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 2 

Abstract 21 

Background: The intestinal microbiome is closely related to host health, and 22 

metatranscriptomic analysis can assess the functional activity of microbiomes by quantifying 23 

the bacterial gene expression level, which helps to elucidate the interaction between the 24 

microbiome and the environment. However, functional changes in the microbiome along the 25 

host intestinal tract remain unknown, and previous analytical methods have limitations, such 26 

as potentially overlooking unknown genes due to dependence on existing databases and being 27 

unable to take full advantage of metatranscriptome to reveal the functional change among 28 

multiple environments. 29 

Result: To close these gaps, we develop a novel method that integrates metagenome and 30 

metatranscriptome to analyze the functional activity of microbiomes between intestinal sites. 31 

This method reconstructs a reference metagenomic sequence across multiple intestinal sites, 32 

allowing the gene expression levels of microbiome including unknown bacterial genes to be 33 

compared between multiple sites. As a result of applying this method to metatranscriptomic 34 

analysis in the intestinal tract of common marmoset, the reconstructed metagenome covered 35 

most of the expressed genes and it revealed that the changes in bacterial gene expressions 36 

among the caecum, transverse colon, and faeces were more dynamic and sensitive to 37 

environmental shifts than its abundance. In typical, the coenzyme synthesis gene and 38 

antibacterial resistance gene were more highly expressed in the caecum and transverse colon 39 

than in faeces, while there was no significant change in abundance of these genes. 40 

Conclusion: Our findings demonstrate that an analytical method that integrates metagenome 41 

and metatranscriptome in multiple intestinal sites captures functional changes in the 42 

microbiomes at the gene resolution level. 43 

 44 
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Introduction  45 

In the past few decades, many sequence-based analyses have attempted to elucidate the 46 

relationships between microbiomes and environments such as the ocean, soil, and digestive 47 

tract. These studies have traditionally focused on profiling membership through amplicon 48 

sequencing of the 16S rRNA gene. Recently, whole metagenomic sequencing methods, which 49 

enable comprehensive capture of microbial genomes to reconstruct database-independent 50 

metagenome sequences and reveal potential microbial genes and the community taxonomic 51 

abundance profiles, have become more widely used due to recent advances in sequencing 52 

throughput and analytical methods. For instance, in a large-scale metagenomic analysis 53 

spanning human body parts—the oral cavity, skin, faeces, and vagina—154,723 microbial 54 

genomes were reconstructed, 77% of which were unknown genomes not found in public 55 

repositories (1). Additionally, a study on the cow rumen microbiome reported 913 microbial 56 

genomes, and these reconstructed genomes improved the metagenomic read classification by 57 

sevenfold (2). Other studies have shown that microbial genes detected on reconstructed 58 

metagenomic sequencing play an important role in pathology of rheumatoid arthritis (3). 59 

Although these metagenomic studies have revealed many insights into a wide variety of 60 

microbiomes by finding new bacterial genomes and potential genes and emphasized the 61 

importance of reconstructing bacterial genomes, these approaches show only the presence of 62 

microbiome members and their genes and cannot indicate whether they are active members 63 

of the microbiome or how the bacteria actually interact with the environment. As a way to 64 

solve these problems, metatranscriptomic analysis records expressed transcripts within a 65 

microbiome to obtain deeper insight into how bacterial communities respond to 66 

environmental conditions. A study that included both metatranscriptomic and metagenomic 67 

analyses in patients with inflammatory bowel disease (IBD) highlighted the metabolic 68 

pathways characteristic of the disease and revealed whether metagenomically abundant 69 
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bacteria were inactive or dormant in the intestine (4). In a human faecal microbiome study 70 

with both metagenomic and metatranscriptomic analysis, the metatranscriptome was more 71 

dynamic than the metagenome, and there was a discrepancy between bacterial abundance and 72 

transcriptional activity (5). As such, finding microbial gene expression signatures can be 73 

crucial to understanding the mechanisms behind microbe-environment interactions. 74 

Metatranscriptomic analysis utilizes three main approaches to quantify bacterial 75 

transcripts, each with corresponding drawbacks. The first is the read-based approach used in 76 

the pipelines such as HUMAnN2 (6) and SAMSA2(7), which assess the activity of each 77 

protein family and pathway by aligning reads derived from metatranscriptomic library 78 

preparations with protein databases such as RefSeq (8) and pathway databases such as KEGG 79 

