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ABSTRACT 22 

Introduction: Analysis of multimodal medical images often requires the selection of one or 23 

many anatomical regions of interest (ROIs) for extraction of useful statistics. This task can prove 24 

laborious when a manual approach is used. We have previously developed a user-friendly 25 

software tool for image-to-image translation using deep learning. Therefore, we present herein an 26 

update to the DeepImageTranslator software with the addiction of a tool for multimodal medical 27 

image segmentation analysis (hereby referred to as the MMMISA). 28 

Methods: The MMMISA was implemented using the Tkinter library; backend computations 29 

were implemented using the Pydicom, Numpy, and OpenCV libraries. We tested our software 30 

using 4188 whole-body axial 2-deoxy-2-[18F]-fluoroglucose-position emission 31 

tomography/computed tomography ([¹⁸F]-FDG-PET/CT) slices of 10 patients from the ACRIN-32 

HNSCC (American College of Radiology Imaging Network-Head and Neck Squamous Cell 33 

Carcinoma) database. Using the deep learning software DeepImageTranslator, a model was 34 

trained with 36 randomly selected CT slices and manually labelled semantic segmentation maps. 35 

Utilizing the trained model, all the CT scans of the 10 HNSCC patients were segmented with 36 

high accuracy. Segmentation maps generated using the deep convolutional network were then 37 

used to measure organ specific [¹⁸F]-FDG uptake. We also compared measurements performed 38 

using the MMMISA and those made with manually selected ROIs.  39 

Results: The MMMISA is a tool that allows user to select ROIs based on deep learning-40 

generated segmentation maps and to compute accurate statistics for these ROIs based on 41 

coregistered multimodal images. We found that organ-specific [¹⁸F]-FDG uptake measured using 42 

multiple manually selected ROIs is concordant with whole-tissue measurements made with 43 

segmentation maps using the MMMISA tool.  44 
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INTRODUCTION 45 

Analysis of multimodal medical images (e.g., position emission tomography/magnetic resonance 46 

imaging [PET/MRI] and PET/computed tomography [PET/CT]) often requires the selection of one 47 

or many anatomical regions of interest (ROIs) for extraction of useful statistics [1-6]. The use of 48 

spherical or ellipsoid ROIs may be sufficient for large organs such as the liver and large muscle 49 

groups. However, for organs/tissues with complex shapes (e.g., the intestines and adipose tissues), 50 

manual ROI segmentation is not a scalable approach. One possible method is the use of deep 51 

learning for automated segmentation. Nevertheless, most deep learning pipelines for semantic 52 

image segmentation generate color-coded segmentation maps stored as image files, while most 53 

free software programs for medical image analysis (e.g., 3D-Slicer, OsiriX Lite, and AMIDE) 54 

cannot use these files to generate ROI statistics of multimodal images stored as DICOM files.  55 

We have previously developed a user-friendly software tool for image-to-image translation 56 

using deep learning (DeepImageTranslator, described in [7], released at: 57 

https://sourceforge.net/projects/deepimagetranslator/). Therefore, we present herein an update to 58 

the DeepImageTranslator software with the addiction of a tool for multimodal medical image 59 

segmentation analysis (hereby referred to as the MMMISA). We then demonstrate the use of the 60 

program for the measurement of 2-deoxy-2-[18F]fluoroglucose ([¹⁸F]-FDG) uptake by the lungs 61 

and subcutaneous adipose tissue using whole-body [¹⁸F]-FDG-PET/CT scans from the ACRIN-62 

HNSCC-FDG-PET/CT database [8-10]. Furthermore, we also compare measurements performed 63 

using the MMMISA and those made with manually selected ROIs.  64 

 65 
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METHODS 66 

Development of the MMMISA program 67 

The MMMISA program presented herein was written in Python 3.8 and distributed under the GNU 68 

General Public License (version 3.0). The graphical user interface was developed using the Tkinter 69 

library. Image analysis algorithms were implemented using the Pydicom, Numpy, and OpenCV 70 

libraries. The program is included as part of version 2 of the DeepImageTranslator software 71 

(https://sourceforge.net/projects/deepimagetranslator/) and is also available as a standalone 72 

program (https://sourceforge.net/projects/mmmisa/) for Windows. The source codes are available 73 

at: (https://github.com/runzhouye/MMMISA).  74 

 75 

PET/CT image dataset 76 

Whole-body CT and FDG-PET images from 10 patients (numbers 001, 002, 003, 007, 008, 010, 77 

012, 018, 019, and 027) were downloaded from the ACRIN-HNSCC-FDG-PET/CT (ACRIN 78 

