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8

Abstract Division of labor between cells is ubiquitous in biology but the use of multi-cellular9

consortia for engineering applications is only beginning to be explored. A significant advantage of10

multi-cellular circuits is their potential to be modular with respect to composition but this claim11

has not yet been extensively tested using experiments and quantitative modeling. Here, we12

construct a library of 24 yeast strains capable of sending, receiving or responding to three13

molecular signals, characterize them experimentally and build quantitative models of their14

input-output relationships. We then compose these strains into two- and three-strain cascades15

as well a four-strain bistable switch and show that experimentally measured consortia dynamics16

can be predicted from the models of the constituent parts. To further explore the achievable17

range of behaviors, we perform a fully automated computational search over all two-, three- and18

four-strain consortia to identify combinations that realize target behaviors including logic gates,19

band-pass filters and time pulses. Strain combinations that are predicted to map onto a target20

behavior are further computationally optimized and then experimentally tested. Experiments21

closely track computational predictions. The high reliability of these model descriptions further22

strengthens the feasibility and highlights the potential for distributed computing in synthetic23

biology.24

25

Introduction26

The leading paradigm for genetic circuit design is to combine biological parts in a delicate balance27

within the same cell [Ellis et al. (2009),Kosuri et al. (2013),Ottoz et al. (2014)]. This approach has28

resulted in increasingly large genetic circuits that realize functions such as logic gates and circuits29

[Moon et al. (2012), Bonnet et al. (2013),Nielsen et al. (2016),Gander et al. (2017)), time pulses (Gao30

et al. (2018),Guo and Murray (2019)), incoherent feed-forward loops (Entus et al. (2007),Ellis et al.31

(2009)), bistable switches (Chen et al. (2012), Huang et al. (2012), Yang et al. (2019), Barbier et al.32

(2020), Grant et al. (2020)) or oscillators (Elowitz and Leibler (2000), Tigges et al. (2009), Tigges33

et al. (2010)). Albeit very successful, this approach shows its limitations when it comes to scala-34

bility and robustness. Albeit very successful, single cell circuit engineering has limited scalability35

and robustness because parts cannot be reused, the genetic burden on the cell grows with circuit36

size Nikolados et al. (2019), and retroactivity Del Vecchio et al. (2008) and component crosstalk37

Del Vecchio (2015) interfere with expected behavior.38

An alternative approach is to generate complex behaviors using consortia of cells wherein dif-39

ferent cell types perform distinct functions and communicate with each other through chemical40

signals to realize more complex behaviors. Such division of labor is common in nature and in-41

terest has recently emerged in engineering multi-cellular synthetic systems (Brenner et al. (2008)).42
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Although developed later, synthetic consortia have caught upwith single-cell circuits in terms of the43

complexity of functions that have been realized, generating behaviors such as multicellular time44

pulses (Basu et al. (2004)), oscillations (Chen et al. (2015)), and logic gates (Regot et al. (2011),Tamsir45

et al. (2011)), bioproduction Egbert et al. (2017), or circuits that use quorum sensing to define social46

interactions (Kong et al. (2018)). Furthermore, the emergence of novel orthogonal cross-species47

signaling molecules (Billerbeck et al. (2018), Du et al. (2020)) has opened the path for engineering48

more complex and precise multicellular behaviors.49

To date, synthetic multi-cellular systems were largely designed with specific target behaviors50

in mind, rather than optimizing modularity of components to make them usable in a large num-51

ber of contexts. Still, mathematical modelling has demonstrated that multi-cellular computation52

should easily access a larger space of behaviors: for instance, just three different cell populations53

can, in theory, generate up to 100 different logic functions (Regot et al. (2011)) and even bimodal-54

ity and cell-synchronization (Thurley et al. (2018)). Furthermore, the intuitive modular nature of55

cell-to-cell communication should provide a useful tool to rationally design synthetic circuits with56

predetermined performance. Rational design significantly speeds up circuit assembly (Chen et al.57

(2012), Chen et al. (2020)) and allows design of global functions from local behaviors (Salis et al.58

(2009),Carothers et al. (2011)). As a matter of fact, mathematical models have been successful to59

bridge the gap between individual processes and collective behaviors when applied to ecological60

interactions between distinct populations of communicating cells [Shou et al. (2007),Momeni et al.61

(2013), Egbert et al. (2017)]. However, an example of a model-driven strain selection for multicellu-62

lar circuit design is currently missing.63

Here we propose a large vocabulary of yeast strains that use chemical signals for cell-to-cell64

communication and that can be modularly combined to realize a large number of functions (1A).65

Each strain senses one or two inputs and produces a single output. The transfer function relating66

inputs and outputs can be either activating or repressing. The output is a fluorescent protein which67

can be used to read out circuit behavior, another signaling molecule which can be used to connect68

strains or an enzyme that sequesters or degrades a signal thus disrupting communication. We ex-69

perimentally characterize each strain, model their dynamics using differential equations and then70

use these models to predict the behavior of strain combinations (1B). Using a library of 24 strains,71

we rationally design complex multicellular behaviors, such as bandpass filters, negative and pos-72

itive feedbacks, time pulses, logic gates, and bistable switches. These behaviors are common in73

nature and they underlie cell decisions on metabolism (for instance, responding to environmental74

signals, Lee et al. (2002), utilization of carbon sources, Brandman et al. (2005)) or cell differentiation75