(9) and MetaCyc (10), respectively. This method is simple and often used but may missed 80 

many previously unknown genes that are not annotated in the databases. 81 

The second approach is de novo assembly of RNA reads with programs such as 82 

Trinity (11) and SOAPdenovo-Trans (12). In this method, the transcript is reconstructed from 83 

the RNA short reads by de novo assembly, and the expression level is quantified by aligning 84 

the RNA read with this transcript.  This method does not rely on the databases, whereas 85 

these assemblers are designed for a single organism and have not been shown to be effective 86 

in accurately assembling transcripts from a complex community (13). 87 

The third approach performs metatranscriptomic analysis based on de novo assembly 88 

of metagenomic data. Gene expression is quantified by aligning RNA reads with the 89 

predicted genes for contigs obtained by assembling corresponding metagenomic DNA reads, 90 

which requires simultaneous sampling of the metagenome and metatranscriptome from the 91 

same sample. This approach is powerful enough to discover and focus on unknown genes and 92 

is therefore adopted in this study as well. When applied to the analysis of microbiome in 93 
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multiple environments, the difficulty of this approach is to identify the same gene across 94 

samples because the assembled genomic sequence varies from base to base depending on 95 

samples. This limitation prevents comparison of the bacterial gene expression level between 96 

different environments such as multiple intestinal sites. In previous studies that attempted to 97 

gain insight into newly discovered genes, unannotated genes predicted on the reconstructed 98 

genome were clustered by sequence similarity and the gene activity was assessed by 99 

summing the expression levels of genes within the same cluster (14). However, in this 100 

approach, all similar genes encoded in multiple bacterial species are combined into a single 101 

one, and it is thus still not possible to quantify the expression level of each gene in each 102 

bacterial species. 103 

The intestinal tract regulates highly complex physiological processes while interacting 104 

with a dense and diverse microbial population. Most studies use faecal sample on the 105 

assumption that faeces reflect the condition of the microbiome inside the intestinal tract (1) 106 

(3) (4) (5). Since the function of the intestinal tract varies from site to site, and there are 107 

differences in the physicochemical environment, such as nutrients, oxygen, and pH, the 108 

microbiome may differ in response to changes in the environment (15) (16). Indeed, due to 109 

these environmental shifts, some studies have reported that the composition of the 110 

microbiome varies depending on the intestinal sites in model animals, such as mice and pigs 111 

(17) (18) (19) (20). However, these studies have shown only differences in the microbial 112 

members in the intestinal tract, and it is still unclear how the microbial function varies along 113 

the intestinal tract. Moreover, for the aim of applying it to the interrelationship between 114 

humans and microbiomes, we need to study using an animal model that are more 115 

anatomically and pharmacologically resemble to the human. The common marmoset is a 116 

small new world primate that is considered a useful model in preclinical studies due to its 117 

common physiological and anatomical characteristic with those of human (21).  118 
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In the present study, we aim to clarify the changes in microbial abundance and gene 119 

expression due to environmental gradients among the caecum, transverse colon, and faeces. 120 

To accurately perform this investigation, it is necessary to overcome the discrepancy between 121 

the microbes existing in the environment and those registered in the databases such as COG 122 

and KEGG Orthology (KO) database (1) (2). Therefore, we developed an integrated 123 

metagenomic and metatranscriptomic method for analysis of the functional changes in 124 

microbiomes across multiple intestinal sites and then applied this method to the investigation 125 

of common marmoset intestine.  126 

 127 

Results 128 

 129 

Overview of the proposed analytical method that integrates metagenome and 130 

metatranscriptome to analyze the functional activity of microbiomes between intestinal 131 

sites 132 

After assembly and scaffolding of the metagenomic reads, the proposed analytical method 133 

used a strategy to reconstruct the common reference metagenome, including those of 134 

unknown bacteria, by merging the scaffolding between samples; accordingly, the expression 135 

levels of all bacterial genes can be quantified by integrating this reconstructed reference 136 

metagenome with metatranscriptome data. The overview of the proposed analytical method is 137 

illustrated in Fig. 1. Using this method, we compared the microbial gene expression levels 138 

among three sites—the caecum, transverse colon, and faeces. These sites were selected as 139 

locations equivalent to the proximal, middle, and distal position of the colon, where the most 140 

bacteria are located (22). In addition, we compared the corresponding microbial compositions 141 
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among humans, mice, rats and marmosets to evaluate the suitability of common marmosets as 142 

an animal model in microbiological studies.  143 

 144 

Metagenome merging-reconstruction improves assembly contiguity, transcript mapping 145 

rate and identification of same genes between sites 146 

A total length of 306 Mb and 395 Mb reference metagenomes consisting of 32,244 and 147 

39,905 scaffolds were reconstructed by merging from three intestinal sites for individuals 1 148 

and 2, respectively. We compared scaffold length before and after merging scaffolds from 149 

three sites by a generalized score N-statistic, which is an extension of N50. Scores from N10 150 

to N100 were plotted at 10 intervals in Fig. 2A. The genome assembly of each intestinal site 151 

fell well below in comparison to the merged one. This implied that merging improved the 152 

assembly contiguity, which means that the scaffolds of three sites complemented each other 153 

to reconstruct a longer genome. Next, a total of 246,980 and 320,613 genes were detected in 154 

the reconstructed metagenomes for individuals 1 and 2, respectively. Of the genes detected in 155 

individuals 1 and 2, 63,331 and 88,575 (26% and 28%) genes were not present in the COG 156 

