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Fitness landscapes are often described in terms of ‘peaks’ and ‘valleys’, implying an intuitive low-dimensional
landscape of the kind encountered in everyday experience. The space of genotypes, however, is extremely
high-dimensional, which results in counter-intuitive properties of genotype-phenotype maps, such as the close
proximity of one phenotype to many others. Here we investigate how common structural properties of high-
dimensional genotype-phenotype maps, such as the presence of neutral networks, affect the navigability of
fitness landscapes. For three biologically realistic genotype-phenotype map models—RNA secondary structure,
protein tertiary structure and protein complexes—we find that, even under random fitness assignment, fitness
maxima can be reached from almost any other phenotype without passing through a fitness valley. This in
turn implies that true fitness valleys are very rare. By considering evolutionary simulations between pairs of
real examples of functional RNA sequences, we show that accessible paths are also likely to be utilised under
evolutionary dynamics.

I. INTRODUCTION

Ever since they were first introduced in Sewall Wright’s
foundational paper [1], fitness landscapes have become an en-
during and central concept in evolutionary biology [2–6]. In
particular, a low-dimensional picture of fitness ‘peaks’ and fit-
ness ‘valleys’ has played an important role in shaping intu-
ition around evolutionary dynamics. A key prediction is that
a population must typically traverse an unfavourable valley of
lower fitness to move from one fitness peak to another. But,
as already pointed out by Fisher [7] and many others since
[4, 8–11], the space of genotypes is typically extremely high
dimensional. As illustrated in Fig. 1, what appears to be a fit-
ness valley in a lower-dimensional landscape could be easily
bypassed when dimensions are added [9–11].

Two key open questions are: 1) Does the low-dimensional
picture of fitness valleys hold for realistic high-dimensional
genotype spaces? And 2), if we define accessible paths of
point mutations between a low fitness phenotype and a high
fitness phenotype as those with monotonically increasing fit-
ness, are such paths sufficiently common that they can easily
be found by an evolving population?

One way forward is to consider empirical fitness land-
scapes, where much recent progress has been made [5, 12],
particularly for molecular phenotypes [5, 13–21]. This body
of work has yielded important insights, such as the role of lo-
cal epistatic interactions in sculpting evolutionary paths [22–
24]. Nevertheless, ruling out high-dimensional bypasses is
difficult in empirical studies because genotype spaces, which
grow exponentially as KL for alphabet size K and genotype
length L, are almost always unimaginably vast [25]. They are
also highly connected since distances are linear; two geno-
types are at most L point mutations away, but are connected
by up to L! possible paths. For example, even for a very short
L = 20 strand of RNA , there are up to 20! ≈ 2× 1018 paths
between any two genotypes. Empirical landscapes can typi-
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FIG. 1. Illustration of how increasing dimensionality can affect the
navigability and presence of valleys in a fitness landscape.

cally only ever sample a small fraction of the full genotype
space, so what may appear to be an isolated fitness peak, may
in fact be accessible but the pathways are not feasible to ex-
perimentally identify.

A different strand of work, which can in principle ad-
dress questions of global accessibility, has focused on model
genotype-to-fitness landscapes [3, 6, 10, 11, 26, 27]. If fitness
is assigned randomly to genotypes, as in Kingman’s ‘house of
cards’ model [28], then the probability of finding accessible
paths is small. If instead there are correlations between fitness
and the genotypes, then, depending on details of the model,
accessible paths can be common [11, 29]. While again much
progress has been made in this literature, it is not always clear
how well these models capture true biological fitness land-
scapes.

Here we take a different approach, and build upon recent
advances showing that many realistic genotype-phenotype
(GP) maps share key structural features that enhance naviga-
bility. [30–32]. One important commonality is the existence
of large neutral networks of genotypes that map to the same
phenotype. Because of these networks, the mutational robust-
ness ρp of a phenotype p (defined as the mean probability that
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a point mutation leaves the phenotype unchanged) typically
scales as the logarithm of phenotype frequency fp (defined
as fraction of genotype space occupied by phenotype p) for a
wide range of GP maps [30–32]. If the genotypes of a phe-
notype were randomly distributed in genotype space, then the
robustness would scale as ρp ≈ fp, which is much smaller
than observed, highlighting the presence of neutral correla-
tions in many realistic GP maps [30]. Large neutral networks
play an important role in evolution because they allow all ad-
jacent phenotypes of a neutral network to be reached by point
mutations from any individual genotype in that network [31–
34], and therefore may form part of accessible paths.

Our main contribution here is to show that commonly ob-
served structural properties of GP maps greatly increase the
number of accessible paths, or ‘navigability’, in associated
fitness landscapes. In contrast to the genotype-to-fitness mod-
els studied by others (see above), we consider the genotype-
phenotype (GP) map with the phenotype-to-fitness map as an
additional layer on top. We first explore specific features of
GP maps that affect the navigability: redundancy (large neu-
tral sets), frequency of the unfolded or trivial phenotype, neu-
tral correlations and high-dimensionality, and the effect of
these quantities on the ruggedness of the landscape. We then
focus on identifying whether accessible paths exist for fRNA
phenotypes identified in vivo from the fRNA database [35],
and simulate evolutionary dynamics to explore whether ac-
cessible paths might be utilised in biological evolution. Our
findings show that certain structural properties of GP maps
give rise to navigable fitness landscapes, and that the resulting
accessible paths are indeed likely to be exploited in the course
of biological evolution.