(Kueh et al. (2016),Duddu et al. (2020)), and have been repeatedly connected to multicellular orga-76

nization (signal gradients in development) and signaling (auxin pulses in plants). The modularity77

of composition achieved by our multicellular circuits allow us to design these non-trivial behaviors78

based on model simulations alone. This qualitative and quantitative precision demonstrated in79

both time and steady-state experiments further extend circuit design automation (Nielsen et al.80

(2016)], Chen et al. (2020)).81

Results82

Engineering yeast strains for signal sensing, synthesis and depletion83

As a first step towards the construction of a vocabulary of modular yeast strains we selected a84

set of signals to enable cell-to-cell communication and then optimized chassis strains for signal85

sensing, synthesis and depletion. We selected the plant hormone auxin (we will also refer to it as86

IAA, indole-3-acetic acid) and the yeast hormone �-factor as signaling molecules and additionally87

used the mammalian hormone �-estradiol as an inducer.88

The �-factor pathwayhas been subject of extensive studies andmechanisms for sensing through89

the surface receptor STE2, synthesis by theMF�1 gene and degradation through the BAR1 protease90

are well understood and have been engineered to generate a wide range of behaviors (Youk and91
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Lim (2014), Groves et al. (2016), Shaw et al. (2019)). To have a baseline strain that does not interfere92

with signaling, we knocked out the native BAR1 gene as in Youk and Lim (2014) to prevent �-factor93

degradation. Moreover, to account for growth-arrest induced by �-factor, which affects gene ex-94

pression on a large scale, we knocked out FAR1 a protein that contributes to arresting the cell cycle95

at G1 Chang and Herskowitz (1990), and constitutively expressed POG1, a protein that promotes96

growth-arrest recovery Leza and Elion (1999). Unexpectedly, we detected no �-factor output from97

strains that both sense and secrete �-factor. We suspected that this was caused by the surface98

receptor STE2 internally binding to �-factor. It has been shown that, upon binding to �-factor, STE299

undergoes endocytosis and then shares the secretory pathway of �-factor itself Schandel and Jen-100

ness (1994). We solved this problem by overexpressing STE2 on a pGPD promoter Sun et al. (2012)101

in these strains, aiming to have some protein copies escaping this interaction.102

Next, we turned to the optimization of components for Auxin sensing, synthesis and elimina-103

tion. In prior work from our group, we (Khakhar et al. (2016), Pierre-Jerome et al. (2014)) devel-104

oped an auxin-responsive transcription factor using a chimeric dCas9-Aux/IAA protein regulation.105

In the presence of Auxin, the Aux/IAA degron part of the protein binds to the auxin signaling F-box106

protein (a modified TIR1 for this study) and acts as part of an E3 ubiquitin ligase to catalyze ubiq-107

uitination and degradation of the Aux/IAA-degron-containing protein. Similarly, we constructed a108

synthetic auxin synthesis pathway in yeast Khakhar et al. (2016). We demonstrated conversion of109

the precursor molecule IAM (indole-3-acetamide) into IAA through expression of the IaaH gene in110

yeast. Here, we amplified Auxin secretion and thus effectively the strength of the signal produced,111

through integration of the auxin-efflux pump PGP1 from A.thaliana into our yeast strains, as pre-112

viously reported in Geisler et al. (2005). We measured a significant increase in the auxin-synthesis113

yield as measured by a neighbouring IAA-detecting cell when PGP1 was integrated (SI Figure1).114

Unlike for �-factor, a depletionmechanism for Auxin had not yet been reported in yeast. To cre-115

ate an IAA depletion mechanism, we thus selected the plant protein GH3.3 that has been shown to116

conjugate IAA to aspartic acid, forming the signaling-inactive IAA-Asp. GH3.3 is part of a family of117

proteins that encode IAA-amino synthetases, which have been reported to control auxin homeosta-118

sis (Staswick et al. (2005)). To test whether GH3.3 or related proteins could be used to inactivate119

Auxin in yeast, we first expressed codon-optimized versions of GH3.3 and GH3.6 from A.thaliana120

and C.papaya from a highly-expressed pGPD promoter. We then tested the IAA to IAA-Asp conver-121

sion rate using mass spectrometry and found that GH3.3 from A.thaliana had the higher efficiency122

(SI Figure2, SI Figure3). Finally, we tested that IAA-Asp does not activate the IAA-mediated degrada-123

tion pathway in yeast, by adding 10uM of IAA-Asp in an auxin-sensor yeast culture and detecting124

no variation in fluorescence (SI Figure2).125

Establishing a vocabulary of parts for cell to cell communication126

Having established conditions for efficient signal sensing, synthesis and inhibition, we combined127

signals with activating and repressive transfer functions to create a vocabulary of strains. Trans-128

fer functions that use �-factor as input are mediated by the transcription factor (STE2) that either129

directly induces expression of the gene of interest (activation) or induces expression of a repres-130

sor that inhibits the output (repression). Similarly, �-estradiol binds and activates a transcription131

factor (ZEV4) that either directly activates gene expression (activation) or induces expression of a132

repressor and inhibits output synthesis (repression). For both signalingmolecules, we chose dCas9133

fused with the repressor domain Mxi1 (Gander et al. (2017)) as repressor (SI Figure 4 for the full134