database, and 112,790 and 152,845 (46% and 48%) genes were not present in the KEGG 157 

database (Fig. 2B; Table S1). Thus, a large number of novel genes not included in the public 158 

database were detected on the reconstructed metagenomes. 159 

To quantify the gene expression level, we first mapped the mRNA reads to all 160 

complete bacterial, archaeal, and viral genomes in the RefSeq database (8). Only 21–52% of 161 

mRNA reads could be assigned to the known genomes (Fig. 2C). This result confirmed that 162 

information to understand the microbiome activity was limited if relying solely on the 163 

genomes registered in the public database. We therefore mapped the mRNA reads to the 164 

reference metagenomes reconstructed in this study. The mapping rate to the reconstructed 165 
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metagenomes increased to 82–90% (Fig. 2C). The reconstructed metagenomes covered most 166 

of the expressed genes (Table S2) and allowed us to map 2-4 folds more reads than the 167 

database. These results underscored the importance of database-independent analytical 168 

methods, especially in metatranscriptomic analysis to quantify microbial gene expression 169 

levels. 170 

In addition, we verified that the gene annotations were retained before and after 171 

merging by examining the percentage of genes common to three sites that matched the 172 

corresponding gene in the reconstructed metagenome. We found that 96.9% and 96.6% of the 173 

genes common to the three sites were identical to those of the merged metagenome, in 174 

individuals 1 and 2, respectively (Allowed for a 3-base mismatch; Supplementary Note 5; 175 

Table S3). The reference metagenome reconstructed by merging thus achieved the high 176 

accuracy to identify the same gene between three intestinal sites. 177 

 178 

Functional annotation for unknown genes with metatranscriptomic profiles 179 

To address unknown genes that were not annotated by the databases, we generated a gene 180 

catalogue from the reconstructed metagenomic sequences by grouping into gene clusters and 181 

performing a co-variation analysis. Of the unknown genes detected in two individuals, 50,509 182 

expressed genes were grouped into 24,725 gene clusters by protein sequence similarity (Table 183 

S4). In addition, we performed a co-variation analysis that estimated the function of those 184 

unknown gene clusters (23), incorporating a bivariate spatial relevance (24) between multiple 185 

intestinal sites. We first evaluated the rationale of this co-variation analysis that pairs of genes 186 

with similar expression profiles were associated with a common metabolic process 187 

(Supplementary Note 6; Table S5). As a result of benchmarking the co-variation analysis 188 

using the gene expression level at whole community and per cell, the area under the curves 189 
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(AUCs) were 0.830 and 0.729, respectively (Fig. 3A, B, and C). This co-variation analysis 190 

was then applied to the unknown gene clusters and showed that the function of many 191 

unknown gene could be involved in the xenobiotics biodegradation, energy metabolism, 192 

nucleotide metabolism, signal transduction, and digestive system (Fig. 3D; Supplementary 193 

Note 6 and 7; Table S6), which also suggests that current database-dependent analytical 194 

methods may underestimate these functions in our data. Thus, the co-variation analysis 195 

incorporating a bivariate spatial relevance, combined with metatranscriptomic analysis, 196 

provided an accurate functional interpretation of unknown genes on the reconstructed 197 

metagenome.  198 

 199 

Spatial variance in microbial gene expression at whole community and individual cell 200 

levels 201 

The functional activity of the microbiome in the caecum, transverse colon and faeces was 202 

assessed using the gene expression level at both the whole community and per cell levels. 203 

The gene expression level at whole community provides functional profiling of the entire 204 

microbiome but is affected by the abundance of bacteria; on the other hand, the gene 205 

expression level per cell provides the gene activity for each bacteria, even for minority 206 

bacteria.  207 

We extracted the biochemical functions whose expression levels varied significantly 208 

between the intestinal sites. The top 50 KOs (KEGG Orthologies) with highest expression 209 

differences between sites are shown in Fig. 4. KO identifiers, K02041: phosphonate transport 210 

system ATP-binding protein and K18910: D-psicose/D-tagatose/L-ribulose 3-epimerase were 211 

detected as differentially expressed between the caecum and transverse colon (Fig. 4A). The 212 

differentially expressed between the caecum and faeces were KO identifiers, K08260: 213 
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encoding adenosylcobinamide hydrolase, K03486: GntR family transcriptional regulator, 214 

trehalose operon transcriptional repressor, and K00332: NADH-quinone oxidoreductase 215 

subunit C (Fig. 4B). In addition to the differentially expressed gene between the caecum and 216 

faeces, KO identifier K19075: CRISPR-associated protein Cst2 was differentially expressed 217 

between the transverse colon and faeces (Fig. 4C). Here, we focus on genes involved in 218 

well-studied metabolism processes. The genes that are more highly expressed at whole 219 

community, in the caecum and transverse colon than faeces were genes involved in 220 

biosynthesis of the vitamin B12 (cbiZ and pduX), vitamin K2 (mqnE), vitamin B7 (bioD), and 221 