II. RESULTS

A. Several well-studied genotype-phenotype maps induce
navigable fitness landscapes

A wide range of different GP maps share common struc-
tural properties, including a much larger number of geno-
types than phenotypes (redundancy), a heavily skewed dis-
tribution in the number of genotypes per phenotype (pheno-
type bias), and close proximity of genotypes belonging to
the same phenotype (which can also be described in terms
of positive neutral correlations or large phenotypic robust-
ness) [30, 31]. Here we consider the RNA secondary struc-
ture GP map for sequences of lengths L = 12 and L =
15 (RNA12, RNA15) [36–42], the Polyomino lattice self-
assembly GP map (S2,8, S3,8) [30, 43], and several HP lat-
tice protein folding GP maps (two compact GP maps HP5x5
and HP3x3x3, and two non-compact ones HP20 and HP25)
[44–46].

We performed computational experiments in which fitness
is assigned to phenotypes randomly, and two phenotypes are
chosen randomly from the set of all phenotypes as the ‘source’
and ‘target’.

TABLE I. RNA, Polyomino and compact HP GP maps all have nav-
igable fitness landscapes (〈ψ〉 > 0.6) under random fitness assign-
ment illustrating a lack of fitness valleys. By contrast, non-compact
HP models have very low navigability (〈ψ〉 ≤ 0.013).

GP map K L NP fdel log10R 〈ψ〉 ± SE(〈ψ〉)

RNA12 4 12 58 0.854 4.6 0.966± 0.002
RNA15 4 15 431 0.650 5.9 0.978± 0.002
S2,8 8 8 14 0.537 5.8 0.913± 0.008
S3,8 8 12 147 0.800 8.0 0.919± 0.003
HP5x5 2 25 549 0.816 4.1 0.995± 0.001
HP3x3x3 2 27 49,807 0.939 2.2 0.669± 0.005
HP20 2 20 5,311 0.976 0.7 0.004± 0.001
HP25 2 25 107,337 0.977 0.9 0.013± 0.001

The navigability 〈ψ〉 is defined as:

〈ψ〉 = 1

N

N∑
k

ψsktk

over a set of N source-target pairs (sk, tk), where ψij is the
probability that single-point mutation steps with monotoni-
cally increasing fitness (an accessible path) exist from a geno-
type of phenotype i to a genotype of phenotype j. In other
words, the navigability is the average probability of an acces-
sible path over the phenotypes of a GP map (see IV B 4).

In Table I, we report navigability for each GP map. The
value of 〈ψ〉 is greater than 0.6 for all the GP maps we
consider, apart from the non-compact HP models HP20 and
HP25. The non-compact HP models have a navigability
〈ψ〉 ≤ 0.013 demonstrating these GP maps do not produce
navigable fitness landscapes. These results suggest that the
GP maps of RNA secondary structure, compact HP models,
and the Polyomino model, have navigable fitness landscapes
and contain very few fitness valleys under random fitness as-
signment. However, the lack of navigability in non-compact
HP models highlights the need for further investigation of the
effect of structural properties of the GP maps on navigability,
which we pursue in the next section.

B. Common properties of GP maps are associated with
navigability

1. GP maps with fewer phenotypes and fewer deleterious
genotypes are more navigable

Having showed that three distinct GP maps give rise to
navigable fitness landscapes under random fitness assignment,
we explore the relationship between structural properties GP
maps and navigability. Specifically, we consider the redun-
dancy R of a GP map, measured as the average number of
genotypes per non-deleterious phenotype (see Eq. (1)), and
the deleterious frequency fdel. The deleterious frequency de-
scribes the fraction of genotype space that does not map to a
well-defined phenotype. In the case of RNA secondary struc-
ture the deleterious phenotype would correspond to the un-
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FIG. 2. Navigability of each GP map is plotted in relation to (A)
redundancy log10R and (B) deleterious frequency fdel. We find that
there is a positive association with navigability and redundancy while
a negative association with respect to deleterious frequency for large
fdel.

folded RNA strand (i.e. the absence of any secondary struc-
ture). In the HP model it corresponds to the absence of a
unique folded ground state. In the Polyomino model it cor-
responds to unbounded or non-deterministic assembly. In
Fig. 2A we plot navigability against redundancy, while in Fig.
2B navigability is shown against the deleterious frequency
with the numerical values provided in Table I. We observe
a general increase in navigability for greater redundancy and
smaller fdel. HP3x3x3 presents an example of particular in-
terest by maintaining navigability (〈ψ〉 = 0.669) with less
redundancy (log10R = 2.2) and large deleterious frequency
(fdel = 0.939).

The results across different GP maps provide some intu-
ition for factors that determine navigability. With decreasing
redundancy, it becomes more difficult to access all phenotypes
as they begin to occupy smaller fractions of the overall space.
As fdel increases, more neighbours of a given genotype will
have a fitness of 0, therefore localising phenotypes to smaller
components in the GP map, increasing the likelihood of each
genotype having no neighbouring genotypes with greater fit-
ness.

2. Positive neutral correlations increase navigability

We next consider how neutral correlations, which funda-
mentally arise from a very general picture of constrained and
unconstrained portions of genotype sequences [47–49] and
lead to greatly enhanced mutational robustness [30], affect
navigability. The level of correlations in a given GP map can
be adjusted by taking two genotypes g1 and g2 at random and
assigning the phenotype of g1 to g2 and vice versa. Such ran-
dom swaps remove the local correlations that are intrinsic to
the GP map. The total number of swaps applied is parame-
terised as s. With increasing s, we decorrelate the GP map
towards a random phenotype assignment to the set of geno-
types. While s parameterises the decorrelation process, it is
not on a scale that captures the level of correlations present
relative to either the original GP map or fully randomised GP
map where there are no correlations. Therefore, a measure of
correlations c(s) (Eq. (9)) after s swaps is captured by relating
phenotype robustness ρp and frequency fp averaged across
the phenotypes of the GP map for a given number of swaps
s. When c(s) = 1, the correlations are equal to the original
GP map, when c(s) = 0, the correlations are that of the ran-
domised null model. Positive neutral correlations are present
for c(s) > 0. By measuring the navigability 〈ψ〉 after a given
number of swaps s, we measure the extent to which neutral
correlations c(s) affect navigability.

