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ABSTRACT 

 

Alternative splicing is controlled by differential binding of trans-acting RNA binding 

proteins (RBPs) to cis-regulatory elements in intronic and exonic pre-mRNA regions 1-3. 

How secondary structure in the pre-mRNA transcripts affects recognition by RBPs and 

determines alternative exon usage is poorly understood. The MALT1 paracaspase is a key 

component of signaling pathways that mediate innate and adaptive immune responses 4. 

Alternative splicing of MALT1 exon7 is critical for controlling optimal T cell activation 5,6. 

Here, we demonstrate that processing of the MALT1 pre-mRNA depends on RNA structural 

elements that shield the 5’ and 3’ splice sites of the alternatively spliced exon7. By 

combining biochemical analyses with chemical probing and NMR we show that the RBPs 

hnRNP U and hnRNP L bind competitively and with comparable affinities to identical stem-

loop RNA structures flanking the 5’ and 3’ splice sites of MALT1 exon7. While hnRNP U 

stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L unwinds 

these RNA elements to facilitate recruitment of the essential splicing factor U2AF2 to 

promote exon7 inclusion. Our data represent a paradigm for the control of splice site 

selection by differential RBP binding and modulation of pre-mRNA structure. 

 

Alternative splicing greatly expands the proteome and is associated with unique functions in 

metazoan organisms 2. Regulation of alternative splicing occurs through cis-acting pre-mRNA 

sequences, such as exonic and intronic silencers and enhancers, with cognate trans-acting RNA 

binding proteins (RBPs) 1,3. Pre-mRNA structure has been suggested to modulate the processing 

and function of RNA transcripts 7-15. Previous studies have shown that splicing regulation can 

occur through the sequestration of cis-regulatory RNA motifs, which upon base pairing in stem-

loop structures are inaccessible to the spliceosome or cognate trans-acting RBPs 14,16. In turn, 

pre-mRNA structures, adopted either co- or post-transcriptionally, can be modulated by protein 

binding and thereby influence the accessibility of splice sites 17,18. However, molecular 

mechanisms how pre-mRNA structural elements can be modulated by RBPs to tune the level of 

exon inclusion or exclusion are poorly understood. 

Here, we show that alternative splicing of the pre-mRNA of the mucosa-associated lymphoid 

tissue protein 1 (MALT1) paracaspase is regulated by an unexpected interplay of RNA structure 

and the RBPs hnRNP U and hnRNP L. MALT1 plays a key role in the cellular signaling pathways 

that promote innate and adaptive immune activation 4,19. The MALT1 pre-mRNA was recently 

shown to express two isoforms, MALT1A and MALT1B, which only differ in the inclusion and 

exclusion of the 33-nucleotide long exon7, respectively (Fig. 1a). Notably, the inclusion of exon7 

in MALT1A is critical for controlling T cell activation 5. T cell receptor engagement induces 

alternative splicing with inclusion of exon7 and an increase of expression of the MALT1A protein 

isoform in activated CD4+ T cells. Since exon7 in MALT1A encodes an additional TRAF6 binding 
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site, enhanced TRAF6 recruitment in MALT1A ultimately augments optimal T cell activation 5 

(Fig. 1a). A hypomorphic patient mutation that selectively inactivates MALT1B causes a severe 

immune disorder, revealing the importance of both MALT1 isoforms for human immunity 6. Here, 

we unravel the molecular mechanisms that underlie the opposing roles of two RBPs, namely 

hnRNP U and hnRNP L, in MALT1 pre-mRNA splicing. Our findings serve as a paradigm 

demonstrating the role of RNA binding proteins in modulating pre-mRNA structure for controlling 

alternative splicing regulation.  

Antagonistic effects of hnRNP U and hnRNP L on MALT1 splicing 

Knockdown of hnRNP U in Jurkat T cells enhanced MALT1A transcript and protein levels, while 

downregulation of hnRNP L decreased MALT1A mRNA and protein (Fig. 1b,c). Note that 

compared to other cell lines (HeLa, U2OS and HEK293), Jurkat T cells express very low amounts 

MALT1A transcript and protein and hnRNP L acts as a positive regulator of exon7 inclusion and 

MALT1A expression in all cell lines tested (Extended Data Fig. 1a,b). In Jurkat T cells, the 

antagonistic roles of hnRNP U and hnRNP L on MALT1 alternative splicing are recapitulated with 

minigenes that include ~200 (M1) or ~500 (M2) additional nucleotides (nt) both 5’ and 3’ flanking 

exon7 (Fig. 1d,e). Notably, deletion of intronic regions reveals that 200 nt flanking exon7 in the 

M1 minigene are necessary and sufficient to confer hnRNP splice factor responsiveness 

(Extended Data Fig. 1c,d). Although hnRNP L and LL are believed to serve redundant functions 
20-24, the knockdown of hnRNP LL did not affect MALT1 exon7 inclusion in Jurkat or other cells 

(Fig. 1b, Extended Data Fig. 1b). We conclude that hnRNP U suppresses, while hnRNP L 

enhances MALT1 exon7 inclusion. 

Using electrophoretic mobility shift assays (EMSAs) we found that hnRNP U and hnRNP L directly 

interact with the M1 pre-mRNA with similar nanomolar affinities, corresponding to dissociation 

constants (KD) of 23.0 ± 0.5 and 19.0 ± 0.2 nM, respectively (Fig. 1f). The Hill coefficient for 

binding of both proteins is approximately 5, indicating the presence of several binding sites for 

each protein (Extended Data Table 1). Shortening the RNA to a 200 nt fragment (M1 nt 1 - 200) 

covering sequences 5’ of exon7 or 231 nt (M1 nt 200 - 430) including exon7 and 3’ sequences 

reveals slightly weaker, yet still nanomolar binding affinity (~30 nM) and Hill coefficients of ~3 for 

both hnRNP U and hnRNP L (Extended Data Fig. 1e, Extended Data Table 1). Because of their 

antagonistic roles in MALT1 splicing, we speculated that both RBPs do not associate 

simultaneously to the exon7-containing pre-mRNA. Indeed, competition EMSA demonstrated that 

preformed hnRNP U-M1 RNA complexes or the slightly faster migrating hnRNP L-M1 RNA 

complexes were displaced by increasing concentrations of free hnRNP L or hnRNP U, 

respectively (Fig. 1g). The exchange in RBP-RNA complexes occurred at approximately 1:1 

stoichiometry of both RBPs, which is in line with the comparable affinities of hnRNP U and L for 

the M1 pre-mRNA. The absence of super-shifted RBP-RNA complexes indicates that hnRNP U 

and hnRNP L bind to the RNA in a mutually exclusive manner. The displacement suggests the 

RBPs may compete for binding to similar regions in the M1 MALT1 pre-mRNA.  
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RNA secondary structure determines MALT1 pre-mRNA splicing 

We next investigated the presence of secondary structure potentially involving the exon7 splice 

sites in the MALT1 pre-mRNA. Using SHAPE (selective 2′-hydroxyl acylation analyzed by primer 

extension) chemical probing 25, we show that the M1 pre-mRNA is well-structured and can be 

broadly split into two domains (Fig. 2a). Domain 1 comprises the first ~150 nt and consists of 

three stem-loop (SL) RNA structures (SL0-SL3). Domain 2, which comprises the remaining ~250 

nt, consists of four stem-loops (SL4-SL8). Interestingly, SL4 harbors the poly-pyrimidine tract (Py-

tract) of the 3’ splice site of the preceding intron, and the first 11 nt of exon7. Exon7 then extends 

into a hammerhead-like RNA structure, comprised of SL5 and SL6. SL5 harbors the 5’ splice site 

of exon7. The primary sequence spanning SL4 – SL6 is highly conserved across divergent 

species (Extended Data Fig. 2). The sequestration of the Py-tract and 5’ splice site flanking 

exon7 in these structured elements suggests that RNA structure may be directly involved in 

splicing regulation. 