6685) database [8, 9] via the Cancer Institue Archive [10].  79 

 80 

Manual extraction of multimodal image data  81 

CT and FDG-PET images were loaded into the AMIDE software [11]. For each patient, 11 82 

spherical ROIs (10 mm diameter) in the subcutaneous adipose tissue and 3 spherical ROIs (50 mm 83 

diameter) in the lungs were drawn at different axial positions based on whole-body CT images. 84 

ROI statistics were subsequently generated for the coregistered PET images.  85 

 86 

 87 

 88 
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Semantic image segmentation 89 

Thirty-six axial slices were randomly chosen from the 4188 axial CT images from the 10 patients 90 

for manual sematic segmentation with the GIMP (GNU Image Manipulation Program) software 91 

of the background, lungs, bones, brain, subcutaneous and visceral adipose tissue, and other soft 92 

tissues by labelling these tissues in black (RGB=[0,0,0]), yellow (RGB=[255,255,0]), white 93 

(RGB=[255,255,255]), cyan (RGB=[0,255,255]), red (RGB=[255,0,0]), green (RGB=[0,255,0]), 94 

and blue (RGB=[0,0,255]). CT image-segmentaiton map pairs were then loaded into the 95 

DeepImageTranslator software to train a deep convolutional neural network as previously 96 

described in Ye et al. [] with 1000 training epochs. The final model was used to perform automatic 97 

semantic segmentation of the 4188 axial CT images from the 10 patients in less than 10 minutes.  98 

 99 

Automated extraction of multimodal image data 100 

For each patient, the original PET/CT scans were loaded into the MMMISA program along with 101 

the semantic segmentation maps produced by the convolutional neural network. In this study, we 102 

chose to extract FDG uptake from the lungs and subcutaneous adipose tissue by extracting regions 103 

of the model-generated segmentation maps containing yellow and red pixels, respectively using 104 

the MMMISA program. Lower and upper color threshold were set at (R,G,B) = (150,150,0) and 105 

(R,G,B) = (255,255,150), respectively, for the lungs, and (R,G,B) = (150,0,0) and (R,G,B) = 106 

(255,150,150), respectively, for the subcutaneous adipose tissue. ROI statistics were then 107 

generated for the FDG-PET scans using the MMMISA software.  108 

 109 

 110 

 111 
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Statistical analyses 112 

Statistical analyses were carried out using GraphPad Prism version 9. Pearson’s R values were 113 

computed for the correlation between organ-specific FDG uptake measured using multiple 114 

manually selected ROIs and FDG uptake determined using deep learning-generated segmentation 115 

maps.  116 

 117 

Data availability 118 

The source code for the DeepImageTranslator is publicly available at: 119 

https://github.com/runzhouye/MMMISA 120 

The compiled standalone software is available for Window10 at: 121 

https://sourceforge.net/projects/deepimagetranslator/ and 122 

https://sourceforge.net/projects/mmmisa/ 123 

The datasets generated during and/or analyzed during the current study are available at: 124 

https://doi.org/10.6084/m9.figshare.16800925    125 

 126 

RESULTS 127 

The MMMISA plugin for the DeepImageTranslator 128 

The MMMISA program is included in version 2 of the DeepImageTranslator and is also available 129 

as a standalone software. The main window (Fig.1) allows for the user to visualize single- and 130 

dual-modality images written in the standard DICOM (Digital Imaging and Communications in 131 

Medicine) file format, the most commonly used file format in medical imaging. When images from 132 
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a second modality are loaded into the program, they are automatically matched, along with the 133 

corresponding segmentation map, to the image of the first modality that is being currently 134 

displayed. When necessary, the program also performs image registration of modality 2 images 135 

based on modality 1 images through translation and/or stretching such that objects in both image 136 

sets overlap. This allows for simultaneous visualization of both image sets and segmentation maps.  137 

 A second, ROI selection, window (Fig.2) displays user settings for the extraction of ROIs 138 

based on pixel colors of the segmentation maps. Specific regions of the color-coded semantic 139 

segmentation maps can be extracted by setting lower and upper thresholds for the red, green, and 140 

blue color component values using the ROI selection window. The user can also choose to only 141 

include the left or right side of the patient for analysis, which can be useful in order to exclude the 142 

strong signals from of certain radiotracers injected into the left or right arm. When the “Apply” 143 

button is pressed, ROIs are generated based on the color thresholds using the segmentation maps 144 

and applied to corresponding slices of modality 1 and 2 images. The cropped images are then 145 

displayed in the main window for visualization.  146 

 When “Save analysis” is selected, data will be extracted from modality 1 and 2 images, 147 

including the name of the scan, time at which each slice was produced, position of image slices, 148 

total area of the ROIs on each slice, total pixel values in the ROIs, average and standard deviation 149 