pathways).135

To induce activation or repression with auxin, we build on the same auxin-mediated degrada-136

tion pathway used for auxin sensing above. Specifically, activation results from degradation of a137

repressor, while repression results from degradation of an activator. We chose a dCas9-Mxi1-auxin138

degron (Khakhar et al. (2016)) fusion as a repressor and used a dCas9-VP64-auxin degron fusion139

as the activator (SI Figure 4).140

Weconducted extensive pathway optimization to increase the separation betweenhigh and low141
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Figure 1. Modular components for engineering multi-cellular signaling circuits. (a) Three input signals, two transfer functions and fiveoutputs are used to assemble 24 distinct strains. (b) Differential equations are used to model and predict behavior of all strains and straincombinations in the paper. In this example, a model (Model 1) and symbolic representation for a fluorescent reporter repressed by high auxinconcentration are shown. (c) Left: Time course fluorescence data for different auxin concentrations for the sensor strain shown in (b). Full linesare model simulations. Right: End point fluorescence data is shown as a function of auxin concentration color-matching the time series on theleft. The steady-state simulation is shown in orange. (d) Symbolic representation, steady state data and model fit for all other single inputreporter strains. (e)Modeling framework (Model 2) and fluorescence kinetics data for two different two-input reporter strains.

expression levels and IAA sensitivity, using a mechanistic model to explore the parameter space142

and guide the genetic engineering (SI Figure 5). We adopted the model proposed in Pierre-Jerome143

et al. (2014), where each parameter easily translates to a biological function, and performed param-144

eter sensitivity analysis with respect to fold change between the baseline and the Aux/IAA-induced145

fully-repressed state. We then selected the top six highest scoring parameter perturbations, de-146

signed circuit variants that reflected those changes, and tested them resulting in a good agreement147

with our predictions (SI, Figure 5). Guided by the model, we combined five of the tested circuit vari-148

ants to increase the fold change from 1.3-fold (sensor from Khakhar et al. (2016)) to 3.1-fold: we149

used this final circuit for all the repressive strains, swapping the fluorescent reporter gene with the150

output gene for non-sensor strains. For the auxin activating strains, we used a similarmodel-driven151
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approach to rationally design the activating pathway novel to this paper, obtaining a 3 fold-change152

activation.153

Combining the three different input signals, the activation/repression circuits and output se-154

cretion, we built and tested all the possible combinatorial designs presented in 1A. The strains155

that sense �-estradiol and repress expression of BAR1 and GH3.3, the strain that senses �-factor156

and represses expression of GH3.3, and the strain that senses IAA and represses BAR1 expression157

are shown in the SI (SI Figure 6) and not used below, since their response was too slow to pro-158

duce meaningful results. Of the remaining twenty-four strains, six sensor strains express GFP in159

response to the three input signals (three activators and three repressors), twelve strains (six acti-160

vators and six repressors) synthesize a signaling molecule and six strains act as signal attenuators161

(expressing BAR1 or GH3.3 ). Four of these twenty-four strains sense and secrete the same signal-162

ing molecule (�-factor or IAA, ‘positive’ or ‘negative’ feedback strains). Finally, two strains express163

repressors of their own input (�-factor expressing BAR1 and IAA expressing GH3), also describing164

a negative feedback topology (SI Figure 6).165

Sensor strain characterization166

For sensor strain characterization, we collected time series data for eight different input concentra-167

tions. Input concentrations were selected to fully cover the sensor dynamic range for model fitting.168

We normalized fluorescence data by cell size and took the mean of the histogram as in Groves169

et al. (2016) and then subtracted background fluorescence. Each measurement in the figure is an170

average of three experimental repeats (error bars representing the standard deviation).171

With a scalable and modular system in mind, we fitted a set of three ordinary differential equa-172

tions (ODEs) with eight parameters for each strain to describe input sensing, signal processing and173

fluorescence output synthesis (1B, Model 1). Signal processing (activation or repression) is mod-174

elled with a simple Hill function (Model 1b), which naturally incorporates signal saturation. Input175

sensing and output synthesis aremodelled as linear ODEs (Model 1a and c). A constant term in the176

last ODE accounts for background promoter activity. These simple models capture the system dy-177

namics, with the benefit of being easy to fit and analytically approachable. Parameters were fitted178

independently for each experimental repeat to obtain amean and a standard deviation for the Hill179

coefficient. We also separately fitted a Hill curve to an average of the three experimental repeats180

and the resulting Hill coefficient (n) is reported in the figures and used for simulations(1B). The sen-181

sor strains range in sensitivity depending on the input. The �-estradiol sensors respond to inputs182

concentration ranging from 0.1 to 100nMwith anEC50 of 0.5±0.0nM for repression and 12.6±0.9nM183

for activation. �-factor sensors are sensitive to input concentrations ranging from 1-500nM range184

with an EC50 ∼ 6.0 ± 0.4nM for activation and 89.0 ± 6.6nM) for repression. Finally the IAA sensor is185

least sensitive and responds to inputs ranging from 5nM-10uM withe an EC50 ∼ 964.8± 93.8nM for186

activation and 276.5±8.8nM for repression. The Hill coefficients for these sensors vary between 0.8187