Close inspection of the primary sequences of SL2, SL4, SL5, and SL6 revealed a striking feature: 

All four stem-loop structures harbor complementary GU- and CA-containing RNA sequences in 

the two strands that base pair in the RNA helical stem (Fig. 2b). GU- and CA-rich sequences 

have been suggested to be recognized by hnRNP U and hnRNP L, respectively 24,26,27. 

Interestingly, regions in exon7 that base pair with GU-rich sequence around the Py-tract and the 

5’ splice site are comprised of CA-containing sequences. Considering that these regions harbor 

hnRNP L and hnRNP U binding motifs, our data suggest that RNA binding by these RBPs may 

be directly involved in controlling spliceosome accessibility. 

To investigate the functional importance of RNA primary sequence and secondary structure for 

exon7 splicing, we designed two variants that selectively disrupt the structure of the M1 pre-

mRNA, without affecting essential splice signals (Extended Data Fig. 3a). In variant 1, exon7 is 

replaced with exon9 of MALT1, which has an identical length of 33 nt. SHAPE probing reveals 

that the flanking Py-tract and 5’ splice site sequences are sequestered in secondary structures 

(Fig. 2c, Extended Data Fig. 3b) and are thus not accessible for spliceosome assembly. 

Consistent with this, minigene splicing assays show that the closed conformation of MALT1 pre-

mRNA variant 1 completely prevents inclusion of exon9 (Fig. 2e). We rationalize that swapping 

to exon9 removed the exon7-encoded hnRNP L binding motifs that base pair with the Py-tract 

and the former SL5 in the primary variant 1 transcript (Fig. 2c, Extended Data Fig. 3a,b). 

Consistent with this, hnRNP L binding to the variant 1 pre-mRNA is slightly decreased, while 

hnRNP U binding remains the same compared to M1 wildtype pre-mRNA (Extended Data Fig. 

3d). We also observed loss of splicing control by downregulation of hnRNP U or hnRNP L (Fig. 

2e). Thus, the sequestration of the Py-tract and 5’ splice sites by exon9, in combination with the 

absence of hnRNP L binding motifs, renders the region inaccessible for the splicing machinery. 

In variant 2, we altered two nucleotides in the SL6 stem, which resulted in the destruction of SL6 

and thus loss of the SL5/SL6 hammerhead structure, while maintaining the binding of hnRNP U 

and L (Fig. 2d, Extended Data Fig. 3a,c,d). Despite extended base pairing of the former SL6 
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with exon7 and more distant regions in the pre-mRNA, the sequestration of the Py-tract in SL4 

and of the 5’ splice site in SL5 and the presence of hnRNP U and L binding motifs are retained. 

Minigene splicing assays with variant 2 demonstrated significantly enhanced inclusion of exon7 

compared to M1 wildtype pre-mRNA (Fig. 2e). Importantly, the MALT1 variant 2 is still sensitive 

to RBP regulation just like the MALT1 wildtype pre-mRNA, providing evidence that SL4 and SL5, 

which shield the 3’ and 5’ splice sites and bind to hnRNP U and L, are critical for regulating 

alternative exon7 splicing. 

hnRNP L unwinds while hnRNP U stabilizes RNA structure 

To investigate the mechanism by which the RBPs hnRNP U and hnRNP L regulate splicing, we 

performed SHAPE on the M1 pre-mRNA in the presence of each protein. Analysis of SHAPE data 

reveals multiple regions of differential reactivity relative to the RNA-only control indicative of 

specific binding regions. Upon addition of hnRNP U or L, varying degrees of differential SHAPE 

reactivity were observed for each of the SLs. The most pronounced effects were observed for 

SL5, which harbors the 5’ splice site of exon7 (Fig. 3a). In the presence of hnRNP L, there is an 

increase in SHAPE reactivity of nucleotides at the 5’ splice site. As the putative binding site for 

hnRNP L is opposite the 5’ splice site in the SL5 stem region, this suggests that binding by hnRNP 

L unwinds the stem-loop, rendering the 5’ splice site accessible. In contrast, the presence of 

hnRNP U results in a reduction of SHAPE-reactive nucleotides in SL5, suggesting that hnRNP U 

binds and stabilizes the structured elements preventing acylation by the SHAPE reagent. To 

support these conclusions, we used fluorescence quenching assays to monitor RNA unwinding 
28. A FAM-fluorophore and a DABCYL quencher were conjugated to the 5’ and 3’ ends of each 

MALT1 pre-mRNA SL4 and SL5, to allow detection of stem-loop opening; unwinding of the RNA 

reduces the quenching effect, resulting in an increase in FAM-fluorescence emission. Indeed, we 

observed a concentration-dependent enhancement of fluorescence emission of SL4 and SL5 by 

increasing the hnRNP L protein concentration, consistent with an unwinding of the RNA stem-

loops (Fig. 3b). In contrast, no increase in fluorescence emission was observed upon binding of 

hnRNP U to SL4. The small fluorescence s 

To enable biophysical and structural analyses of RBP binding to MALT1 pre-mRNA elements, we 

determined the regions in the hnRNP U and L proteins necessary for controlling splicing and RNA 

binding. Overexpression of full-length (FL) hnRNP U decreases exon7 inclusion (Fig. 3c). There 

is a small contribution of the N-terminal SAP domain, a putative DNA binding fold, which also 

binds to the M1 pre-mRNA (Fig. 3c, Extended Data Fig. 4a-d). However, the C-terminal RNA-

binding RGG/G-rich region is sufficient to strongly reduce exon7 inclusion (Fig. 3c). In line with 

this, the RGG/G-rich region and RGG domain alone bind with nanomolar affinity to the M1 pre-

mRNA (Fig. 3d, Extended Data Fig. 4d), demonstrating that the RGG/G-rich region of hnRNP U 

is sufficient to confer RNA binding and repression of MALT1 exon7 splicing. While full-length 

hnRNP L increases exon7 inclusion, no discernable difference in exon7 splicing is observed upon 

overexpression of the tandem RNA recognition motif (RRM) domains RRM1,2 or RRM3,4, 
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indicating that all four RRMs are required for regulation of splicing in cells (Fig. 3e, Extended 

Data Fig. 4e,f). hnRNP L RRM1,2 alone does not bind strongly to the M1 pre-mRNA in EMSA, 

but a fragment containing all four RRMs (L N) or RRM3,4 bind more readily to the M1 pre-mRNA, 

even though with lower affinity than full-length hnRNP L (Fig. 3f, Extended Data Fig. 4g). Thus, 

hnRNP L RRM3,4 facilitates M1 RNA binding, but all RRMs are required to promote MALT1 exon7 

inclusion.  

We used NMR to characterize the binding of the SL4 and SL5 hairpins harboring the splice sites 

flanking exon7 and their single-stranded constituents to the tandem RRM domains of hnRNP L 

(RRMs 1,2 and 3,4) and the hnRNP U RGG domain (Fig. 3g-i, Extended Data Fig. 5). We first 

analyzed the interactions with hnRNP L. Relative to the structured stem-loops (SL4 and SL5), 

titration of single-stranded RNAs (SL4-e7 and SL5-e7) resulted in significantly stronger chemical 

shift perturbations (CSPs) and severe line broadening for amide resonances of hnRNP L RRM 

1,2 (Extended Data Fig. 5a,c). Interestingly, titration of both SL4-e7 and SL4, in addition to SL5-

e7, resulted in notable CSPs for amide resonances of hnRNP L RRM 3,4 (Extended Data Fig. 