vitamin B6 (pdxH), and antibiotic resistance genes (arnA and arnB) (Fig. 4B and C). The 222 

gene cbiZ, which salvages cobinamide (Cbi), a precursor of AdoCbl, has its roots in the 223 

archaea and was acquired by several bacterial strains via horizontal gene transfer (25). This 224 

gene is required for bacterial growth on acetate (26). The detection of pduX as a differentially 225 

expressed gene along with cbiZ is consistent with a previous study showing that pduX is 226 

required for the cbiZ mediated pathway (27). Two genes arnA and arnB are known to result 227 

in resistance to antibiotics by modifying of the outer membrane by lipopolysaccharide. This 228 

modification is regulated by the PmrA/PmrB two-component regulatory system, which is 229 

switched on by low pH (28).  230 

These differentially expressed genes are related to sugar utilization in the intestinal 231 

tract (Fig. 5). The genes with differential expression at whole community between the 232 

caecum and faeces were the genes involved in the utilization of sorbitol (srlB), mannose 233 

(manY), and L-fucose (fucI) (Fig. 5(1)). This result likely reflects the utilization of sugars that 234 

were not absorbed in the small intestine by the microbiome (29). Fermentation of these 235 

sugars by the caecal microbiome produces short-chain fatty acids (SCFAs) (30), which 236 

increases the concentration of SCFAs in the colon, but it decreases in faeces due to its 237 

absorption at the colon (31). Acetic acid accounts for approximately 60% of SCFAs in the 238 
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colon (32), and therefore this change in the concentration of SCFAs along the colon explains 239 

the changes in expression of cbiZ (Fig. 5(2)), which is essential for bacterial growth on 240 

acetate (26). Similarly, the decrease in the concentration of SCFAs from the caecum to the 241 

descending colon was accompanied by an increase in pH, which is consistent with the 242 

changes in the expression of the antibiotic resistance genes arnA and arnB, which are 243 

switched on at low pH (28) (Fig. 5(3)). Thus, many of these genes differentially expressed 244 

between intestinal sites are involved in the SCFAs produced by microbial sugar metabolism. 245 

Since these typical genes are obviously encoded in multiple bacterial species, we picked up 246 

the L-fucose metabolic gene (fucI) and investigated which bacteria caused the differential 247 

expression of this gene. On the reconstructed reference metagenome, 30 loci encoding fucI 248 

were detected, each representing one bacterial species (Fig. 6). As a result of this analysis, 249 

many bacteria belonging to the Firmicutes phylum contributed to the expression level of the 250 

fucI gene at whole community, and the scaffold ID S123510 belonging to Megamonas genus 251 

was a particularly important contributor in individual 1. On the other hand, the scaffold ID 252 

S127859 belonging to Akkermansia genus, a well-known SCFA-producing bacteria (33), was 253 

most abundant in terms of gene abundance of fucI in individual 1, although its expression 254 

level per cell was low. This finding demonstrates the power of our method of integrating 255 

metagenome and metatranscriptome to enable analysis at the gene resolution level.  256 

 257 

Comparison of microbiomes among animal models by 16S rRNA gene sequencing 258 

To find similarities and differences between the common marmoset microbiome and those 259 

from the human and major model animals, macaques, mice and rats, 16S rRNA amplicon 260 

sequencing for marmoset faecal samples was conducted. The 16S rRNA gene sequence data 261 

for faecal samples from humans, macaque monkeys, rats, and mice were obtained from a 262 
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previous study (34). The OTU (operational taxonomic unit) analysis of microbiome similarity 263 

was performed quantitatively (weighted) and qualitatively (unweighted) at the genus and 264 

family levels. The principal component analysis (PCA) of the OTU profiling data is shown in 265 

Fig. 6. In contrast to the weighted analysis, the unweighted analysis more clearly isolated 266 

clusters of species. The marmoset clusters overlapped with human clusters in both weighted 267 

and unweighted analyses, revealing that the marmoset and human microbiomes were most 268 

similar. Mouse and rat clusters were located nearby in the unweighted analysis. The analysis 269 

at the family level showed that Muribaculaceae family accounted for approximately half of 270 

the microbiome of mice and was also detected in rat and macaque individuals. In contrast, 271 

most of humans and marmosets did not retain Muribaculaceae (Fig. S3). Despite all three 272 

groups being primates, the macaque microbiome did not resemble marmoset or human 273 

microbiomes in the unweighted profile, and no specific bacteria were detected between 274 

macaques and humans or between macaques and marmosets. On the other hand, 275 

characteristic bacteria were found in the comparison between marmosets and humans. The 276 

Bacteroidaceae family and Bacteroides genus were major members in marmosets and 277 

humans. Bacteroides, which inhabits healthy human intestines, has been reported to have a 278 

reduced abundance in IBD patients and is attracting attention as a probiotic (35). 279 