(3-repeat interval: 0.8 ± 0.0, �-factor repression) and 1.0 (1.2 ± 0.02, �-factor activation), 2.2 (2.1 ± 0.3,188

�-estradiol repression) and 1.3 (1.25±0.0, �-estradiol activation), 1.0 (1.0±0.4, auxin repression) and189

0.8 (0.8±0.0, auxin activation) consistent with previously reported values for �-estradiol repression190

Gander et al. (2017) and �-factor activation Groves et al. (2016). Finally, the sensors achieve an191

ON/OFF fold-change that ranges between a minimum of 3 (IAA activating GFP) and a maximum of192

42 (�-estradiol activating GFP).193

In addition to single-input sensors, we constructed two sensor strains that respond to both �-194

factor and IAA. In the first strain, �-factor induces fluorescence expression and IAA represses it,195

while in the second strain, IAA induces fluorescence expression and �-factor represses it. We col-196

lected data points for eight different input combinations taken at five time points up to saturation.197

The output signal is monotonic with respect to each input and the input functional range is similar198

to the one measured for the correspondent strains that respond to only one of the two inputs.199

(1E).200
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Figure 2. Multi-strain signaling cascades. (a) Symbolic representation of a two-strain cascade that uses �-factor as the input and auxin as anintermediate signal. To model multi-strain cascades, models for individual strains are concatenated and only the last differential equation is fit.End-point fluorescence data and fit are shown for the example cascade. (b) By varying the concentration of the upstream strain, the strength ofthe signal seen by the downstream strain can be predictably controlled. This change in signal is modeled with a single parameter K. Right: dataand model predictions for three experiments with the same strains but varying concentrations of the upstream strain. (c) Symbolicrepresentation, model and data for a two strain cascade wherein the upstream strain removes a signal rather than secreting it. (d) Symbolicrepresentation, model and data for all two strain cascades where the upstream input is activating the production of the intermediate signal. (e)Symbolic representation, model and data for all two strain cascades where the upstream input is repressing the production of the intermediatesignal. (f) Symbolic representation, model and data for three-layer signaling cascades.
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To model these strains, we used a simple extension of our previously introduced models with201

five ODEs (1E, Model 2): two ODEs model input sensing (a), two model input processing (b), and202

one ODE (c) combines the signals according to their activating or repressing nature and defines203

output synthesis. These models fit the experimental data even when the output is non-monotonic204

over time.205

Assembling modular, tunable and easily-extendable circuits using cell-to-cell com-206

munication207

To determine the potential to build biological circuits using cell-to-cell communication, we exper-208

imentally tested if communication occurs between strains that secrete an output and their corre-209

sponding sensor strains. For example, a strain that produces auxin in response to �-factor sensing210

was grown in coculture with a sensor that switches off GFP expression in response to auxin(1B).211

The two strain populations were added at the same concentration and the fluorescent output was212

measured at steady state (10 hours after induction). The experimental data is consistent with a213

negative �-factor sensor as expected (the more �-factor, the lower the fluorescent signal, as seen214

in 2A).215

Since the core genetic circuit of this sender strain is identical to the �-factor repressing sensor,216

we tested if themathematicalmodel previously fit to the sensor data preserves its predictive power.217

We re-fit only the 3 output parameters to account for the fact that the output is now auxin rather218

than GFP. The output of the sender cell model was used directly as input of the sensor cell model.219

To test the hypothesis that strains that have common input/processing parts share parameters220

and model structure, we collected two datasets composed of four data points each: we used one221

for fitting (yellow dots), and the other for validation (orange dots, 2A). A time-series at EC50 input222

concentration was also used for fitting (not present in the figure)223

Intuitively, we expected that higher initial sender cell concentration would result in an overall224

higher concentration of their output signal over the same time scale. Most importantly, we wanted225

to know if this output ‘gain’ can be predicted by our models so that we could use it to tune circuit226

behavior. We modelled this effect with a factor K multiplied by the output signal, where K is227

the fold-change with respect to the standard initial concentration: we represented this gain using228

the same iconography used in electronic circuits (2B). Our predictions matched closely with data229

collected using 5X and 10X the original concentration of sender cells (green and blue lines) using230

the same strain co-culture as in the previous panel (orange line).231

We further tested if we couldmodulate the concentration of signalingmolecules by removing it232

from the system through BAR1 and GH3.3-expressing strains (2C). Wemodelled signal degradation233

as a first-order Hill repressing function, where the output of the sender cell acts as a negative reg-234

ulator. As before, only the three output parameters of the sender strain were fitted using receiver235

cell fluorescence data. Finally, we tested all of the sender-receiver pairs in our vocabulary with the236

exception of those generating positive or negative feedback. All activating strains function within237

the sensor range of their receiver strains (2D), and the models correctly fit or predict the data. On238

the other hand, the output of repressing strains (2E) did not fully cover the input range of their239

receiver strains, as seen in the limited fold-change of the fluorescent signal. Models suggested240

that increasing the sender strain population to ten-fold its original value would produce a more241

noticeable response, which we successfully verified experimentally (purple dots and lines, 2 D and242

E).243

After the 2-strain combinations, we also verified the predictive power of our model on two244