5b,d). Given that hnRNP L is known to bind to single-stranded CA motifs, this requires unwinding 

of SL4 (Fig. 3b) and is likely enabled by the reduced stability of SL4. Consistent with this SL4 

harbors weak and dynamic UA base pairs, as indicated by the increased imino proton exchange 

detected by CLEANEX-PM 29 NMR experiments (Extended Data Fig. 6a,b). Spectral changes 

induced by the SL5-e7 RNA binding are mapped onto the hnRNP L RRM 1, RRM 2, and tandem 

RRM 3,4 structures (Fig. 3i), and are in good agreement with the RNA binding interface previously 

analyzed 30. Notably, more significant spectral differences occur for hnRNP L RRM 3,4, which is 

consistent with the increased binding we observed for this construct with the M1 minigene pre-

mRNA (Extended Data Fig. 4g). Altogether, we find that hnRNP L tandem RRMs bind to single-

stranded CA-containing sequences, and are able to recognize and bind CA-containing sequences 

sequestered in weak and dynamic RNA secondary structure. As revealed by the fluorescence 

quenching assays, association of hnRNP L with SL4 and SL5 RNAs involves unfolding of the 

stem-loop structures. 

We next characterized the MALT1 RNA recognition by hnRNP U. Inspection of the 1H,15N NMR 

correlation spectra of the RGG domain of hnRNP U reveals that it is intrinsically disordered, as 

indicated by poor spectral dispersion of the amide resonances (Extended Data Fig. 7a). Titration 

of the single-stranded RNA motifs from SL4-PYT or SL5-5ss to 15N-labeled RGG domain shows 

only minor spectral changes and limited line broadening of amide resonances, indicating very 

weak, non-specific interaction (Fig. 3j, Extended Data Fig. 7a). Interestingly, SL5-5ss RNA 

induced more line broadening than SL4-PYT. Using EMSA assays, we find that the SL5-5ss is 

capable of forming a duplex, thus providing an artificial duplex bound by the RGG domain 

(Extended Data Fig. 7a, gel inset). In contrast, addition of the SL4 or SL5 hairpin RNAs triggers 

severe line broadening. While imino NMR spectra of SL4 upon addition of the RGG domain shows 

severe line broadening of all imino residues at a 1:1 ratio, addition of the RGG domain of hnRNP 
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U to SL5 shows distinct chemical shift perturbations of G and U imino protons. The fact that the 

imino signals remain observable, although with significant line broadening, allows us to conclude 

that the RGG domain does not unwind RNA stem-loops (Extended Data Fig. 7b). Our data 

indicate a strong preference of the RGG domain for the structured RNAs consistent with previous 

reports 26. Using isothermal titration calorimetry (ITC), we determined that SL4 and SL5 bind to 

the RGG domain of hnRNP U with a dissociation constant KD of 0.64 and 1 μM, respectively, but 

no association is detectable with the single-stranded sequences derived from the two stem-loops 

(Extended Data Fig. 7c, Extended Data Table 2). Considering the intrinsically disordered 

conformation of the RGG domain, we suspected that the binding mechanism of the RGG domain 

to a structured RNA may rely on electrostatic interactions of arginine side chains with the 

phosphate backbone of the RNA. Indeed, the interaction is strongly reduced in the presence of 

increasing sodium chloride concentrations, as seen by the reappearance of narrow NMR signals 

for both SL4 and SL5 in both amide and arginine side chain H resonances, indicative of RGG 

protein release from the RNA (Extended Data Fig. 7d,e). Clearly, the RGG domain of hnRNP U 

does not efficiently bind to GU-rich sequence motifs in single-stranded RNA, but recognizes GU 

sequences in the context of a double-stranded RNA, demonstrating that hnRNP U acts by binding 

and stabilizing RNA structural elements.  

Having established that the RGG domain of hnRNP U binds to structured RNA stem-loops, we 

carried out binding shift assays of the RGG domain with SL4 and SL5, mutating either all, the four 

N-terminal, or the five C-terminal arginine residues to alanines (Fig. 3k). We found that binding is 

significantly reduced when only half of the arginines are present, and completely abolished with 

the arginine to alanine mutation of all arginine residues (Fig. 3k). Thus, arginines are responsible 

for facilitating binding of the RGG domain with RNA stem-loop elements. 

We further validated the RGG domain’s stabilizing effect on structured RNA elements by 

monitoring RNA imino proton exchange in the absence and presence of the RGG domain using 

CLEANEX-PM NMR experiments (Fig. 3l, Extended Fig. 8a,b). Here, in the absence of the RGG 

domain, imino signals in SL5 (i.e. of G2, G7, U12, U15, and U17) rapidly exchange with water, 

with kex rates as high as 80 Hz. However, the rates of exchange in these corresponding imino 

protons decrease by nearly 4-fold in the presence of the RGG domain of hnRNP U. These results 

indicate a limited stability of the SL5 hairpin and support the notion that the RGG domain stabilizes 

the RNA secondary structure upon binding. 

Unwinding of RNA structure by hnRNP L promotes recruitment of U2AF2 

The essential splicing factor U2AF2 is required for the recognition of the Py-tract motif in the 3’ 

splice site of pre-mRNA introns. Biochemical and structural studies have shown that the RRM1,2 

tandem domains in U2AF2 are necessary and sufficient to recognize single-stranded Py-tract 

RNAs 31,32. However, in the context of the MALT1 pre-mRNA, the Py-tract of exon7 is sequestered 

in the secondary structure of SL4, posing the question of how U2AF2 can access this region. In 

fact, U2AF2 RRM1,2 does not bind full-length M1 MALT1 pre-mRNA or the structured SL4 RNA 
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at protein concentrations up to 6 µM (Fig. 4a, top; Extended Data Fig. 9a). In contrast, EMSAs 

with U2AF2 RRM1,2 and a single-stranded Py-tract show nanomolar binding (Fig. 4a, bottom). 

ITC data confirmed that U2AF2 RRM1,2 binds to the single-stranded Py-tract with a KD of 2.7 ± 

0.7 µM, while there is no detectable binding when the Py-tract is sequestered in RNA structure of 

the SL4 (Fig. 4b, Extended Data Table 2). Consistent with this, an NMR titration of 15N-labeled 

U2AF2 RRM1,2 with SL4 RNA shows negligible spectral changes, while significant line 

broadening observed upon addition of the single-stranded Py-tract RNA indicates a strong 

interaction (Fig. 4c). 

We next used NMR to determine if U2AF2 RRM1,2 binding to the Py-tract that is inaccessible in 

SL4 could be primed by hnRNP L. In fact, severe line broadening in the NMR spectra of U2AF2 

RRM1,2 upon addition of hnRNP L to a preformed U2AF2 RRM1,2-SL4 complex (Fig. 4c) is 

consistent with Py-tract binding to U2AF2 that is enabled by the binding (and unwinding) of SL4 

by the strong interaction of hnRNP L with CA-rich motifs in SL4 (SL4-e7, Extended Data Fig. 