of values of pixels inside the ROIs, and pixel size. Results are then written in an excel file and 150 

stored under the user-designated directory.  151 

 152 

Semantic segmentation of PET/CT images 153 

Segmentation results for images outside of the training set obtained with the convolutional neural 154 

network trained using the DeepImageTranslator were illustrated in Fig.3. Our final model was able 155 
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to accurately segment the lungs, brain, bone, subcutaneous and visceral adipose tissue, and other 156 

soft tissues.  157 

 158 

Increase in number of manually selected ROIs increases accuracy of organ-specific FDG 159 

uptake approximations compared to true organ-specific FDG uptake measured using deep 160 

learning-generated segmentation maps 161 

Next, we tested the concordance of organ-specific FDG uptake measured using multiple manually 162 

selected ROIs versus FDG uptake determined using deep learning-generated segmentation maps. 163 

In general, regardless the number of ROIs used, manually measured FDG uptake in the lungs and 164 

subcutaneous adipose tissue was well correlated with that calculated with segmentation maps using 165 

the MMMISA program (Fig.4). For subcutaneous adipose tissue FDG uptake, the correlation 166 

coefficient and the -log of the P-value increased sharply once values from more than 4 ROIs were 167 

combined (Fig.4A). Increase in measurement accuracy (determined by the correlation coefficient) 168 

through increasing numbers of manually selected ROIs plateaued after more than 8 ROIs were 169 

used. Nevertheless, the P-value of the correlation between manual measurement and that using 170 

segmentation maps continued to decrease when more ROIs were used (Fig.4B). Similar results 171 

were obtained for the measurement of FDG uptake in the lungs (Fig.4C-D).  172 

 173 

DISCUSSION 174 

In recent years, numerous open-source software tools have been reported in the field of medical 175 

image processing [12-16]. One growing area of development is the popularization of deep learning 176 

methods through the creation of user-friendly tools with a graphical interface. Nevertheless, most 177 

deep learning pipelines for semantic image segmentation generate color-coded segmentation maps 178 
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stored as image files, while most free software programs for medical image analysis cannot use 179 

these files to generate ROI statistics of multimodal images stored as DICOM files.  180 

Nonetheless, selection of ROIs is an important aspect of in vivo metabolic studies involving 181 

PET/CT imaging [17-20]. In particular, measurements of volume and radiotracer uptake of adipose 182 

tissues of different regions may prove to be important for future studies on the metabolic syndrome, 183 

as hypertrophic obesity is related to changes in adipose tissue distribution and alterations in 184 

metabolic endpoints [21, 22].  185 

Therefore, we have presented herein an update to the DeepImageTranslator software [7] 186 

by including a tool for multimodal medical image segmentation analysis based on semantic 187 

segmentation maps generated using a deep convolutional neural network. Our program can be 188 

accessed through a graphical interface and allows users to extract ROI statistics of multimodal 189 

images (e.g., PET/CT and PET/MRI) based on color-coded semantic segmentation maps. We 190 

showed that organ-specific FDG uptake measured using multiple manually selected small, 191 

spherical ROIs is concordant with whole-tissue measurements made with segmentation maps using 192 

the MMMISA program. Furthermore, we found that increase in number of manually selected ROIs 193 

increases the accuracy of organ specific FDG uptake approximations. Therefore, our pipeline 194 

constitutes a simple, automated, and scalable approach to obtain ROI statistics using multimodal 195 

scans. 196 
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FIGURES 265 

 266 

Fig.1: Main window of MMMISA, showing (from left to right), modality 1 (CT) images, 267 

segmentation maps generated with convolutional neural network, and modality 2 (PET) images. 268 

 269 

 270 

Fig.2: ROI selection window and main window with updated modality 1 and 2 images. 271 

 272 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2021. ; https://doi.org/10.1101/2021.10.12.464160doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464160
http://creativecommons.org/licenses/by-nc-nd/4.0/


 273 

Fig.3: Pairs of CT images outside of the training set and sematic segmentation maps generated 274 

with deep convolutional neural network. The background, lungs, bones, brain, subcutaneous and 275 

visceral adipose tissue, and other soft tissues were labelled in black, yellow, white), cyan, red, 276 

green, and blue, respectively. 277 
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 278 

Fig.4: Correlation coefficient (A and C) and P-value (B and D) for the association between organ-279 

specific FDG uptake measured using multiple manually selected ROIs and FDG uptake 280 

determined using deep learning-generated segmentation maps, as a function of number of 281 

manually selected ROIs, for the subcutaneous adipose tissue (A and B) and lungs (C and D). ROI: 282 

region of interest. 283 

 284 
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