3-strain chains with different topologies and different strain stoichiometries (2F). Here too, the245

simplemodel strategywe outlined earlier captured the overall dynamics evenwhendifferent strain246

concentrations were used. These results support the hypothesis that multicellular circuits behave247

like a sum of their individual parts (modularity), are easy to modulate (whether through altering248

initial strain concentrations or signal degradation) and can be extended to longer chains.249
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Increasing nonlinear response using external positive feedback250

Thus far, we exploredways to simulate and designmulticellular circuits with tunable gains to obtain251

monotonic, quasi-linear dynamic systems with a single equilibrium point. To extend the range of252

observable behaviors and generate non-linear responses to the inputs, we used positive feedback253

strains that sense and secrete the same signaling molecule(3A).254

To highlight the increase of nonlinear response, on top of fittingmodels to the positive feedback255

strains (as in 2A), we also re-fitted the sensor strains to estimate a new Hill coefficient (much as in256

Shaw et al. (2019)). We then plotted these fitted curves, the data points and the twoHill coefficients257

for both the feedback system and the nominal response (in this case, the sensor alone). In both258

cases, the positive feedback increased the nonlinearity of the response (from 0.8±0.0 to 1.5±0.1 and259

from 1.0±0.4 to 1.2±0.3 for the �-factor and the auxin case respectively). We also considered positive260

feedback circuits that operate through double repression (3B). In this case, we tested topologies261

where either �-factor represses BAR1 synthesis, or auxin represses GH3.3 synthesis. Ideally, at262

low signaling molecule concentration, signal degradation through BAR1 or GH3.3 is predominant263

so there is no fluorescence response in the receiver cells. But at high input concentration, the264

degradation pathway is switched off and the input is free to reach the receiver cells. As in 3A, we265

measured the Hill coefficients of these circuits and reported an increase in nonlinear response266

(from 0.8 ± 0.0 to 1.0 ± 0.0 and from 1.0 ± 0.4 to 1.4 ± 0.6 for �-factor and auxin circuits respectively).267

268
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Constructing a multicellular bistable switch269

Wenext turned to the construction of a bistable switch circuit. Weopted to use amutual-repression270

topology to generate bistability (Gardner et al. (2000),Oyarzún and Chaves (2015)). For a first de-271

sign, we combined the strain that senses �-factor and represses auxin synthesis with the strain272

that senses auxin and represses �-factor synthesis. Here, the main state variables are signaling273

molecule concentration in the media rather than the internal state of the cells (specifically, high274

auxin/low �-factor and low auxin/high �-factor). However, both model simulation and experimen-275

tal data showed that this circuit can generate only a single equilibrium, independently of the strain276

stoichiometry because of a lack of non-linearity in the system (SI, Figure 7).277

To boost non-linearity, we added two strains to the mix that induce signal degradation: a strain278

that senses �-factor and synthesizes GH3 and one that senses auxin and synthesizes BAR1 (3C).279

The resulting system can still be seen as two modules that repress each other’s activity: �-factor280

lowers auxin concentration (through pathway repression and GH3 expression) and auxin reduces281

�-factor concentration (through pathway repression and BAR1 expression). We studied this new282

system with a steady-state model for auxin and �-factor concentrations (3C, Model 3 and SI Figure283

8 for model derivation). The model suggests that the Hill coefficient is higher than 2, a necessary284

condition for the existence of more than one equilibrium.285

We investigated the existence and properties of the equilibria while varying the individual con-286

centrations of the four strains in the circuit: these variations are captured by the fourK parameters287

in the model, representing the gains of the four strains in the circuit as explained earlier. Using the288

model, we identified a range of concentrations predicted to result inmultiple equilibria. For further289

investigation, we picked a set concentrations that maximize the distance between equilibria such290

that the equilibria are robust to small variations in strain concentrations (red diamond, 3D). This291

solution generates two nullclines that intersect three times, resulting in 2 stable (red crosses) and292

1 unstable (black empty circle) equilibrium as expected (3E).293

We tested this model-guided design experimentally (3E). Strains were mixed according to the294

chosen concentrations and an auxin negative sensor strain was added. Upon reaching steady295

state (Time 0 in 3F), samples were diluted at regular intervals to prevent the cells from saturating.296

To alternate between the states, we exogenously added first auxin (at 3 hours) and then �-factor297

(at 15 hours) and let dilution reduce their concentration to below detectable levels for our sensor298

(at 12 and 24 hours, respectively).299

Model 3 simulation and data largely agree, although there is a lag between the two. We hypoth-300

esize that the lag is due to a signaling delay between the strains that was not fully captured by301

the models in this five-strain circuit. More importantly, the ‘high’ equilibrium is stable in the first302

3 hours of the experiment, but seems to become unstable after 25 hours, as shown by a negative303

trend in the data toward the ‘low’ equilibrium. Modelling suggests that a small increase in the K4304

gain (strain: IAA expressing BAR1) would lead the system to a single ‘low’ equilibrium (SI Figure 9).305

This could occur if the corresponding strain grows slightly faster than the other strains (although, in306

practice, we could not detect any growth difference between the single-input/single-output strains,307

SI Figure 10).308
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Automated design of strain circuits to generate logic gates309