5a,b). To monitor the conformation of the SL4 RNA (Fig. 4d, right) we compared 1D NMR spectra 

of the imino region of SL4 in the absence and presence of U2AF2 RRM1,2 alone. The imino 

signals observed for the free RNA (Fig. 4d, i) demonstrated the presence of a folded hairpin 

structure. Binding by hnRNP L leads to severe line broadening of the imino signals, consistent 

with a at least partial unwinding of the SL4 RNA (Fig. 4d, ii). This is also seen in the presence of 

hnRNP L and U2AF2 (Fig. 4d, iii), where the two RBPs presumably bind to the single-stranded 

SL4-7 and SL4-PYT RNA regions. In contrast, imino signals of SL4 RNA are unaffected in the 

presence of only U2AF2 (Fig. 4d, iv). This shows that the RNA remains folded and that U2AF2 

alone is unable to unwind the SL4 structure. Further, inspection of a 2D imino NOESY experiment 

showed that intra-residue nuclear Overhauser effects (NOEs) for most base pairs are no longer 

observed. Resonances that remain correspond to nucleotides in the upper region of the stem. 

This suggests that RNA base pairing in the stem region is severely disrupted, resulting in an at 

least partial unwinding of the SL4 (Extended Data Fig. 9b). The fact that the 1D imino signals of 

the SL4 RNA in the presence of U2AF2 RRM1,2 and hnRNP L are very similar to those in the 

presence of hnRNP L alone indicates that hnRNP L binding at least partially opens SL4 and 

thereby primes for U2AF2 binding.  

To confirm these conclusions in the presence of the pre-mRNA, we performed EMSA experiments 

monitoring binding of hnRNP L and U2AF2 to a MALT1 pre-mRNA comprising exon7 and the 

stem-loops 4-6 (SL4-hammerhead RNA). By adding increasing concentrations of U2AF2 RRM1,2 

to the preformed hnRNP L SL4-hammerhead RNA, a ternary hnRNP L-RNA-U2AF2 complex is 

formed, showing that hnRNP L facilitates association of U2AF2 to the Py-tract (Fig. 4e). Similarly, 

we observe a slower migration of the M1 minigene RNA when the concentration of hnRNP L is 

held constant and the concentration of U2AF2 is increased (Extended Data Fig. 9c). Thus, by 

binding to CA-rich RNA elements in exon7 of MALT1 pre-mRNA, hnRNP L unwinds SL4 and 

thereby facilitates U2AF2 to associate with the single-stranded Py-tract. This is enabled by the 

strong, nanomolar binding affinity of hnRNP L to single-stranded CA-rich RNA motifs (Fig. 1f). 
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Binding of hnRNP U stabilizes structured RNA motifs and thus inhibits unwinding. To support this 

regulation by unwinding of RNA secondary structure by a single-stranded RBP, the RNA stem 

regions involved (i.e. SL4 and SL5) must exhibit reduced thermodynamic stability. This is in fact 

reflected by the sequence composition of the MALT1 exon7 RNA stem-loop structures. The 

duplex regions of these stem-loop structures are mainly formed from base-pairing of CA- and GU-

rich sequences, involving many AU base pairs (Fig. 2a,b). The reduced thermodynamic stability 

enables binding of hnRNP L by capturing a minor fraction of single-stranded RNA conformations 

that preexists for the weakly based-paired stem regions. In light of this, the previously reported 

preference of hnRNP U for GU-rich sequences thus likely reflects the preference for stem-loop 

structures with weak base pairing, and, in fact, does not relate to a preference of hnRNP U to 

bind (GU-rich) single-stranded sequences. 

Our results present a new paradigm for the control of alternative splicing by pre-mRNA secondary 

structure, which in turn is regulated by the binding of two RBPs, hnRNP U and hnRNP L, as shown 

here for the example of MALT1 splicing. These two RBPs differentially modulate the accessibility 

of the splice sites of the MALT1 alternative exon7. Splice signals are base-paired and thus 

inaccessible in the presence of hnRNP U, binding of hnRNP L unwinds the RNA, and facilitates 

recruitment of spliceosome factors (Fig. 4f). 

Further splicing events are regulated by hnRNP U and hnRNP L  

To explore whether antagonistic regulation by hnRNP U and hnRNP L occurs at other exons in 

the transcriptome, we quantified alternative splicing events in hnRNP U and hnRNP L shRNA 

knockdown RNA-seq data for HepG2 cells available from the ENCODE database 33. Even though 

MALT1 exon7 itself does not pass the significance thresholds due high variability (Extended Data 

Fig. 10a), we detect 27 other exon skipping events that are antagonistically regulated by both 

hnRNP U and hnRNP L (out of 78 shared exon skipping events; > 5% change in junction usage, 

probability > 90%; Fig. 4g, Extended Data Fig. 10b,c). Among these, about a third are regulated 

in the same direction as MALT1 exon7, while the remainder follow an inverse pattern such that 

hnRNP U promotes inclusion, as has been reported for the exon3,4,5,6 cassette in Caspase9 

(CASP9) 34. Strongest net effects in the direction of MALT1 exon7 are observed for exon28 in the 

MON2 pre-mRNA (Fig. 4h). Notably, secondary structure prediction reveals that the 5’ splice site 

of exon28 in MON2 is sequestered in secondary structure with a CCAA-containing sequence (Fig. 

4i), suggesting that similar mechanisms underlie antagonistic regulation by hnRNP L and hnRNP 

U also for this splicing event. 

As exemplified for alternative splicing of MALT1 exon7, our results show how splicing regulation 

can be achieved by the modulation of RNA structure that sequesters essential splice signals. This 

has important implications for the interpretation of disease-associated mutations in clinical 

studies. Even though current estimates suggest that up to 50% of pathogenic single nucleotide 

polymorphisms (SNPs) are related to splicing 35,36, only a minor fraction of these splice-altering 

mutations can be mechanistically explained. As a consequence, clinical scoring schemes such 
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as Alamut (Interactive Biosoftware, Rouen, France) are largely confined to known splice-

regulatory sequence motifs. However, 15% of SNPs were found to alter local RNA structure 10. A 

detailed knowledge about RNA structures and their modulation by RBP binding will therefore be 

critical to improve our understanding of disease-associated splicing defects. 

Our study suggests that modulation of pre-mRNA structure by the trans-acting RBPs hnRNP U 

and hnRNP L may serve as a mechanism that controls the accessibility of alternatively spliced 

exons for the basic splicing machinery. These findings offer an inverse perspective to multiple 

studies that investigated the impact of RNA structure on RBP binding 37-39 and opens new avenues 

for a more holistic view of the dynamic interplay of RNA structure and trans-acting RBPs.  
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Figures 

Figure 1 

 

Figure 1 | Identification of RNA elements and RBP regions regulating MALT1 exon7 
splicing. a, MALT1 A and B protein isoforms differ depending on inclusion or exclusion of exon7, 
which encodes for an 11-amino acid TRAF6 binding domain that regulates downstream function. 
b, Quantification of endogenous MALT1 transcripts upon knockdown of hnRNP U, hnRNP L, and 
hnRNP LL. c, Endogenous protein levels of MALT1A upon knockdown of hnRNP U and hnRNP 
L. Asterisk indicates an unspecific band. d, MALT1 minigene constructs that recapitulate splicing 
regulation of endogenous MALT1. e, Quantification of MALT1 splicing on minigene constructs 
upon knockdown of hnRNP U, hnRNP L and hnRNP LL. f, EMSA showing that hnRNP U and 
hnRNP L bind with low nanomolar affinity to the MALT1 minigene RNA. g, EMSAs showing that 
hnRNP L and hnRNP U compete for binding to the MALT1 minigene RNA. Data are representative 
for four (b) or three (e) independent experiments. Depicted is the mean ± s.d. (b; n = 4) or (e; n = 
3). *p<0.05; **p<0.01; ***p<0.001; ns, not significant; unpaired Student’s t-test. 
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Figure 2 

 

 

