren
t

im
p
u
tation

algorith
m

s
d
isp

layed
on

x
-ax

es
for

P
ID

C
,

C
L

R
,

G
E

N
IE

3
an

d
E

m
p
irical

B
ayes

resp
ectively

w
ith

sp
arsity

=
0.025.

P
lots

(E
)

to
(H

)
sh

ow
b

ox
-p

lots
of

p
recision

scores
ob

tain
ed

for
d
iff

eren
t

im
p
u
tation

algorith
m

s
d
isp

layed
on

x
-ax

es
for

P
ID

C
,

C
L

R
,

G
E

N
IE

3
an

d
E

m
p
irical

B
ayes

resp
ectively

w
ith

sp
arsity

=
0.05.

P
lots

(I)
to

(L
)

sh
ow

b
ox

-p
lots

of
p
recision

scores
ob

tain
ed

for
d
iff

eren
t

im
p
u
tation

algorith
m

s
d
isp

layed
on

x
-ax

es
for

P
ID

C
,

C
L

R
,

G
E

N
IE

3
an

d
E

m
p
irical

B
ayes

resp
ectively

w
ith

sp
arsity

=
0.1.

5

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464275
http://creativecommons.org/licenses/by-nc/4.0/


4 Inference precision: 20 gene multiplicative reg-1038
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5 Inference precision: 50 gene case, two different1040

sparsity levels1041

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464275
http://creativecommons.org/licenses/by-nc/4.0/


0.0

0.2

0.4

0.6

0.8

1.0
RAND

SANITY
Downsampled

MAGIC

bayNorm

Scaled

SAVER

GT data

precision

A

0.0

0.2

0.4

0.6

0.8

1.0

RAND

SANITY
Downsampled

MAGIC

SAVER

bayNorm

Scaled

GT data

precision

B

0.0

0.2

0.4

0.6

0.8

1.0

RAND

SANITY

MAGIC

SAVER

bayNorm
Downsampled

Scaled

GT data

precision

C

0.0

0.2

0.4

0.6

0.8

1.0

MAGIC
Downsampled

SANITY

RAND

bayNorm

Scaled

SAVER

GT data

precision

D

0.0

0.2

0.4

0.6

0.8

1.0

RAND

SANITY
Downsampled

bayNorm

Scaled

SAVER

MAGIC

GT data

precision

E

0.0

0.2

0.4

0.6

0.8

1.0

RAND

SANITY
Downsampled

bayNorm

SAVER

Scaled

MAGIC

GT data

precision

F

0.0

0.2

0.4

0.6

0.8

1.0

RAND

MAGIC

SANITY

SAVER

bayNorm
Downsampled

Scaled

GT data

precision

G

0.0

0.2

0.4

0.6

0.8

1.0

MAGIC

RAND

SANITY

bayNorm

Scaled
Downsampled

SAVER

GT data

precision

H

capture efficiency
00.05

0.1
0.2

0.3
0.5

1

P
ID

C
C

LR
G

E
N

IE
3

E
B

sparsity = 0.01sparsity = 0.04

S
u
p
p
lem

en
tal

F
igu

re
5:

Im
p
act

of
im

p
u
tation

on
n
etw

ork
in

feren
ce

p
erform

an
ce

for
100

d
iff

eren
t

sim
u
lated

50
gen

e
n
etw

ork
s

u
sin

g
sp

arsity
=

0.01
an

d
0.04

w
ith

m
u
ltip

lica
tiv

e
re

g
u
la

tio
n

for
variou

s
cap

tu
res

effi
cien

cy.
R

A
N

D
corresp

on
d
s

to
p
recision

ob
tain

ed
u
sin

g
ran

d
om

classifi
cation

an
d

G
T

d
ata

corresp
on

d
s

to
p
recision

ob
tain

ed
w

ith
ou

t
d
ow

n
sam

p
lin

g
(i.e.,

cap
tu

re
effi

cien
cy

is
set

to
1).

P
lots

(A
)

to
(D

)
sh

ow
b

ox
-p

lots
of

p
recision

scores
ob

tain
ed

for
d
iff

eren
t

im
p
u
tation

algorith
m

s
d
isp

layed
on

x
-ax

es
for

P
ID

C
,

C
L

R
,

G
E

N
IE

3
an

d
E

m
p
irical

B
ayes

resp
ectively

w
ith

sp
arsity

=
0.01.

P
lots

(E
)

to
(H

)
sh

ow
b

ox
-p

lots
of

p
recision

scores
ob

tain
ed

for
d
iff

eren
t

im
p
u
tation

algorith
m

s
d
isp

layed
on

x
-ax

es
for

P
ID

C
,
C

L
R

,
G

E
N

IE
3

an
d

E
m

p
irical

B
ayes

resp
ectively

w
ith

sp
arsity

=
0.04.

9

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464275
http://creativecommons.org/licenses/by-nc/4.0/


6 Number of combination reactions in both 201042

and 50 gene networks1043
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Supplemental Figure 6: Number of combination reactions in 100 models of 20-genes
and 50-genes networks for different sparsity levels. (A) box-plots of the number of
combination reactions in 20-genes network for sparsity = 0.025, 0.05 and 0.1. (B)
box-plots of the number of combination reactions in 50-genes network for sparsity =
0.01, 0.02 and 0.04.
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7 Comparison of 20 gene network with 0.1 spar-1044

sity and 50 gene network with 0.02 sparsity1045
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Supplemental Figure 7: Performance of 100 models of 20-genes and 50-genes networks
for 0.1 and 0.02 sparsity levels respectively. (A) box-plots of the precision for 100
20-genes networks with sparsity = 0.1. (B) box-plots of the precision for 100 50-genes
networks with sparsity = 0.02.
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