In order to expand our target behaviors, we developed an automated approach to select circuits310

using the twenty-four strains introduced above. Specifically, we simulated all possible strain com-311

binations for networks of size 2, 3 and 4 strains using Models 1 and 2. For each network, we simu-312

lated the system response over 12 hours to all possible combinations of �-factor (in the discretized313
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range of [0 1 5 10 50 200 1000] nM), auxin ([0 100 500 1000 5000] nM), and �-estr ([0 1 5 10 100] nM). The314

ranges were chosen to properly sample the operational range of the strains (see 1C, D, E).315

Next, we screened our simulation space for steady-state behaviors whose profiles resemble316

AND, OR, NAND or NOR logic gates. For each strain combination, we restricted the steady-state317

behavior space to simulations obtained using combinations of the highest input concentrations318

(�-factor=1000uM, auxin= 5000�M, �-estr=100nM) or no input to match the [01] logic table input319

entries. This selection resulted in 120 combinations from the 2-node networks, 560 from the 3-320

node networks, and 1820 from the 4-node networks. After normalization to allow for comparison321

between different sensors (SI Figure 11), each of these combinations was scored according to how322

well they match one of the logic gate truth tables. If the predicted output for one of the expected323

OFF states was higher than the output for one of the expected ON states, then the metric would324

return a value below 1 labeling that strain combination to be a poor logic gate realization. On the325

other hand, values above 1.0 imply a match between the output vector and the target truth table:326

the higher the value, the better the separation between the ON and OFF state.327

We first applied this method to identify circuit topologies that generate AND gate profiles (4A).328

Each network topology is represented as a diamond, color-coded according to the network size329

(blue for 2-node, red for 3-node and yellow for 4-node networks), and divided in 4 groups according330

to the sensor strain reporter. Each network was scored, and its value reported on the x-axis.331

Next, we selected all the network topologies that scored higher than 1.0 and performed an332

optimization step. Optimization aimed to maximize the target metric using strain concentration333

(gains) as optimization parameters (4A, left panel). Finally, we picked the highest scoring topology334

for experimental testing. The best AND gate was a 4-node network topology that used �-factor335

and �-estradiol as inputs and a negative auxin sensor to determine the output. This strain com-336

bination included two strains repressing auxin output in the presence of �-factor and �-estradiol337

respectively. These strains by themselves should ideally generate an AND gate in concert with the338

negative auxin sensor. The other two strains improve performance of the AND gate, likely by re-339

ducing the effect of leaky auxin synthesis from the �-factor-sensing/auxin-repressing strain. The340

experimental realization of this circuit shows separation between the ON and OFF states. In fact,341

the data (blue bars) seem to slightly outperform the predictions (4A, right panel).342

We repeated this same procedure for NOR, NAND and OR gates (4B). The optimal NOR gate is343

also a four-node network, while the optimal NAND gate is a three-node network, and both use the344

same auxin sensor as the optimal AND gate. The bar separating ON and OFF states as defined for345

the AND gate holds for all the gates sharing the same sensor. The optimal OR gate is the naive346

realization with two strains synthesizing auxin from different inputs and an activating an auxin347

sensor. All the gate profiles are close to their predicted values from simulation, showing the high348

degree ofmodularity of our vocabulary of strains, even for complex systemswith internal feedback349

as the NOR gate architecture. For each gate, we also tested the optimal realization of the strain350

combinations for the two remaining network sizes with similarly positive results (SI Figure 12).351

11 of 19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464175doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464175
http://creativecommons.org/licenses/by-nc-nd/4.0/


101

102

103

104

105

Steady State behaviors

0.4%
0.38% 0.17%

Time (hr)
0

5

10

15

0 2 4 6 8 10 12

All possible topologies
Non-monotonic behaviors

0 2 4 6 8 10 12
0

5

10

15

R
el

at
iv

e 
M

ea
n 

Fl
uo

re
sc

en
ce

non-monotonic metric 

Time (hr)

Time (hr)
0 2 4 6 8 10 12

0

5

10

15

Experimental
realization

A

Aα K2

α -
A

AK1A

0 5 10 15 20

18

22

26

30

34

Time (hr)
0 5 10 15 20

26

30

34

Time (hr)

R
el

at
iv

e 
M

ea
n 

Fl
uo

re
sc

en
ce

0.1 nM 
1 nM
5 nM

α-factor:

A

B

K2

Aα K3

K1

K4

α

α -
A

α-factor (nM) α-factor (nM)

R
el

at
iv

e 
M

ea
n 

Fl
uo

re
sc

en
ce

10
-2

10
-1

10
0

10
1

10
2

10
3

16

18

20

E

Aα K1

α
-

A

AK2A

IAA (nM)

R
el

at
iv

e 
M

ea
n 

Fl
uo

re
sc

en
ce

10
-2

10
0

10
2

10
4

9

11

13

15

17

IAA (nM)

C

D

F

101

102

103

104

105

106

Time Series behaviors

0.53%
0.55%

0.48%

N
um

be
r 

of
 to

po
lo

gi
es

10

14

18

22

Stoichiometry
optimization

K2

Aα K1

A

Topology search

2-node network 3-node network 4-node network 2-node network 3-node network 4-node network