In Fig. 3A, we plot how navigability varies with c(s) in
S2,8, RNA12, HP5x5 and HP3x3x3 GP maps, a subset of the
GP maps in the previous section that are both small enough to
be tractable here, and have sufficiently large navigability such
that the effect of reducing correlations and dimensionality
may be sizeable. All four GP maps, on average, show greater
navigability for greater c(s) with an approximately linear de-
cay in navigability with decreasing c(s), saturating at a lower
value specific to each GP map: 0.378 ± 0.005 for RNA12,
0.100 ± 0.003 for HP5x5, 0.000 ± 0.000 for HP3x3x3, and
0.949 ± 0.002 for S2,8, substantial reductions apart from for
S2,8. In S2,8, the navigability 〈ψ〉 takes a greater value for the
decorrelated GP map (c < 1) than for the original one (c = 1).
This is because not all phenotypes are directly accessible from
each other in the original GP map. However, a slight ran-
domisation increases phenotype inter-connectivity due to the
fact that the number of phenotypes for S2,8 is smaller than the
number of local mutations (NP < (K − 1)L). We expect that
in GP maps of longer sequence length L, the role of positive
neutral correlations will become even more pronounced. We
explore this in Section II C with respect to fRNA phenotypes.

3. Large dimensionality increases navigability and decreases
ruggedness

We now examine the effect of dimensionality of the GP
map. The dimensionality of the entire GP map is defined as L,
the length of the sequence. During the search for an accessi-
ble path from the source to target phenotype, all bases can be
mutated, making use of the full dimensionality of the GP map.
We can, however, reduce the dimensionality of the search by
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FIG. 3. (A) Navigability emerges as positive neutral correlations are added to HP3x3x3, HP5x5, RNA12 and S2,8S2,8S2,8 GP maps. The level
of neutral correlations is adjusted through genotype swaps, and the extent of positive neutral correlations after s swaps is measured on a scale c
between the original GP map (c = 1) and the random null model’s correlations (c = 0). A caricature of the genotype space, coloured according
to phenotypes, is shown for low neutral correlations (top left) and high neutral correlations (top right). (B) Greater dimensionality of the GP
map increases navigability for S2,8S2,8S2,8, HP3x3x3, HP5x5 and RNA12 GP maps. During the search from a randomly chosen source phenotype
to a target phenotype, we only allow D (d = D/L) of the total L bases to be mutated to explore genotype space. A caricature of a sequence
with grey bases (L − D) not mutable, black bases mutable (D) and red bases varying across sequences, is depicted for low dimensionality
(top left, d = 3/12) and high dimensionality (top right, d = 11/12). The GP maps show differing tolerance with respect to navigability
under a change in dimensionality, S2,8 permitting navigability for low dimensionality significantly more than HP3x3x3, for example. (C)
With increasing dimensionality, landscape ruggedness decreases. We measure landscape ruggedness 〈κ〉 as the average proportion of all
genotypes encountered that are local fitness maxima (no neutral neighbours or neighbours with increased fitness). Ruggedness decreases in all
GP maps as dimensionality increases, but the level of ruggedness is GP map dependent. (D) A schematic of the joint effect of dimensionality
and correlations on navigability through visualisation of the phenotype connectivity network. An example is illustrated of the search
for an accessible path in a specific random instance of a fitness landscape with the phenotype network of RNA12. Phenotypes are nodes
and the edges are possible transitions between genotypes of those phenotypes given the random fitness assignments. Edges that are red are
transitions that may lead to the target phenotype from the source phenotype. Inaccessible transitions are shown in grey. The vertical axis is
fitness. The horizontal plane is a two-dimensional embedding of the phenotype space of RNA12 derived through a multidimensional scaling
(MDS) that uses the pairwise Hamming distances between the dot-bracket representations of the phenotypes. It follows that proximity in
the horizontal plane corresponds to similar dot-bracket phenotypes. (E) The phenotype network is shown for three levels of correlations
(original, medium, and no correlations) and three levels of dimensionality (D = 2, 6, 12D = 2, 6, 12D = 2, 6, 12). Navigability and connectivity in the phenotypic
network visibly increases with both increasing correlations and dimensionality.

allowing only a random set of D sites (where D < L) to
be mutated during a given search for an accessible path from

source to target. We then consider 〈ψ〉 as a function of the
relative dimensionality d = D/L ∀D ∈ {1, ..., L}.
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In Fig. 3B, we plot navigability 〈ψ〉 as a function of d. Re-
duced dimensionality severely reduces the navigability of fit-
ness landscapes, with a sigmoidal relationship between 〈ψ〉
and d. All the curves show an increase from low navigability
to high navigability as d→ 1 of the full GP map. The critical
value of d, and general scale and shape, is different across the
four GP maps indicating a complex dependence on other GP
map properties.