Bifidobacteriaceae family, Bifidobacterium genus, and Coriobacteriaceae family, Collinsella 280 

genus, were also mostly present in marmosets and humans but were not detected in many 281 

individuals of other animal model species. Bifidobacterium is known to be significantly 282 

depleted in colorectal cancer, IBD, irritable bowel syndrome and obesity, and has been 283 

reported to enhance the effectiveness of cancer immunotherapy (36)(37). Collinsella is a 284 

proinflammatory genus involved in rheumatoid arthritis and non-alcoholic steatohepatitis, 285 

and has potential as a disease biomarker (38)(39). In brief, it was found that marmoset and 286 

human faecal microbiome are significantly close and share many bacteria involved in a 287 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464166doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464166


 13 

variety of human diseases. 288 

 289 

Discussion 290 

The proposed method reconstructed the common reference metagenome by merging scaffolds 291 

from three sites assembled from metagenomic read data; using this approach, it was possible 292 

to identify the corresponding genes between three intestinal sites with high accuracy. Here, 293 

we evaluated the non-chimeric rate of the reconstructed genomes using a benchmarking 294 

dataset that collected only DNA reads assigned to known bacterial species. The non-chimeric 295 

rate is defined by the percentage of genome length assembled solely with DNA reads from a 296 

single species. As a result, the non-chimeric rates were 92.8% and 94.7% for individual 1 and 297 

2, respectively; most genomes were completely reconstructed as a single species within the 298 

metagenome (Supplementary Note 4). 299 

The gene expression changes between the caecum, transverse colon, and faeces were 300 

shown to be more dynamic than changes in microbiome abundance, which was consistent 301 

with the results of a previous study (5). For example, we found that genes related to 302 

carbohydrates were activated in the caecum compared to faeces, and coenzyme metabolism 303 

genes and antibacterial resistance genes were more highly expressed in both the caecum and 304 

transverse colon than in faeces, but these gene abundance did not vary significantly. Since the 305 

differential expressions of these genes were considered to be influenced by the concentration 306 

of SCFAs converted from carbohydrates by the microbiome, we focused on the fucI gene 307 

involved in carbohydrate metabolism. The reconstructed reference metagenome identified 30 308 

bacteria coding fucI, and Megamonas genus contributed most to the expression of fucI at 309 

whole community, despite the most abundance of fucI of Akkermansia. SCFAs are involved 310 

in host lipid metabolism (40), and Akkermansia, SCFA-producing bacteria, has received 311 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464166doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464166


 14 

attention as a factor that suppress high-fat diet-induced metabolic disorders, including 312 

metabolic endotoxemia and insulin resistance (33). Our results show that Megamonas is a 313 

more important member as a potential producer of SCFAs, especially in the caecal 314 

environment. These results highlight that the integrated analysis of metagenomics and 315 

metatranscriptomics provide also biological interpretations from two aspects: gene abundance 316 

and expression levels. 317 

Finally, we compared the faecal microbiome of six common marmosets with that of 318 

humans and the major model animals, macaques, mice and rats by the 16S rRNA gene 319 

analysis. The marmoset microbiome was found to be most similar to the human microbiome, 320 

with Bacteroides, Bifidobacterium, and Collinsella shared between them. These results 321 

suggest that marmosets can be expected to be a useful animal model in the microbiome 322 

studies. 323 

In conclusion, this study developed a method for integrating metagenome and 324 

metatranscriptome for the analysis of multiple intestinal sites. This analysis method allows to 325 

quantify gene expression levels and analyze gene expression changes among intestinal sites 326 

including unknown bacterial genes, which was overlooked with conventional methods. As a 327 

result of applying this analysis method to the multiple intestinal sites of the common 328 

marmosets, we revealed the changes in the internal environment along the intestinal tract may 329 

vary the expression pattern of the microbiome, and moreover this microbial change may 330 

mutually affect the environment inside the intestine. These findings highlight the importance 331 

of database-independent methods in metatranscriptomic analysis to quantify gene expression 332 

in the microbiome. 333 

 334 

Materials and Methods  335 
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 336 

Sample collection 337 

Common marmosets were housed at the Central Institute for Experimental Animals 338 

(Kawasaki, Japan) with free access to a pellet diet (for monkeys, CREA New World Monkey 339 

Diet, CMS-1M; CREA Japan, Tokyo, Japan). Two marmosets were selected in this 340 

experiment so that sample volumes from all three sites satisfied the requirements of the 341 

experimental protocol. Marmosets were sacrificed with pentobarbital overdose and digestive 342 

tract was isolated. The gastrointestinal tract of each animal was excised, and the luminal 343 

content of each gastrointestinal tract site was collected and divided into for metagenomic 344 

samples and for metatranscriptomic samples. The contents were immediately frozen in liquid 345 

nitrogen and stored at �80�. Metatranscriptomic samples were crushed and homogenized 346 

in solution D containing guanidinium, which inhibit ribonuclease (41), within one week after 347 

dissection to protect against the degradation and stored at �80�. Caecal, transverse colonic 348 

and faecal contents of marmosets (individual ID: I6289M and the individual ID: I6027M; 349 