Optimal circuit 
identification

B

9

11

13

15

17

10
-2

10
0

10
2

10
4

10
-2

10
-1

10
0

10
1

10
2

10
3

Figure 5

12 of 19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.13.464175doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.13.464175
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5 (previous page). Model generated implementations of analog functions. (a) An automatedsearch algorithm was used to screen all possible strain combinations up to size four (+ one sensor strain) fornon-monotonic behaviors. Specifically, we set up the search to find combinations that result in a pulse as afunction of time or as a function of concentration (b). Top row: We define a non-monotonicity metric andrank all combinations according to that score. Bar graphs show the total number of possible straincombinations (blue) and the percentage that show non-linear behaviors. Results are organized by size of thestrain combination and the type of target behavior. (c) Strain stoichiometries are optimized for the mostpromising strains to obtain more extreme maxima or minima. Left: a diagram of the highest scoring circuitfor time pulses selected for testing. Center: behavior prediction after circuit stoichiometry optimization. Right:Experimental data for the time pulse circuits is shown. (d) Strain combination, model prediction andexperimental data for a system that results in a dip in fluorescence as a function of time rather than a peak.
(e) Strain combination, model prediction and experimental data for a system that generates a peak atintermediate auxin concentration thus realizing a band-pass filter. (f) Strain combination, model predictionand experimental data for a system that generates a dip at intermediate alpha-factor concentrations. Thissystem realizes a ‘band-stop’ filter, which is a combination of a low and a high-pass filter.

Identification of circuit designs for time pulses and band pass filters352

Wenext extendedour automateddesign strategy to circuits that either generate timepulses or that353

acts as band pass filters on the input signal concentrations. Starting from the simulation dataset354

of all possible strain combinations, we selected all those that displayed non-monotonic behaviors355

(having at least one local maximum/minimum) as a function of time or as a function of the steady356

state input concentration. We defined a non-monotonicitymetric as the distance between the local357

maximum/minimum and the maximum/minimum between the initial value and the final value of358

the series. Higher values of the metric hint to more pronounced non-monotonic behaviors, while359

0 implies that no local minimum/maximum is present (5A). We then selected the top six candi-360

dates (one for each sensor type in 1B, D and E, excluding the �-estradiol ones), and performed361

optimization to maximize the metric using cell concentrations and input concentration as param-362

eters. Finally, we experimentally tested the top two topologies overall for both time pulses and363

steady-state band-pass filters. It is worth noticing that only 0.52% of all possible topologies across364

network sizes generated non-monotonic behaviors in time (of about 106 in total, 5A) and only 0.32%365

at steady state (of about 105 in total, 5B). Hence, a ‘brute force’ experimental approach to test all366

possible strain combinations would be evidently out of reach.367

The highest performing time pulse topology (5C) is induced by �-factor that activates both fluo-368

rescence expression and auxin synthesis. In turn, auxin induces BAR1 production, which degrades369

the exogenous �-factor signal: unsurprisingly, this is an incoherent feed-forward loop, type 1 (as in370

Mangan and Alon (2003)). The optimal ‘reversed’ time pulse, i.e. a dip in the output at intermediate371

times (5D), responds to �-factor induction and implements a modified incoherent feed-forward372

loop type 3, where �-factor both represses and activates fluorescences. Model predictions sug-373

gested that three different �-factor concentrations would generate this behavior at different ca-374

pacities (0.1nM, 1nM and 5nM �-factor). According to the models, both these nonlinear behaviors375

are a consequence of delay between an activator and an inhibitor pathway.376

The low-pass concentration filter (5E) uses very similar components but the sensor with op-377

posite topology. In this case, �-factor activates fluorescence expression but also auxin synthesis,378

which then activates its own expression in a positive feedback. This topology is also an incoherent379

feed-forward loop (type 1) and results in a band-pass filter output. Finally, the band-stop filter (5F)380

uses both �-estr and �-factor as inputs, and the circuit topology presents a combination of neg-381

ative feedback and an incoherent feed-forward loop (type 3). The circuit operates as a ‘reversed’382

band-pass filter over �-factor concentration, while �-estr is kept constant and only adds a baseline383

of �-factor and auxin through the two top strains in the circuit.384

The experimental data qualitatively agreedwith the predictions, althoughwenotice a timedelay385

for the first two circuits and a shift in baseline for the latter two. The time delay is caused by386

underestimation of sensor strain activation due to difficulty in cytometrically isolating the sensor387
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strain from the other strains (5C) and possibly by an undermodelled delay of auxin synthesis (5D).388

The baseline shift is consistent with a higher concentration of auxin in the system in both cases.389

As a matter of fact, these two experiments (5E,F) ended at a higher cell concentration than usual390

(running time of 12 and 14 hours respectively), and it is known that yeast natively synthesizes auxin391

at saturation (Rao et al. (2010)).392

Discussion393

Here, we demonstrated the potential of synthetic multicellular circuits to generate a wide range of394

behaviors starting from simple activating or repressing individual strains. Instead of implementing395

complex circuits in isogenic populations, we designed simplemonotonic circuits in different strains396

and allowed them to communicate using just two signaling molecules (�-factor and auxin) or to397

affect their environment by attenuating those signals (through BAR1 and GH3.3 ). These simple398

constructs alone were capable of recapitulating many behaviors previously realized with synthetic399

gene circuits such as bistability, band-pass filters, pulses and logic gates. Moreover, our last results400

onautomated identification of circuit topologies that realize a target behavior (5) hint that the space401

of possible functional circuit architectures is larger than we explored.402

Wedemonstrated through an extensive use ofmathematicalmodels, that these syntheticmulti-403

cellular circuits are modular, easy-to-tune and extendable. Modularity is achieved through cell-404

cell communication that avoids cross-talk, and is demonstrated by combining input and output of405

our simple models. Multi-cellular circuits are tuned using different cell concentrations or positive-406

feedback architectures. Finally, we realized that we could tune the circuit behavior by extending407

or shortening the length of the signaling chain by adding or removing intermediate strains. We408

exploited this property to build the two time-pulses (Figure5, A and B): a slower repression or409

activation dynamic allows for the opposite signal to operate first, generating the non-monotonic410

behaviors we observed. We imagine this property will gain more practical applications when the411

number of signaling molecules increases, which is the current major limitation in our system.412