In addition to identifying an accessible path during the
search from source to target, we also count the number of
genotypes that do not have a neutral neighbour or neigh-
bour with greater fitness. In other words, the proportion of
genotypes that are local fitness peaks, therefore providing a
measure of landscape ruggedness. The average proportion of
genotypes that are local fitness peaks across source-target phe-
notype pairs and fitness assignments in a given GP map, is
represented as 〈κ〉. In Fig. 3C, the ruggedness for each rela-
tive dimensionality d = D/L is plotted in the same four GP
maps. We observe increasing dimensionality reduces rugged-
ness and, as relative dimensionality drops below a certain
level, ruggedness sharply increases. Of note is HP3x3x3,
where ruggedness is greater at a given relative dimensional-
ity than for the other GP maps. Where all bases may mutate at
d = 1, around 7 in 100 genotypes are local peaks (〈κ〉 = 0.07)
but navigability remains high (〈ψ〉 = 0.66), demonstrating
that partially rugged landscapes can still be navigable.

We illustrate an example of a source-target search in a
schematic of the RNA12 GP map in Fig. 3D. We choose a
random source and target pair and, during the search for an
accessible path, keep track of all phenotypes encountered,
their fitness and any transition between phenotypes. Each
phenotype is represented as a node, edges as transitions be-
tween phenotypes, and the value on the vertical axis as the
fitness. The NP = 58 phenotypes of this GP map are as-
signed coordinates in the horizontal plane using multidimen-
sional scaling (MDS) based on the pairwise Hamming dis-
tance between phenotypes [50]. This allows phenotypes that
are similar to each other to be located in similar parts of the
MDS1-MDS2 plane. The source and target phenotypes are
labelled S and T respectively, edges that may form accessible
paths are coloured red, and the remaining edges grey. This
depiction of the fitness landscape immediately shows that it is
highly connected with many accessible paths.

In Fig. 3E, with the same schematic source-target pair and
fitness assignments as Fig. 3D, we illustrate the joint effect of
neutral correlations and dimensionality on connectivity and
navigability. We show the navigability of the phenotype net-
work for three different degrees of correlation (no correla-
tions, some correlations, original correlations) and three dif-
ferent dimensionalities (D = 2, 6, 12). The top right of the
9 plots is the original GP map that is also shown enlarged in
Fig. 3D. We observe that decreasing both correlations and di-
mensionality of the search visibly reduces the navigability of
the landscape through increasingly restricted networks. In the
case of D = 2, the dimensionality in which fitness valleys
are often visualised in the literature, phenotypic connectivity
is sparse, making the landscape unnavigable. The increase
in navigability with increases in both dimensionality and cor-

relations highlight that both the structure of the underlying
GP map and the high-dimensional nature of the evolutionary
search are essential for fitness landscapes to be navigable.

C. Navigability of functional RNA fitness landscapes

Next we focus on the RNA secondary structure GP map by
specifically choosing source and target phenotypes that have
been observed in nature. This is important as only a small sub-
set of all possible phenotypes are typically seen in real biolog-
ical systems [51, 52] and it is navigability among this subset
that has most relevance for evolutionary processes.

1. Fitness valleys are not observed between short fRNAs

We sample RNA secondary structures from the functional
RNA database (fRNAdb) [35]. We consider pairs of fRNA
phenotypes from the database with a given sequence length
L, assigning a random fitness Fsource ∈ [0, 1) and Ftarget = 1,
with random uniform assignment of fitness for all non-trivial
phenotypes found during the search process. We consider
larger L than earlier, specifically in the range L ∈ [20, 40].
We perform two distinct types of search by either permitting
or preventing neutral mutations in exploring a given geno-
type’s mutational neighbourhood. This provides a means to
directly measure the role of neutral correlations in facilitating
navigability for larger L. As the sequence length increases
the number of phenotypes grows as NP ≈ 1.76L [53] pro-
ducing a large computational overhead to track all phenotypes
encountered during a search. In Section IV F, we describe in
detail the more complex approach taken to measure naviga-
bility for larger L, which is necessary due to the increased
computational expense.

In Table II, the navigability 〈ψ〉 for fitness landscapes with
fRNA of sequence length L = 20− 40 is reported along with
the proportion of searches that were aborted and whether or
not neutral mutations were permitted. With neutral mutations
allowed, navigability is almost always 1.0, suggesting that fit-
ness landscapes with fRNAdb source and targets are highly
navigable. For L > 30 the proportion of aborted searches
increases, leading to the greater potential for this estimate to
be biased. However, there is a strong indication that with a
greater computational threshold, similarly large navigability
would be achieved at even larger L fRNA landscapes due to
the observed scaling of 〈ψ〉 with the computational threshold
(see Section A).

Where neutral mutations are disallowed, we find that nav-
igability is markedly reduced below 1.0, although still sub-
stantially greater than zero (〈ψ〉 ∈ [0.38, 0.64]). The pro-
portion of aborted searches is negligible. This finding is in-
triguing as it highlights that positive neutral correlations are
important, but not essential, for the existence of accessible
paths. A possible explanation lies in the vast number of phe-
notypes NP ≈ 1.76L available in the GP map, coupled with
its high dimensionality. As fitness is randomly assigned and
novel variation is only a few mutations away, there is a pool
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TABLE II. The navigability 〈ψ〉 for length L = 20− 40 fRNAs, the number of unique targets tested, the number of phenotypes in the fRNA
database, the proportion of runs that are aborted and the estimated navigability. Results for simulations with and without neutral mutations
are shown in the left-hand and right-hand sets of columns respectively. For non-aborted runs with neutral mutations permitted, random
observed fRNA landscapes are almost completely navigable. When neutral mutations are prohibited, navigability is severely reduced, but still
substantial.