Table S7) were used for metagenomic and metatranscriptomic analyses. These three sites 350 

were targeted at the beginning, middle and end of the colon, which is abundant in 351 

microbiome. Faecal contents of a total of 6 marmosets in addition to these two marmosets 352 

were used for 16S rRNA gene analysis.  353 

 354 

Shotgun metagenomic sequencing 355 

DNA was extracted from each metagenomic sample using a MORA-EXTRACT Kit 356 

(Kyokuto Pharmaceutical Industrial Co., Ltd., Tokyo, Japan). Sequencing libraries were 357 

prepared using TruSeq Nano DNA Library Prep Kit (Illumina Inc, San Diego, CA, USA). All 358 
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these procedures were performed according to the manufacturer’s instructions (Table S8). 359 

Illumina HiSeq sequencing yielded a total of 435 giga nucleotides (Gnt) of paired-end reads 360 

(250 bp × 2) for the metagenome. This dataset included an average of 145.1M reads ± 3.9M 361 

reads (mean ± s.d.) per sample before quality filtering, described below, and 125.9M reads ± 362 

5.3M reads afterward (Table S9). Shotgun metagenome libraries were adapter trimmed and 363 

quality filtered by Trimmomatic (42) version 0.36 364 

(ILLUMINACLIP:Adapter.fa:2:30:10:8:true, LEADING:3, TRAILING:3, 365 

SLIDINGWINDOW:4:15, MINLEN:50) and FASTX-Toolkit version 0.0.14 (-q 20 -p 80) 366 

(http://hannonlab.cshl.edu/fastx_toolkit/), respectively. Potential host and feed contaminants 367 

were then filtered by removing reads with sequences aligned to the host genome and feed 368 

genome (Supplementary Note 1). 369 

 370 

Metatranscriptomic sequencing 371 

RNA was extracted by a combination of the acid-guanidium-phenol-chloroform RNA 372 

extraction method (43) and a bead crushing method and assessed to ensure high quality (RNA 373 

integrity number (RIN) scores �7.9) (Table S10). The rRNA was removed using a 374 

Ribo-Zero Gold rRNA Removal Kit (Epidemiology) (Illumina). Sequencing libraries were 375 

prepared using TruSeq Stranded Total RNA HT Kit (Illumina). All these procedures were 376 

performed according to the manufacturer’s instructions (Table S8). Illumina HiSeq 377 

sequencing yielded a total of 165 Gnt of paired-end reads (100 bp × 2) for the 378 

metatranscriptome. This dataset included an average of 137.7M reads ± 2.8M reads (mean ± 379 

s.d.) per sample before quality filtering, described below, and 126.7M reads ± 4.0M reads 380 

afterward (Table S9). Metatranscriptome libraries were adapter trimmed and quality filtered 381 

using the same method as the metagenome libraries. The rRNA reads were removed by 382 
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SortMeRNA (44) version 2.1 (-e 1e-30). Potential host and feed contaminants were filtered in 383 

the same way as the metagenome libraries. 384 

 385 

Integrated metagenomic and metatranscriptomic analyses 386 

The integrated analytical method proposed in this study is composed of three main steps: (i) 387 

reconstruction of a reference metagenome common to all sites by assembly, scaffolding and 388 

merging steps (Fig.1 (1), (2)), (ii) mapping of DNA and mRNA reads to this reference 389 

metagenome respectively (Fig.1 (3), (4)) and (iii) quantification of microbial gene expression 390 

levels at whole community and per cell (Fig.1 (5)). Evaluation of this analytical method and 391 

determination of parameters for each step were carried out by using genome of known 392 

bacterial species genome.  393 

The DNA reads were assembled by Megahit (45) version 1.1.3 (-k-min 21, -k-max 394 

141, -k-step 12, -prune-depth 20). Contigs shorter than 1,000 bp were discarded from further 395 

processing. The contigs were scaffolded by OPERA-LG (46) version 2.0.6 using information 396 

of paired-end reads information. By merging the scaffolds of metagenomes from three 397 

intestinal sites using QuickMerge (47) version 0.3 (-hco 50, -c 50, -ml 1000), the reference 398 

metagenomic sequences that were common between sites were reconstructed. Genes were 399 

then predicted on the reference metagenomic sequences by MetaGeneMark (48) version 3.38 400 

to make the entire list of genes on the intestinal sites. We used GhostKOALA (49) and 401 

DIAMOND blastp (50) version 0.9.21.122 (--evalue 1e-10, --query-cover 85) to annotate the 402 

predicted genes according to orthologous groups in the KEGG database (release 94.1) (2) and 403 

the COG database (51). Subsequently, mRNA reads was mapped to the metagenomic 404 

reference sequences by Bowtie2 (52) version 2.3.4.3 and the number of mRNA reads were 405 

counted by HTSeq (53) version 0.9.1 to quantify the gene expression level. DNA reads were 406 
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also mapped to the metagenomic reference sequences by Bowtie2 version 2.3.4.3 (-x 2000), 407 

and the coverage of each metagenomic sequence was calculated by samtools (54) version 408 