Figure 2 | Identification of cis-regulatory motifs and RBP binding sites regulating MALT1 
splicing. a, SHAPE-derived secondary structure of the MALT1 minigene RNA. Domains 1 and 2 
are outlined, with stem-loops (SL) and splice signals highlighted and annotated. Non-reactive, 
semi-reactive and highly reactive nucleotides are colored white, orange, and red, respectively. b, 
Binding sites for hnRNP U (blue) and hnRNP L (green) across the MALT1 minigene RNA. c,d, 
SHAPE-derived secondary structure of variant 1 and variant 2 of MALT1 minigene RNAs, zoomed 
in to the region that harbors the 5’ and 3’ splice signals flanking exon7. e, Effects and 
quantification of splicing regulation of exon7 or exon9 (variant 1) upon single or combined 
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knockdown of hnRNP U and hnRNP L comparing the wildtype (WT) M1, variant 1 and variant 2 
minigenes. Data are representative for three independent experiments. Depicted is the mean ± 
s.d. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not significant; unpaired Student’s t-test. 
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Figure 3 

 

Figure 3 | pre-mRNA structure and effect of RNA variations on exon7 splicing. a, Raw 
SHAPE reactivity traces corresponding to SL5, which harbors the 5’ splice site, in the absence of 
protein (black), in the presence of hnRNP L (green) and hnRNP U (blue).  b, Fluorescence 
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quenching assays with the SL4 RNA hairpin labeled with a fluorescent dye and quencher at the 
5’ and 3’ termini show that hnRNP L unwinds, whereas hnRNP U maintains secondary structures 
of splice signal-containing stem-loops. Errors refer to 3 biological replicates. c, Minigene splicing 

assay quantification upon overexpression (1, 2.5, and 5 g) of various hnRNP U constructs. d, 
EMSA of with hnRNP U RGG domain with MALT1 M1 minigene RNA e, Minigene splicing assay 

quantification upon overexpression (5 g) of various hnRNP L constructs. Data are representative 
for three (c,e) independent experiments. Depicted is the mean ± s.d. (c,e; n = 3). *p<0.05; 
**p<0.01; ***p<0.001; ns, not significant; unpaired Student’s t-test. f, EMSA of hnRNP L RRM1-4 
with MALT1 M1 minigene RNA. g, Schematic of stem-loop RNA structures and primary 
sequences harboring the 5’ and 3’ splice sites flanking the MALT1 exon7. h, 1H 15N HSQC NMR 
spectra of 15N-labeled hnRNP L RRMs 3,4 free (black) and in the presence of equimolar 
concentrations of SL5 and SL5-e7 RNA (green). i, CSPs induced by the SL5-e7 RNA are mapped 
in green on the structure of hnRNP L RRM 1, RRM 2 and RRRMs 3,4; amino acids are labeled 
for reference (structures adapted from PDB IDs 2MQO, 2MQP, and 2MQQ). j, 1H 15N HSQC NMR 
spectra of 15N-labeled hnRNP U RGG free (black) and in the presence of equimolar 
concentrations of SL5 and SL5-e7 RNA (blue). k, Schematic representation of wildtype and 
arginine to alanine RGG mutants and corresponding binding shift assays with SL4 and SL5. l, 
Imino proton-exchange rates (kex) from CLEANEX-PM NMR experiments for SL5 in the absence 
and presence of the RGG domain of hnRNP U. Error bars indicate the fitting error.  
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Figure 4 

  

Figure 4 | Molecular mechanisms of differential exon7 splicing regulation by hnRNP U and 
hnRNP L. a, EMSA of U2AF2 RRM1,2 with the single-stranded poly-pyrimidine (Py)-tract or SL4 
sequestering the Py-tract. b, ITC data for binding of U2AF2 RRM1,2 with the single-stranded Py-

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.12.464102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464102


19 

tract and the structured SL4 RNA. c, 1H 15N HSQC NMR spectra of 15N-labeled U2AF2 RRM1,2 
with SL4 RNA (left), the single-stranded Py-tract (middle), and in the presence of hnRNP L RRM1-
4 and SL4 RNA (right). d, 1D 1H imino NMR spectra of SL4 RNA free (i) in the presence of hnRNP 
L (ii), of hnRNP L and U2AF2 RRM1,2 (iii) and of U2AF2 RRM1,2 only (iv). e, EMSA of U2AF2 
RRM1,2 in the absence (left) and presence (right) of hnRNP L RRM1-4 with SL4-hammerhead 
RNA construct. f, Overview of the proposed mechanism of splicing regulation of MALT1 exon7 
by hnRNP U and hnRNP L in T cells. g, Alternative cassette exons regulated by both hnRNP U 
and hnRNP L in HepG2 cells. Changes in relative abundance of the exon inclusion junction are 
shown for all exons that are significantly regulated by both RBPs (> 5% change in percent 
selected index [ΔPSI] for at least one junction, probability > 90%). MALT1 exon7 and CASP9 
exon3,4,5,6 (probability > 80%) are shown in orange and pink, respectively. h, Skipping of exon28 
of MON2 (RefSeq transcript NM_015026.3) and its dependence on hnRNP U and hnRNP L is 
shown from shRNA knockdown data available from ENCODE and processed in MAJIQ. i, The 
secondary structure of MON2 (with exon28 traced in grey, the potential hnRNP U/5’ splice site 
traced in blue, and the potential hnRNP L binding sequence traced in green). 
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Methods 

RNA preparation, transcription and purification 

The DNAs encoding for the RNAs transcribed in this study were either generated in-house 

(subcloned by PCR from MALT1A using primers containing the T7 polymerase promoter region), 

or purchased as single stranded DNA templates (and supplemented with an equal amount of T7 

promoter primer) from Eurofins Genomics (Eurofins). Transcription reactions were carried out in 

the presence of 600 ng (PCR) or 8 µM (Eurofins) DNA template, 40 mM MgCl2, 8 mM of each 

rATP, rUTP, rGTP, and rCTP, 20X transcription buffer (Tris-HCl pH 8, 100 mM Spermidine, 200 

mM DTT), 5% PEG 8000, and 0.03 mg of T7 polymerase. The transcription reaction was 

incubated at 37°C for 3 hours, followed by denaturing purification on 6.5 - 20% urea 

polyacrylamide gels. The RNA was then excised and extracted from the gel by electroelution. The 

extracted RNA was equilibrated against a NaCl gradient (1 M, 0.5 M, 0.25 M, 0 M) followed by 

equilibration into a buffer containing 25 mM sodium phosphate pH 6.4, and 15 mM NaCl. All single 

stranded RNAs shorter than 10 nucleotides were purchased from Eurofins. 

Protein expression and purification 

The full length and subdomains of hnRNP U/L, as well as RRMs 1,2 of U2AF2 were cloned into 

the pETM-11 vector yielding constructs with an N-terminal, TEV protease cleavable His6-tag. The 

proteins were expressed in either BL21 (DE3) or Rosetta 2 (DE3) E. coli strains and cultured in 

LB or ZYM 5052 auto-induction media. 15N labeled proteins were cultured in 1M9 minimal media. 