Neutral mutations No neutral mutations

Targets N fRNAdb
P 〈ψ〉 Aborted Targets N fRNAdb

P 〈ψ〉 Aborted
L

20 50 14350 0.987± 0.004 0.002 50 14350 0.530± 0.016 0.001
25 49 12958 0.999± 0.001 0.015 49 12958 0.661± 0.015 0.001
30 50 42195 1.000± 0.000 0.065 50 42195 0.638± 0.015 0.001
35 46 752 1.000± 0.000 0.190 46 752 0.599± 0.016 0.001
40 47 662 1.000± 0.000 0.517 47 662 0.380± 0.015 0.001

BA fRNA 
accession:DQ75

fRNA 
accession:DQ69

FIG. 4. (A) Example of an accessible path for a specificL = 30L = 30L = 30 fRNA source-target pair. As introduced in Fig. 3D, phenotypes are nodes
whose coordinates are derived from a multidimensional scaling (MDS) embedding of the phenotype similarities based on Hamming distance,
while the vertical axis is fitness. We show the vast extent of phenotypes discovered during the search as ‘grey’ nodes, a shortest accessible path
connecting the source and target phenotypes with red edges, and the phenotypes along this path shaded in proportion to fitness. The example
illustrates the interconnected nature of the fitness landscapes for a concrete fRNA example, where the properties of the GP map are key in
facilitating navigability. (B) Evolutionary dynamics for fRNA with the distribution ofψψψ for randomly chosen phenotypes that belonged
to the fRNA database were considered for the fixedL = 20L = 20L = 20 andL = 30L = 30L = 30 GP maps. The navigability for L = 20 and L = 30 fRNA for 50
different target fRNA phenotypes are illustrated using histograms of 〈ψe〉 for each target phenotype. The dark shaded bars show the proportion
of successful searches for random fitness assignment, and the light bars for Hamming fitness assignment. Mean navigability of 〈ψe〉 > 0.5 is
observed for random fitness assignment and 〈ψe〉 > 0.9 for Hamming fitness assignment.

of non-neutral phenotypes with possibly larger fitness, poten-
tially within a small mutational radius.

In Fig. 4, we use the representation introduced in Fig. 3D
to illustrate an accessible path in fRNA. For the success-
ful traversal between a specific source and target fRNA, we
see a vast array of background, ‘greyed out’ phenotypes dis-
covered during the search for an accessible path, as well
as a shortest accessible path connecting 10 different pheno-
types with the node colour and their vertical axis coordinate
showing their fitness. This illustration further highlights the
hyper-connectedness and high-dimensional bypasses present
in fRNA GP maps that are afforded through exponentially in-
creasing redundancy, positive neutral correlations, and high
dimensionality. The phenotype network also serves again as
an alternative depiction of the fitness landscape in which the
effect of GP map structure on the course of potential evolu-
tionary explorations may be grasped more intuitively.

Summarising our results, we have demonstrated that fRNA
GP maps have navigable fitness landscapes up to L = 30
fRNA. They are highly likely to be navigable for even larger
in vivo fRNAs due to the observed scaling of both the GP map
properties and navigability with respect to the computational
threshold. Neutral mutations drastically increase navigability
but do not solely determine the presence of accessible paths.

D. Evolutionary dynamics make use of accessible paths
between fRNAs

Having considered whether accessible paths exist in a vari-
ety of GP maps, we consider whether these accessible paths
are utilised under evolutionary dynamics.

It is conceivable that, while accessible paths exist in a fit-
ness landscape, they may not be frequently used due to the
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entropic effects associated with the evolutionary search pro-
cess. For example, if there are many mutational paths that
lead to a local fitness maximum compared to a single path
leading to the globally fittest phenotype, the increased number
of ways to reach the local peak may result in populations tak-
ing one of these more prevalent paths and becoming trapped,
necessitating passage across a fitness valley to reach the fittest
phenotype.

We simulated evolutionary dynamics with a Wright-Fisher
process, implemented via a genetic algorithm, and considered
two different fitness assignment schemes: (a) random and (b)
using a given phenotype’s dot-bracket Hamming distance to
the target phenotype.

We chose Ns = 50 source phenotypes for each of Nt = 20
target phenotypes. During an evolutionary search, the change
in fitness of the majority phenotype in the population was
measured. The population was initialised from a population
of genotypes that map to the source phenotype, and the fitness
of the target was set to 1. We consider only the set of evolu-
tionary simulations where the population was able to reach the
target phenotype. We define evolutionary navigability 〈ψe〉 as
the average probability that the population’s majority pheno-
type reaches a target phenotype from a source phenotype (both
randomly chosen) via an accessible path.

We consider only the polymorphic dynamical regime
(NµL � 1, where N is population size, µ is point mutation
rate and L is genotype length). This case provides dynam-
ics that are most likely to be associated with entropic regimes
due to rapid discovery and exploration of mutational pathways
that lead to more prevalent local fitness peaks as opposed to
global ones. A greater mutation rate also increases the ability
to cross fitness valleys making it a valuable test under which
to consider whether evolutionary accessible paths continue to
be used. Further details of the evolutionary simulation are
provided in the methods (see Section IV G).

In Fig. 4B the navigability for L = 20 and L = 30 fRNA
is illustrated with histograms binning the value of 〈ψe〉 for
each of Nt = 50 target phenotypes. The darker-shaded bars
show the proportion of successful searches for random fitness
assignment, and the lighter-shaded bars for the fitness assign-
ment based on dot-bracket Hamming distance from the target
phenotype. The mean navigability 〈ψe〉 is shown as a verti-
cal dashed line. For random fitness assignment we find de-
creased navigability values of 〈ψe〉 ≈ 0.64 for L = 20 and
〈ψe〉 ≈ 0.54 for L = 30 compared to the non-evolutionary
scenario, for which 〈ψ〉 ≈ 1. While this is a reduction relative
to the potential navigability present in the landscape, this still
suggests that accessible paths are utilised for the majority of
targets.