0.1.19.  409 

 410 

Co-variation analysis incorporating a bivariate spatial relevance 411 

We performed a co-variation analysis to estimate the function of unknown genes. This 412 

analysis is based on the assumption that functionally similar genes are co-variant in their 413 

expression levels (23). First, we benchmarked using the profiles of expression at whole 414 

community and per cell by assessing the accuracy of this co-variation analysis in classifying 415 

the known genes with the same metabolic process. We grouped the known genes into gene 416 

clusters by COG annotation and calculated the bivariate spatial association measure (L 417 

statistic value) (24) to detect co-varying gene pairs in a six-dimensional vector of expression 418 

levels of three sites in two individuals. This benchmark was used to evaluate the model by 419 

AUCs and to determine the threshold of L statistic value to guarantee FPR<0.05. As a result 420 

of the benchmarking, we found that using the expression levels at whole community were 421 

more accurate than using the expression levels per cell. Next, we grouped the unknown genes 422 

into gene clusters by protein sequence similarity using MMSEQS2 (55). We used the model 423 

determined by benchmarking to perform co-variation analysis on the unknown and known 424 

gene clusters together. This allows us to estimate the function of the unknown gene cluster 425 

when the known and unknown gene clusters are linked (Supplementary Note 6). 426 

 427 

Quantification of the gene expression level 428 

Metatranscriptomic functional activity was assessed with two manner of quantification 429 
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methods. The first is a general method to quantify gene expression by normalizing mRNA 430 

read counts with transcripts per million (TPM) (this is called “gene expression level at whole 431 

community” in this paper). This method can estimate metatranscriptome activity in a 432 

microbial community. The second method is to normalize the mRNA read counts with DNA 433 

coverage, thus estimating the gene expression level per single bacterium (this parameter is 434 

called “gene expression level per cell” in this paper) (Supplementary Note 2).  435 

 436 

Taxonomic profiling 437 

Each reconstructed genome was identified to the taxon level by mapping the predicted genes 438 

against the non-redundant protein database and assigning taxonomic annotation with voting 439 

based approach using CAT version 4.3.3 (56).  440 

 441 

16S rRNA gene sequencing and comparison among animal models 442 

To compare the common marmoset faecal microbiomes with those of humans and other 443 

major animal models, 16S rRNA sequencing was conducted on the faecal samples from 6 444 

marmosets. Marmoset faecal DNA was extracted from each metagenomic sample using a 445 

MORA-EXTRACT Kit (Kyokuto Pharmaceutical Industrial Co., Ltd., Tokyo, Japan) by the 446 

bead crushing method. The 16S rRNA V3–V4 amplicon was amplified using a KAPA HiFi 447 

HotStart ReadyMix PCR Kit (KAPA BioSystems, USA). the amplicon PCR forward primer 448 

(5’-CCTACGGGNGGCWGCAG-3’) and amplicon PCR reverse primer 449 

(5’-GACTACHVGGGTATCTAATCC-3’) were used. Sequencing libraries were prepared 450 

using a Nextera XT Kit (Illumina) (Table S9). All these procedures were performed according 451 

to the manufacturer’s instructions. Sequencing was performed using an Illumina MiSeq 452 
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sequencer (Illumina) with paired-end reads (forward: 350 bp, reverse: 250 bp). Illumina 453 

MiSeq sequencing yielded a total of 11.3 Gnt of paired-end reads (350 bp, 250 bp). This 454 

dataset included an average of 3,154K reads ± 1,190K reads per sample before quality 455 

filtering and 1,387K reads ± 346K reads afterward (Table S9). The sequences were analysed 456 

using QIIME (Quantitative Insights into Microbial Ecology; version 1.9.1) (57). The 16S 457 

rRNA gene sequence data for faecal samples from humans, macaque monkeys, rats, and mice 458 

were obtained from a previous study (34). To avoid any bias from different sequencing depths, 459 

the OTU table was rarefied to the lowest number of sequences per sample.  460 

 461 
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 669 

Fig. 1. Overview of the proposed analytical method. This method integrates metagenome and 670 

metatranscriptome to analyze the functional activity of microbiomes between intestinal sites 671 

as follows. Samples for the metagenome and the metatranscriptome are taken simultaneously. 672 

(1) Assembly with DNA reads generates contigs and scaffolds at each site. (2) Bacterial 673 

metagenomes are reconstructed by merging scaffolds across all sites. Gene-coding regions 674 

are predicted on the reconstructed metagenome. (T.colon represents the transverse colon.) (3) 675 