Cell were lysed by sonication in buffer A, containing 50 mM Tris-HCl, 1 M NaCl, 10 mM MgCl2, 

10 mg/ml DNaseI, 1 mM AEBSF.HCl, 0.2% (v/v) NP-40, 1 mg/ml lysozyme, 0.01% (v/v) 1-

thioglycerol, pH 8.0, and the lysate was clarified by centrifugation (48,000 x g) and 

polyethylenimine (PEI) was added to a final concentration of 0.5% (v/v) to remove the excess 

nucleotides (for full length constructs). After centrifugation, ammonium sulfate was added to the 

supernatant to 90% saturation to precipitate all proteins and remove the excess of PEI. Protein 

was then purified by immobilized metal affinity column (IMAC) purification in buffer A with an 

increasing imidazole gradient (50 mM to 300 mM), followed by TEV cleavage. The cleaved protein 

was further purified with IMAC. Proteins were then concentrated and purified using size exclusion 

chromatography (SEC). Following SEC, proteins prepared for binding shift assays were 

equilibrated in buffer containing 50 mM Tris-HCl, 300 mM NaCl, 0.01% (v/v) 1-thioglycerol, pH 

8.0, whereas proteins prepared for NMR were equilibrated in buffer containing 25 mM sodium 

phosphate, pH 6.5, 150 mM NaCl and 5 mM DTT. 

Electrophoretic mobility shift assays 

The RNAs were dephosphorylated with CIP (New England Biolabs, NEB) and rephosphorylated 

with γ-32P-ATP using T4 PNK (NEB) according to manufacturer instructions. RNA was diluted to 

5 nM and mixed with varying concentrations of protein (as indicated in the Figures) in buffer 

containing 50 mM Tris-HCl, 300 mM NaCl, 0.01% (v/v) 1-thioglycerol, pH 8.0, prior to loading on 
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a gel. 0.7% agarose gels prepared in TBE were run at 25°C in 1X TBE buffer for 1 hour at 60 V. 

The gels were dried without heat under a vacuum for 1 hour on top of nylon membrane, and then 

exposed to a phosphor plate for 3 hours prior to scanning using a Typhoon imager. Bands were 

quantified using Image J and the binding affinity and Hill coefficients were calculated in 

Kaleidagraph after fitting with to the expression: 𝜃  
 

, where 𝜃 = fraction of RNA bound, P 

= protein concentration, KD = dissociation constant, and N = Hill coefficient. 

Selective 2’ hydroxyl acylation and primer extension 

SHAPE, using in-house prepared 1M7 40, was performed as previously described 41. In short, 

RNAs were refolded for 30 minutes at 37°C in buffer containing 100 mM NaCl, 50 mM Hepes pH 

8, and 16.5 mM MgCl2, incubated with 5 mM 1M7 for five minutes at 37°C, followed by an ethanol 

precipitation; pelleted RNA was resuspended in RNase-free water. For SHAPE assays performed 

in the presence of protein, excess hnRNP U or hnRNP L was added to the RNA just prior to 

addition of 1M7. Reverse transcription was performed on the 1M7-modified RNA using a 5’-

labeled 6 FAM fluorescently labeled primer (Eurofins) and the Superscript III reverse 

transcriptase, according to manufacturer instructions, followed by an ethanol precipitation. cDNA 

fragments were dissolved in HiDi formamide, followed by capillary electrophoresis analysis using 

an ABI 3730 Sanger Sequencer. The resulting files were analyzed with QuSHAPE to obtain 

SHAPE reactivities. The shotgun secondary structure (3S) method was used to validate the 

structure of the two independently folded domains 42. Transcribing domain 1 and 2 as separate 

transcripts, followed by SHAPE, reveals chemical probing profiles that are in agreement with 

those of the full-length transcript (Pearson R = 0.70 and 0.84, respectively). The Pearson R 

correlation coefficients were determined using the Pearson Correlation Coefficient calculator 

provided at (https://www.socscistatistics.com/). Secondary structure predictions, under the 

constraints of the SHAPE data, were carried out using RNAStructure using default folding 

conditions. Final RNA structural models were rendered using VARNA. SHAPE reactivity data 

available upon request. 

Comparative sequence analysis 

We used NCBI BLASTN to curate a list of seven divergent species (very little of the MALT1 pre-

mRNA primary sequence is conserved), as shown in Extended Data Fig. 2 43. We utilized 

CMfinder through the webserver for aligning RNAs (WAR), which employs comparative sequence 

analysis to identify conserved structured motifs 44,45. 

NMR spectroscopy 

All NMR titrations were carried out using either 100 µM unlabeled RNA (for 1H 1D imino 

experiments) or 90 µM 15N-labelled protein (for 1H,15N HSQC, HISQC 46, or SOFAST-HMQC 47 

experiments) on 600, 800, or 900 MHz spectrometers equipped with cryogenic probes (Bruker) 

at 298 K.  
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Spectra were processed and analyzed using NMRpipe 48 and CCPN 49. Resonance assignments 

for RRMs 1-4 of hnRNP L were completed using standard triple resonance experiments 

(CBCACONH, HNCACB, HNCO, and HNCACO) 50 and further supported by assignments 

reported in the BMRB for the apo RRM domains (BMRB 25038: RRM1, BMRB 25039: RRM2, 

and BMRB 25040: RRMs 3,4). Chemical shift perturbations were calculated as: CSP = ((Δ1H)2 

+ (Δ15N)/6.51)2)0.5. 

Imino proton resonance assignments for SL4 and SL5 RNAs were carried out using 2D 1H-1H 

NOESY and natural abundance 1H,15N SOFAST-HMQC experiments, recorded at 280 K and 298 

K with mixing times of 80 and 120 ms. 

Protein exchange rates were obtained from CLEANEX-PM experiments 29. Peaks were picked 

using TopSpin® (Bruker), signal intensities were normalized and fit using the following equation: 

 

Isothermal titration calorimetry (ITC) 

Isothermal calorimetry was carried out using a MicroCal PEAQ-ITC calorimeter. Both RNA and 

protein were equilibrated against buffer containing 25 mM sodium phosphate, 150 mM NaCl and 

5 mM DTT. RNAs were diluted to 20-30 µM and snap cooled, prior to addition to the cell. Protein 

(200 - 300 µM) was titrated into RNA in 2 µL increments over the course of 45 minutes at 25°C. 

ITC curves were fit with MicroCal PEAQ-ITC software. 

Fluorescence assays 

Synthetic RNA corresponding to stem-loops SL2, SL4, SL5, and SL6 of the M1 minigene were 

purchased from Eurofins Genomics harboring a 5’ terminal 6 FAM fluorescent tag, and a 3’ 

terminal DABCYL quencher. RNAs were diluted to 400 nM, snap cooled (heated to 95°C for 5 

min, followed by rapid cooling on ice for 10 min) and increasing concentrations of protein (as 

indicated in the figures) were added. Fluorescence emission was measured using a SpectraMax 

plate reader at 25°C; 6 FAM fluorescence was excited at 495 nm with a slit of 2 nm. Emission 

was recorded at 525 nm with a slit of 3 nm for 0.5 s (integration time). 

Cell culture and cell transfection 

Jurkat T cells were cultured in RPMI 1640 medium (Life Technologies) and HEK293, HeLa and 

U2OS adherent cells in DMEM (Life Technologies) supplemented with 10% fetal calf serum (FCS) 

and 100 U/ml penicillin/streptomycin (P/S, Life Technologies) For knock-down experiments, cells 

were transfected with 50 – 100 nM siRNA and Atufect transfection reagent (Silence Therapeutics; 

Jurkat and HeLa) or Lipofectamine RNAiMAX reagent (Thermo Scientific; U2OS) and analyzed 

after 72 h. siRNA knockdown in HEK293 cells was performed using standard calcium phosphate 

transfection protocols. For minigene assays, 48 h after siRNA transfection, 2.5x106 Jurkat T cells 

were electroporated with 2 μg minigene constructs using 220 V and 1,000 mA (Gene pulser X, 

𝐼

𝐼0
𝜏𝑚

𝑘𝑒𝑥

𝑅1,𝐴 𝑅1,𝑊
exp 𝑅1,𝑊𝜏𝑚 exp 𝑅1,𝐴𝜏𝑚
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Bio-Rad). After 24 h incubation, cells were lysed in protein or RNA lysis buffer. The following 

siRNAs were used: ON-TARGETplus Non-targeting pool (si-control), ON-TARGETplus 

SMARTpool si-hnRNP U, ON-TARGETplus SMARTpool si-hnRNP L, and ON-TARGETplus 

SMARTpool si-hnRNP LL (all from Dharmacon). 