Under Hamming distance fitness assignment we found that
accessible paths are taken much more frequently with all tar-
get phenotypes having 〈ψe〉 = 1.0 for L = 20 and 〈ψe〉 >
0.94 for L = 30. This provides additional evidence of evo-
lutionary navigability with a plausible alternative fitness as-
signment and identifies the potential importance of phenotypic
correlations within the GP map (in addition to the genotypic
correlations discussed above) for evolutionary navigability.

III. SUMMARY AND DISCUSSION

In this paper, we considered the navigability of fitness land-
scapes and, specifically, whether fitness valleys are prevalent
in high-dimensional fitness landscapes based on biologically
realistic GP maps. We examined three such GP maps with
common structural properties and found that they were highly
navigable, suggesting that fitness valleys are largely absent.
We generalised this by demonstrating navigability in GP maps
with longer RNA sequences using phenotypes contained in the
fRNAdb database of fRNA observed in nature. Finally, we
considered the question of whether accessible paths not only
exist, but are also utilised by populations subject to evolution-
ary dynamics. We found that accessible paths are followed
frequently by populations in evolutionary simulations, and are
therefore likely to play an important role in real evolutionary
settings.

We identified that universal structural properties of GP
maps can facilitate navigability, namely: genotypic redun-
dancy, the frequency of the deleterious phenotype, positive
neutral correlations, and high dimensionality as a proportion
of sequence length. These are important factors that are not
characterised in a direct genotype-to-fitness mapping and are
necessary to provide navigability. Additionally, we demon-
strated that the phenotype network is arguably a more use-
ful way to conceptualise evolutionary exploration. Visual-
ising the fitness landscape in this way avoids the mislead-
ing intuitions of fitness valleys that can arise from the low-
dimensional fitness landscape metaphor.

While we found fitness landscapes to be generally naviga-
ble under evolutionary dynamics, this navigability was lower
than one might expect given the potential availability of ac-
cessible paths in these landscapes. We suggest two possible
reasons for the reduction in the evolutionary setting: 1) the
population truly arrives at a local optima and has no choice
but to cross a fitness valley, and 2) due to the stochastic na-
ture of the evolutionary dynamics the fitness of the popula-
tion’s majority phenotype may drop, but not all members will
necessarily have a reduced fitness and therefore, for the ma-
jority to return to a greater fitness, a fitness valley may not
need to be crossed. This may lead to an underestimate of the
true evolutionary navigability. The sensitivity of evolution-
ary navigability to alternative definitions is an important area
for future exploration. The replacement of the random fitness
assignment with one based on Hamming distance improved
navigability drastically and highlights the role that phenotypic
correlations play in GP maps in addition to the genotypic cor-
relations discussed in [30].

A central assumption was that function and fitness are di-
rectly related to shape of the physical structure alone. This
is an assumption made ubiquitously in the study of self-
assembly GP maps where the structure is the sole component
of the phenotype [31, 32]. Importantly, this will not always
hold for all biological systems. For example, where a specific
sequence is necessary to facilitate binding of a protein, an ad-
ditional sequence constraint is imposed on top of that required
to specify the structure. This additional specificity potentially
reduces both the redundancy of the phenotype and the di-
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mensionality available for accessing alternate genotypes. Our
findings regarding landscape navigability should therefore be
considered in the context of the GP map properties that facili-
tate accessible paths. If these properties are not present in the
system in question, the fitness landscape is unlikely to be nav-
igable. This is supported, for example, in ref. [54] where frag-
mented fitness peaks are identified in a rare exhaustive empir-
ical fitness landscape study, but where fitness was specifically
determined by the ability for GTP to bind rather than by spe-
cific secondary structure itself.

The metaphor of the fitness landscape has endured for al-
most a century of research in evolutionary biology. It is often
discussed in intuitive terms, as a low-dimensional landscape.
This can be problematic, as it obscures counter-intuitive prop-
erties of high-dimensional spaces, which real fitness land-
scapes are. Moreover, much of the literature on fitness land-
scapes does not consider genotype-phenotype maps and their
properties, such as the ubiquity of neutral networks and their
correlations in genotype space. Our contribution demonstrates
that specific GP map properties, in combination with high-
dimensionality, make fitness landscapes navigable. We show
that accessible paths are not only available in three differ-
ent biologically realistic GP maps, but also that they are fol-
lowed in simulated evolutionary dynamics of functional RNA
structures. These findings demonstrate that fitness valleys are
largely absent in three biological GP maps. Given that the rel-
evant GP map properties have been found in numerous other
GP maps, it is highly likely that fitness valleys are indeed
uncommon across a wide range of biological systems. Our
findings support work on the role of high-dimensionality in
promoting accessibility [11], as well as attempts to create an
up-to-date metaphor for evolutionary adaptation [55]. A fuller
understanding of the role of the GP map in structuring the high
dimensional fitness landscape could provide vital insights into
areas such as the arrival of drug resistance [56, 57] or the mu-
tational progressions of cancer [58].

IV. METHODS

A. Self-assembly GP maps

We consider three GP maps for different systems of bio-
logical self-assembly: the RNA secondary structure GP map
[37] for secondary structure of RNA sequences, the HP lattice
model for protein tertiary structure [44, 59] and the Polyomino
model for protein quaternary structure [43]. The phenotype in
each is solely related to the assembled structure. We briefly
summarise the GP maps below with detailed comparisons be-
tween the three GP maps found in ref. [30].