DNA reads are mapped to the reconstructed metagenome to calculate relative abundance. (4) 676 

mRNA reads are aligned to the reconstructed metagenome and, mapped reads are quantified 677 

for each gene. (5) Gene expression levels are calculated at whole community. Gene 678 

expression levels per cell are calculated by normalizing with gene abundance.  679 

 680 
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Fig. 2. Reconstruction of a merged metagenome improved the assembly contiguity, gene 681 

detection and read mapping rate. (A) The plots of N-statistics to measure the assembly 682 

contiguity reconstructed from three intestinal sites and of the merged metagenome in 683 

individuals 1 and 2. We computed the N-statistics from N10 to N100 at 10 intervals, which is 684 

an extension of N50 measure to evaluate the assembly contiguity. (B) Percentage of 685 

functionally annotated genes in the reconstructed genomes. Approximately 63,331 and 686 

88,575 genes are not present in the COG database, and 112,790 and 152,845 genes are not 687 

present in the KO database. (C) Mapping rate of microbial mRNA reads to the database and 688 

the reference metagenome (DB = database, RG = reconstructed reference metagenome). This 689 

boxplot represents the mapping rates of mRNA reads from the caecum, transverse colon, and 690 

faeces in individuals 1 and 2, respectively.  691 

  692 

Fig. 3. Rationale of the co-variation analysis and the resulting molecular functions associated 693 

with unknown genes. The co-variation analysis incorporating a bivariate spatial relevance 694 

was performed to associate unknown genes with molecular functions. Evaluation of the 695 

co-variation analysis using the gene expression profile at whole community and per cell: (A) 696 

Receiver operating characteristic (ROC) curves, (B) false positive rate (FPR) and (C) 697 

sensitivity along the L statistic value to associate known gene cluster pairs. True positives 698 

were defined as pairs of covariant genes with a common KEGG reaction definition. (D) The 699 

functions of unknown gene clusters associated by co-variation analysis using the gene 700 

expression profile at whole community, and the functions of known gene clusters. Only 701 

functions enriched in either unknown or known gene clusters are shown (Fisher's exact test 702 

with p-value < 0.01 adjusted by the Benjamini-Hochberg method; Supplementary Note 6; 703 

Table S6). The L statistic value that ensured a false positive rate <5% in the benchmark was 704 
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used as the threshold (Supplementary Note 6). 705 

 706 

Fig. 4. Significant KEGG Orthology in differential gene expression between the caecum, 707 

transverse colon and faeces. The top 50 KOs with highest differential gene expression in the 708 

whole community are shown, along with gene expression levels per cell and gene abundance. 709 

(A) Differential gene expression between the caecum and transverse colon; (B) Differential 710 

gene expression between the caecum and faeces; and (C) Differential gene expression 711 

between the transverse colon and faeces. The difference in gene abundance / expression 712 

levels between at whole community and per cell is displayed using log2-transformed values. 713 

In each KO, the upper bar represents individual 1 and the lower bar represents individual 2. 714 

The difference was considered and denoted as “significant” if the difference changed in the 715 

same direction by more than 2-fold in both of the two individuals.  716 

 717 

Fig. 5. Functional activities in the microbiome along the host intestinal tract. In relation to 718 

Fig. 4, the functional shifts of the microbiome along the intestinal tract estimated from the 719 

differentially expressed genes between sites were as follows: (1) Sugars that are not absorbed 720 

in the small intestine are fermented by the caecal microbiome to produce SCFAs (29) (30). 721 

Since SCFAs are absorbed in the large intestine, the concentration of SCFAs gradually 722 

decreases from the caecum to the descending colon (31). (2) The growth of bacteria under 723 

acetate (26), which is abundant in SCFAs (32), requires cbiZ in the vitamin B12 biosynthetic 724 

pathway, and the production of SCFAs makes this gene more active in the caecum and 725 

transverse colon than faeces. (3) Similarly, a decrease in pH with increasing SCFA 726 

concentration switches on the antibiotic resistance genes arnA and arnB (28). 727 
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 728 

Fig. 6. Thirty scaffolds that encode L-fucose isomerase gene (fucI), each representing one 729 

bacterial species. Bar plot shows the relative gene abundance and gene expression level at 730 

whole community and per cell of fucI on 30 scaffolds in individual 1 and 2. Each scaffold ID 731 

and its taxonomic classification is shown at the bottom, and colored by phylum level 732 

classification. 733 

 734 

Fig. 7. Comparison of the faecal microbiomes of marmosets, mice, rats, macaques, and 735 

humans. OTU-based unweighted and weighted PCA (A) at the genus level and (B) at family 736 

levels. The 16S rRNA gene sequence data for faecal samples from 6 marmosets were 737 

sequenced in this study. The 16S rRNA gene sequence data for faecal samples from humans, 738 

macaque monkeys, rats, and mice were obtained from a previous study (34). Weighted 739 

(quantitative) accounts for microbiome abundance and unweighted (qualitative) is based on 740 

their presence or absence. 741 

 742 
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