RNA preparation, minigene assay and qPCR 

RNA was isolated (InviTrap Spin Universal RNA kit, Stratec) and reverse transcribed (Verso 

cDNA synthesis kit, Thermo Fisher). To analyze MALT1 exon7 inclusion or exclusion of the 

different minigenes, two specific vector backbone primers (CD45 exon3 forward and CD45 exon7 

reverse) were used to amplify alternatively spliced minigene products. As internal control, RP2 

levels were used. Semi-quantitative PCR was performed using Taq DNA Polymerase (NEB) and 

15 ng cDNA.  

To determine endogenous MALT1A/B levels, semi-quantitative PCR with 30 ng cDNA was 

performed using LongAmp® Taq DNA Polymerase (NEB) with primers in flanking exons detecting 

both isoforms MALT1A (146 bp) and MALT1B (113 bp). 

qPCR was performed on a LightCycler 480 from Roche using LightCycler SYBR Green I Master 

Mix. PCR products were analyzed on 3% agarose gels.  A list of all primers used for qPCR and 

minigene assays can be found in Extended Data Table 3. 

Western blot 

Proteins were transferred onto PVDF-membranes for immunodetection using electrophoretic 

semi-dry transfer system. After transfer, membranes were blocked with 5% bovine serum albumin 

(BSA) or 5% milk for 1 h at room temperature and incubated with specific primary antibody 

(dilution 1:1,000 in 2.5% BSA/PBS-T or milk/PBS-T) overnight at 4°C. Membranes were washed 

in PBS-T before addition of HRP-coupled secondary antibodies (1:5,000 in 1.25% BSA or 1.25% 

milk in PBS-T; 1 h, room temperature). HRP was detected by enhanced chemoluminescence 

using the LumiGlo reagent (Cell Signaling) according to the manufacturer’s instructions. A list of 

all antibodies used for Western blot assays can be found in Extended Data Table 4. 

RNA-seq data analysis 

We used MAJIQ 51 (version 2.2) to identify and quantify local splice variants (LSVs) in RNA-seq 

data from the ENCODE database. BAM alignment files (processed by STAR) of shRNA 

knockdown (KD) experiments for both hnRNP U and hnRNP L in the HepG2 cell line (2 replicates 

per condition) were retrieved from the ENCODE data portal (https://www.encodeproject.org/) via 

the accession numbers ENCFF764HLG, ENCFF915OWV (hnRNP L KD), ENCFF371TBZ, 

ENCFF403KGR (hnRNP L control), ENCFF197CGS, ENCFF451GID (hnRNP U KD), and 

ENCFF197UJB, ENCFF289WR (hnRNP U control). Index files were generated using Integrated 

Genome Browser (IGV, Broad Institute; http://software.broadinstitute.org/software/igv/). First, a 

MAJIQ splice graph was built on the combined BAM files from all conditions and GENCODE gene 

annotation (v24, human genome version hg38). The difference in junction usage (in delta percent 
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selected index, ΔPSI) between KD and corresponding control samples was calculated with a 

minimum reads threshold of 3. MAJIQ VOILA was then used to calculate probabilities for each 

junction in the LSVs by testing for |ΔPSI| > 0.05. The VOILA output was then processed in R as 

follows: LSVs with at least one junction with |ΔPSI| > 0.05 and P value > 0.9 were considered as 

significant. LSVs with more than two junctions were reduced to binary events, where possible, by 

selecting the two main junctions with the highest positive and negative ΔPSI. For redundant LSVs 

that corresponded to the same splicing event from a source and target exon perspective, we kept 

the LSV with the highest |ΔPSI|. This procedure yielded a total of 1,719 and 1,301 significant 

alternative splicing events upon KD of hnRNP U and hnRNP L, respectively. We classified these 

LSVs as (i) exon skipping when the two main junctions connected to three exons, (ii) intron 

retention if reported by MAJIQ VOILA, (iii) alternative splice site when the two main junctions 

connected to two exons (3’ and 5’ alternative splice sites were defined via the non-overlapping 

junction edges), or (iv) other if they could not be unambiguously assigned. For exon skipping 

events, the shorter of the two junctions as assigned as inclusion junction. Fisher’s exact test for 

count data was performed on the overlap of significantly changing LSVs in the hnRNP U and 

hnRNP L KD. The LSVs corresponding to MALT1 exon7 (LSV ID 

ENSG00000172175.12:s:58709976-58710072) and CASP9 exon3-6 (LSV ID 

ENSG00000132906.17:s:15518110-15518395) showed the expected trend, even though did not 

pass the confidence threshold of P value > 0.9, and were re-added for the comparison of splicing 

changes in Fig. 4g.  
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Extended Data  

Extended Data Figure 1 

 

Extended Data Figure 1. Mapping MALT1 regions regulated by hnRNP U and L. a,b, 
Quantification of endogenous MALT1 transcript and MALT1A protein levels upon knockdown of 
hnRNP L and LL in different cell lines. Asterisk indicates an unspecific band. The antibody used 
is in parenthesis. c, Minigene constructs used. d, Minigene splicing assays to evaluate which 
regions are required for splicing recapitulation relative to endogenous MALT1. Data are 
representative for three independent experiments. Depicted is the mean ± s.d. *p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001; NS, not significant; unpaired t-test. e, EMSAs showing that hnRNP U 
and hnRNP L bind with low nanomolar affinity to sub-fragments of the M1 MALT1 minigene pre-
mRNA (M1 nt 1-200 or M1 nt 200-430).  
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Extended Data Figure 2 

 

Extended Data Figure 2. Stem-loop (SL) 4 and the hammerhead, formed by SL5 and SL6, 
are conserved in mammalian species. a, SHAPE reactivities for SL4 and the hammerhead, 
comprised of SL5 and SL6. Non-reactive, semi-reactive and highly reactive nucleotides are 
colored white, orange, and red, respectively. b, Multiple sequence alignment shows that the RNA 
sequence and secondary structure for these stem-loops is evolutionary conserved. The alignment 
is colored using the colorrna.pl of the Vienna package (red marks base pairs with no sequence 
variation, ochre, green, turquoise, blue, and violet mark base pairs with 2, 3, 4, 5, or 6 different 
types of base pairs, respectively) 52. 
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Extended Data Figure 3 

 

Extended Data Figure 3. Mutations to the MALT1 minigene pre-mRNA modify secondary 
structure, but retain binding with hnRNP U and hnRNP L. a, Primary sequences of MALT1 
minigene RNA variants, with mutations colored. b,c, Secondary structure of variant 1 and 2 
minigene RNAs as determined by SHAPE. d, Variants 1 and 2 bind to hnRNP U and hnRNP L 
comparable to wildtype. 
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Extended Data Figure 4 

 

  