• RNA secondary structure: we use the Vienna package
[37] (version 1.8.5) with default parameters to convert
RNA sequences to dot-bracket secondary structures.
GP maps are represented as RNAL with sequences of
length L.

• HP lattice model: we follow refs. [45, 46] and con-
sider energetic interactions between non-adjacent pairs

to have values EHH = −1, with EHP = EPP = 0, where
H are hydrophobic and P are polar amino acids. If a
sequence has a unique lowest energy structure, its phe-
notype is that structure, otherwise it is considered de-
generate. We consider both the non-compact GP map
for all folds of a given length referred to as HPL and
also only the set of compact structures referred to as
HPlxwxh.

• Polyomino model: we follow refs. [30, 43] and consider
the GP maps SNt,Nc

where Nt is the number of assem-
bly kit tiles and Nc with the default self-assembly pro-
cess used.

The GP maps may be further characterised by their geno-
type sequence length L, base K, number of genotypes NG =
KL and number of phenotypes NP . The redundancy np of
a given phenotype p is the number of genotypes that map to
p and this is normalised by the size of the genotype space to
give the frequency fp = np/K

L. The overall redundancy R
of a GP map is defined as the average number of genotypes
per non-deleterious phenotype:

R = KL(1− fdel)/(NP − 1) (1)

We provide Table III to summarise the characteristic proper-
ties used to differentiate the GP maps.

A particular feature of all three GP maps is a single phe-
notype that is of a different nature to the others: for RNA
secondary structure this is the unfolded ‘trivial’ structure, the
HP lattice model it is sequences that have a degenerate ground
state and for the Polyomino model it is when there is either un-
bounded or non-deterministic growth (UND). We refer to this
phenotype here as the deleterious or del phenotype as, in each
GP map, we consider it low fitness due to the non-specificity
of the structural phenotype. We assign a fitness of zero for del
throughout this work. While this is a strong assumption, given
the large-scale dominance of the del phenotype in Polyomino
and HP GP maps, we expect this assumption to exacerbate
the presence of valleys rather than introducing a bias towards
navigability.

B. Measuring landscape navigability

1. Definitions and formulation

In order to establish the presence of fitness valleys in a fit-
ness landscape, we consider whether it is possible to reach the
fittest phenotype from any given point in the genotype space
via a path where the fitness increases monotonically defined as
an accessible path [11, 60]. Landscape navigability has pre-
viously been defined as the proportion of accessible paths to a
given genotype from all other genotypes [17]. To briefly sum-
marise, here we specifically define the navigability as the av-
erage probability that a randomly chosen phenotype pair have
at least one accessible path between them, given a fitness as-
signment process to phenotypes. We denote accessibility with
ψ, where ψ = 1 indicates the presence of at least one acces-
sible path between two phenotypes for a specific set of fitness
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Term and description Representation
Alphabet A
Genotype space G
Phenotype space P
Alphabet size |A| = K
Genotype length L
Dimensionality: the number of bases that may be mutated in the genotype D
Relative dimensionality d = D/L
1-mutant genotypes of genotype g σ(g)
Number of 1-mutation neighbours of genotype g |σ(g)| = (K − 1)L
Number of genotypes NG = KL

Number of phenotypes NP

GP map M : G → P
Phenotype redundancy: the number of genotypes that map to phenotype p np

Phenotype frequency: the fraction of genotypes that map to phenotype p fp
GP map redundancy: the average number of genotypes per non-deleterious phenotype R = KL(1− fdel)/(NP − 1)
Fitness of phenotype p Fp

Presence of at least one accessible path with a binary event indicator ψ
Probability of an accessible path existing between phenotype p and q ψpq

Navigability: average probability of an accessible path for phenotype pairs of a GP map 〈ψ〉
Evolutionary navigability 〈ψe〉
Ruggedness 〈κ〉
Neutral correlations c
RNA GP map for genotype sequence length L RNAL
Polyomino GP map with Nt kit tiles and Nc interface types SNt,Nc

HP lattice GP map for genotype sequence length L HPL
HP lattice GP map for compact phenotypes in the grid box l × w × h HPlxwxh

TABLE III. Terminology. A summary of terms and their representations used in the paper.

assignments, and ψ = 0 indicating no accessible paths. When
ψ = 0, a fitness valley must be traversed between the pheno-
types. With this notation, we use 〈ψ〉 to represent navigability
of fitness landscapes for a given GP map.

2. Fitness landscapes

In conjunction with the GP map M , a fitness landscape
instance is defined by the set of phenotype fitnesses F :=
{Fpi}NP

i=1, with i denoting the ith indexed phenotype pi. We
refer to the source phenotype p and target phenotype q in the
search for an accessible path from p → q. We consider two
fitness assignments in this paper:

• Random fitness: random samples Fpi ∼ Uniform(0, 1)
with target phenotype q having Fq = 1

• Hamming distance: where the similarity of pheno-
type p compared to a phenotype q is measured by the
number of matching positions in the aligned pheno-
type string representation given by F (p, q) = 1 −∑L
j δ(p

(j), q(j))/L, where p(j) is the string character
representing phenotype p at the jth base position and
F (p, q) is the fitness of phenotype p compared to a tar-
get phenotype q

Fdel = 0 for all fitness assignments.