We reported that our most complex circuits display some discrepancies between simulations413

and experimental data, whose explanation is not always clear. It is possible that the delay between414

sending and receiving is not adequately modelled, or that factors that were not modelled, such as415

individual cell differences within cell populations, are affecting those circuits. Future work should416

account for these factors at the modelling steps, for instance using distributions to describe input-417

output relationships Thurley et al. (2018) or more complex models.418

Finally, we leveraged the mathematical description to define an automated method to design419

behaviors according to performance specifications. Computationally, themethod simulates all the420

possible strain combinations given a fixed number of nodes, and then scores them according to421

how well they reproduce the behavior of interest. As it is defined, the method is not easily scal-422

able because the number of total simulations increases exponentially with the number of strains423

and does not account for differences in the initial strain populations. However, we found no catas-424

trophic failures in the experimental validations, such as a qualitatively different behavior, owing425

to the modularity of our system. Future efforts should be directed towards more efficient ways to426

simulate the networks, for instance by training a neural network on the current simulation sets to427

predict the output of interactions.428

Method429

Construction of yeast strains430

Yeast transformations were carried out using a standard lithium acetate protocol used by (Gander431

et al. (2017)). Yeast cells weremade competent by growing 50ml cultures in richmedia to log growth432

phase, then spinning down the cells and washing with H20. Next, linearized DNA, salmon sperm433

donor DNA, 50% polyethylene glycol and 1M LiOAc were combined with cell pellet and the mixture434

was heat shocked at 42◦ for 15min. The cells were then spun down, supernatant was removed and435
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they were resuspended in H2O and then plated on selective agar media. Transformations were436

done into MATa W303 − 1A.437

Cytometry438

Fluorescence intensity was measured with a BD Accuri C6 flow cytometer equipped with a CSam-439

pler plate adapter using excitation wavelengths of 488 and 640nm and an emission detection filter440

at 533nm (FL1 channel). A total of 10, 000 (20, 000 for the bistable switch samples) events above a441

400, 000 FSC-H threshold (to exclude debris) were recorded for each sample using the Accuri C6442

CFlow Sampler software. Cytometry data were exported as FCS 3.0 files and processed using a443

custom Python script to obtain the mean FL1-A value for each data point.444

Data collection for sensor strains445

Synthetic complete growthmediumwas used to grow the cells overnight from glycerol stock, while446

300�M IAM (Indole-3-acetamide) was added in all the experimental medium (also synthetic com-447

plete). Experiments involving time course data were taken during log phase via the following448

preparation: 16 hrs of overnight growth in the synthetic complete medium in a 30◦ shaker incu-449

bator followed by dilution to 30 events/�L into fresh, room-temperature medium. After 10 hrs of450

growth at 30◦, we performed a new dilution to 30 events/�L in 3ml of medium, added the inducers,451

and started collecting 100�L samples for measurements periodically until the completion of the452

experiment.Ten thousand events were collected for each condition.453

Data collection for co-culture experiments454

Sample preparation was conducted as described above with each strain in a separate test tube. At455

the start of the experiment, each strain concentration was first measured and then strains were456

combined at the concentration specified by the experiment. We considered the concentration457

of 30 events/�L as the baseline concentration for all the experiments and all concentrations are458

expressed as multiples of this reference concentration. Once the samples were added together459

at the desired concentrations, inducers were added and measurements were taken periodically460

until the completion of the experiment as described for experiments with sensor strains. For the461

duration of the experiment, the samples were kept in a 30◦ shaker.462

Data collection for Bistable Switch data463

The sample preparation was conducted as described above, each strain in individual test tubes.464

Then, each of the five strains in the bistable switch were combined together at the concentration as465

outlined in themain text in a 3ml test tube kept in a 30◦C shaker for the duration of the experiment.466

Every 40 minutes, we performed a 1
3
dilution with fresh media with 300�M concentration of IAM,467

through manual pipetting. Samples of 120�L were collected for the duration of the experiment468

approximately every 3 hours.469

Model fitting procedure and simulations470

Model parameters were estimated using Matlab© fminsearch function to minimize the L2-norm471

of the difference between observations and simulations. For sensor strains in 1, each parameter472

was estimated three times on three different experimental repeats to identify mean and standard473

deviation. Then, the parameters used for all the simulations in this study were estimated by fitting474

the average of the three measurements. Model parameters for the non-sensor strains were esti-475

mated by minimizing the L2-norm of the difference between the simulations and the average of476

three experimental repeats as data points.477

Models were simulated using the Matlab© ode15s function.478

Codes and data availability479

Codes and data are available at https://github.com/Alby86/MulticellularYeast.git.480
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