Extended Data Figure 4. The RGG domain of hnRNP U and the four RRMs of hnRNP L are 
responsible for binding and regulating splicing of MALT1 minigene pre-mRNA. a, Mapping 
regions in hnRNP U and L involved in RNA binding. hnRNP U constructs used to identify region 
responsible for binding RNA. b,c, Minigene splicing assays upon overexpression of various 
hnRNP U constructs. Data are representative for three (c) independent experiments. Depicted is 
the mean ± s.d. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; ns, not significant; unpaired 
Student’s t-test. d, EMSAs with hnRNP U SPRY, RGG/G-rich, G-rich and RGG/G-rich (with MBP 
solubility tag) domains with MALT1 minigene pre-mRNA. e, hnRNP L constructs used to identify 
region responsible for binding RNA. f, Minigene splicing assays upon overexpression of various 
hnRNP L constructs. g, Gel shift assays of hnRNP L RRM1,2 and RRM3,4 with MALT1 minigene 
pre-mRNA. 
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Extended Data Figure 5 

  

Extended Data Figure 5. NMR analysis of MALT1 RNA recognition by hnRNP L. 1H,15N 
HSQC spectra of free 15N-labeled (a,c) RRM1,2 or (b,d) RRM3,4 of hnRNP L (maroon) bound to 
stem-loops or single-stranded components of (a,b) SL4 or (c,d) SL5 (green) in the MALT1 pre-
mRNA. Chemical shift perturbation (CSP) and intensity plots corresponding to each spectrum are 
shown on the right. Horizontal lines represent the average CSP plus one standard deviation. 
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Extended Data Figure 6 

 

Extended Data Figure 6. NMR imino proton exchange measurements show reduced 
stability of MALT1 SL4 RNA. a, Overlay of 1D CLEANEX-PM imino spectra of SL4.Iminos 
experiencing exchange are labeled in green. b, Fitting of peak intensity as a function of 
CLEANEX-PM mixing time yields water exchange rates kex (in Hz). Error bars indicate the fitting 
error. 
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Extended Data Figure 7 

 

Extended Data Figure 7. NMR and ITC analysis of MALT1 RNA recognition by hnRNP U 
RGG. a, 1H,15N HSQC NMR spectra of the 15N-labeled RGG domain of hnRNP U bound to SL4 
or SL5 of MALT1. b, 1D imino titration spectra of SL4 and SL5 (50 µM) in the presence of 0.5 or 
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1 molar equivalent of the RGG domain of hnRNP U. c, ITC heat plot and binding curve of SL4 
and SL5 and their single stranded constituents with the hnRNP U RGG domain. d, 1H 15N HSQC 
spectra of the 15N labeled RGG domain of hnRNP U (preformed with either SL4, top, or SL5, 
bottom) in the presence of increasing concentration of NaCl. e, 1H 15N HISQC spectra of the 

arginine side chain H protons of the hnRNP U RGG domain (preformed with either SL4, top, or 
SL5, bottom) in the presence of increasing concentration of NaCl. 
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Extended Data Figure 8 

 

Extended Data Figure 8. The hnRNP U RGG domain stabilizes secondary structure. a, 
Overlay of 1D CLEANEX-PM imino spectra of SL5 in the absence (black) and presence (blue) of 
the RGG domain of hnRNP U. b, Fitting of peak intensity as a function of CLEANEX mixing time 
to determined imino proton exchange rates kex (in Hz). 
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Extended Data Figure 9 

  

Extended Data Figure 9. Binding of hnRNP L enables U2AF2 binding to MALT1 RNA. a, 
EMSA of U2AF2 RRM1,2 with MALT1 M1 minigene RNA (top) and SL4 (bottom). b, Superposition 
of 1H,1H NOESY spectra of SL4 RNA in the absence (black) or presence (green) of hnRNP L 
RRM1-4 and U2AF2 RRM1,2. Imino resonances that remain as part of the protein-RNA complex 
are colored in green on the secondary structure of SL4. c, EMSA of U2AF2 RRM1,2 in the 
presence of hnRNP L RRM1-4 with M1 minigene RNA. 
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Extended Data Figure 10 

 

Extended Data Figure 10. Splicing events regulated by hnRNP U and hnRNP L. a, Skipping 
of exon7 of MALT1 and its dependence on hnRNP U and hnRNP L is shown from knockdown 
data available from ENCODE and processed in MAJIQ. Percentage of exon7 inclusion is given 
for all conditions. b, Number of overlapping local splice variations (Venn diagram, number of 
included exon skipping events given below) and types of splicing events (bar chart) regulated by 
both hnRNP U and hnRNP L (> 5% change in at least one junction of the local splice variation, 
90% confidence interval). c, Heatmap showing the comparison of z-score-normalized mean 
percent selected index (PSI) values for 27 antagonistically regulated cassette exons in hnRNP U 
and hnRNP L control and knockdown experiments (2 replicates per condition). 
  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.12.464102doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464102


37 

Extended Data Table 1 | Binding affinities for minigene RNAs determined from EMSA 

RNA construct hnRNP U hnRNP L 

 KD
b (nM) Na KD

b (nM) Na 

M1 (nt 1 – 430) 23.0 ± 0.5  4.7 19.0 ± 0.2  4.6 

M1 (nt 1 – 200) 30.0 ± 0.2  2.8 28.0 ± 0.1  2.9 

M1 (nt 200 – 430) 28.0 ± 0.6  3.1 27.0 ± 0.1  2.8 

a N: Hill coefficient 

b Errors refer to 3 replicates 

 

 

 

Extended Data Table 2 | Binding affinities for regulatory RNA elements from ITC 

RNA 

construct 

hnRNP U RGG U2AF2 RRM1,2 

 KD
b ΔH (kJ/mol) Na KD ΔH 

(kJ/mol) 

Na 

SL4 0.64 ± 0.2 

µM 

-76.7 ± 4.93 1.6 no binding 

detected 

n.a. n.a. 

SL5 1.1 ± 0.2 

µM 

-85.9 ± 5.42 1.3 n.a. n.a. n.a. 

Py-tract no binding 

detected 

n.a. n.a. 2.7 ± 0.7 µM -118 ± 10.7 1.1 

5’ splice site no binding 

detected 

n.a. n.a. n.a. n.a. n.a. 

SL4-ex7 no binding 

detected 

n.a. n.a. n.a. n.a. n.a. 

SL4-5ss no binding 

detected 

n.a. n.a. n.a. n.a. n.a. 

a N: stoichiometry 

b Errors refer to 2 biological replicates 
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Extended Data Table 3 | Primers used for qPCR and minigene assays 

Primer Sequence (5’ -> 3’) 

MALT1A fw GAAGGTAGAAATCATCATAGGAAG 

MALT1A rev GCTTTGAGCTTGGGGTGCTCC 

MALT1B fw AAGCCCTATTCCTCACTACCAGTGG 

MALT1B rev GGATGACCAAGATTATTTAATTCATCTATG 

RP2 fw GCACCACGTCCAATGACAT 

RP2 rev GTGCGGCTGCTTCCATAA 

CD45 fw (minigene) GGGAGCTTGGTACCACGCGTCGACC 

CD45 rev (minigene) CAGCGCTTCCAGAAGGGCTCAGAGTGG 

Semi-qPCR fw (ex6) ACCGAGACAGTCAAGATAGC 

Semi-qPCR rv (ex9/10 primer) GACTTTGTCCTTTGCCAAAGG 

 

Extended Data Table 4 | Antibodies used for Western blots 

Antibody 

anti-hnRNP U (3G6) Abcam 

anti-hnRNP L (4D11) Abcam 

anti-hnRNP LL (4783S) Cell signaling 

anti-MALT1 (B12) Santa Cruz Biotechnology 

anti-MALT1A (4A7) HMGU  

anti-Flag-M2 Sigma-Aldrich 

anti-β-Actin (C4) Santa Cruz Biotechnology 

(HRP)-conjugated secondary antibodies (Jackson ImmunoResearch) 
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