3. Navigability estimation

The probability of an accessible path (ψ = 1) between a
source phenotype p and target phenotype q, given a random
fitness landscape instance F , is deterministic with a binary
outcome. We can define the probability of ψ more explicitly
as a function of p, q and F as follows:

ψ(p, q,F) := P (ψ = 1|p→ q,F) (2)

where

ψ(p, q,F) =
{
1 if at least one accessible path exists
0 otherwise

(3)

We can take the expectation over F yielding the mean proba-
bility of an accessible path from p to q as:

ψpq = EF [ψ(p, q,F)] (4)

With this notation, we can define the navigability for the
GP map as the expectation over Eq. (4) for phenotypes p and
q sampled uniformly at random:

〈ψ〉 = Ep,q[ψpq] (5)

We can estimate this probability of reaching a given target
phenotype q from a uniform randomly chosen source pheno-
type p by computationally measuring ψ(p, q,F) for Ns ran-
domly chosen sources for each of Nt randomly chosen tar-
gets, with a new random fitness landscape instance F for each
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pair. We use IT (s, t) to indicate whether the computational
estimate for source index s with target index t was inside the
computational threshold T and completed the search without
aborting. The estimate can be written as:

〈ψ〉 = 1

Nc

Nt∑
t=1

Ns∑
s=1

IT (s, t)ψ(pst, qt,Fst) (6)

where pst and qt are the source and target phenotypes of sth

source for the tth target, the number of completed runs isNc =∑
t,s IT (s, t) and the aborted proportion α:

α = 1− Nc
NtNs

(7)

The estimate of the navigability of a fitness landscape with GP
map has an associated Bernoulli standard error (derived from
an estimate of the corrected sample standard deviation):

SE(〈ψ〉) =
√
〈ψ〉 (1− 〈ψ〉)

Nc − 1
(8)

We next describe in more detail the computational algorithm
for estimating 〈ψ〉.

4. Navigability estimation algorithm

For a given source and target phenotype, in each random
landscape instance, we perform the following computational
algorithm to measure ψ. We first provide some definitions:

• GP map M : is a function M : G → P where G is the
space of genotypes and P is the space of phenotypes,
such that we can write the phenotype p of genotype g as
p =M(g)

• Dimensionality: We define the set of sequence positions
that may be mutated as D, with the size of |D| being
the dimensionality D. When |D| = L all base positions
are mutable. Relative dimensionality is defined as the
dimensionality relative to sequence length d = D/L

• Alphabet: sequences have a set of A possible letters at
a given site. The size of |A| = K is the base.

• u0 contains genotypes whose 1-mutant neighbours are
yet to be considered in a given search for an accessible
path

• u1 contains genotypes that have already had their 1-
mutant neighbours considered in a given search for an
accessible path

The algorithm proceeds with a Breadth First Search (BFS):

1. A random genotype g that maps to the source phenotype
is chosen and added to u0

2. Set the first element of u0 as g

3. For base a ∈ A at position j and for each position j ∈
D, measure genotype neighbour g′ and phenotype p′ =
M(g′)

4. If Fp′ ≥ Fp and g′ /∈ u1, add g′ to u0

5. Move g from u0 to u1

6. If |u0| = 0 or |u0|+|u1| > T (computational threshold)
or the target phenotype is found, return ‘aborted’ or ψ
respectively. Otherwise return to step 2

The algorithm finishes with either u becoming empty, or
the combined size of u0 and u1 becoming larger than a pre-
defined threshold T (introduced in Section IV B 1), beyond
which computational progress may become unfeasible. We
discard these aborted runs from the measurement of navigabil-
ity 〈ψ〉 using the indicator function IT of the previous section
(Section IV B 3).

As described in Eq. (6) we pick Ns source phenotypes uni-
formly at random for each of the Nt target phenotypes also
chosen at random. We set Nt = 20 and Ns = 50. The un-
certainty in the estimate of the navigability 〈ψ〉 is reported as
the standard error SE(〈ψ〉) across the ensemble of measure-
ments.

C. Removing correlations

In order to measure the effect of positive neutral correla-
tions [30], we perform genotype swaps and then repeat the
measurement of 〈ψ〉. This process involves constructing a
new GP map Ms from the original GP map Ms=0 := M
where s is the number of pairs of genotypes whose pheno-
type’s have been swapped. More precisely, a swap involves
selecting two genotypes g1 and g2 with uniform random prob-
ability and setting Ms(g1) = Ms−1(g2) and Ms(g2) =
Ms−1(g1). It follows that Ms→∞ is the uncorrelated ran-
dom null model GP map with no positive neutral correlations
as used in ref. [30]. As shown in ref. [30], the random null
model has ρp ≈ fp when there are no positive neutral corre-
lations. Therefore, we additionally define the correlations c
present in a given GP map Ms by comparing the logarithm of
the average robustness-to-frequency ratio in a given GP map
against the original GP map, generating a scale for measuring
correlations in Ms:

c(s) =
log10

〈
ρp(s)
fp(s)

〉
p

log10

〈
ρp(0)
fp(0)

〉
p

(9)

where for s = 0 we have c(0) = 1, and for lims→∞ c(s) ≈ 0
the expectation for the random model. Therefore, the scale
yields positive values for c where there is, on average, greater
robustness than frequency. The process of removing corre-
lations gradually from the original GP map (s = 0) to the
random null model (s→∞) provides a range over which the
relationship between positive neutral correlations and naviga-
bility may be considered in GP maps. We measure the navi-
gability of S2,8, RNA12, HP3x3x3 and HP5x5 by taking 100
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evenly spaced values for s on the range s = [0,KL] and mea-
suring 〈ψ〉 and c(s) for each.

D. Restricting dimensionality

To measure the role of dimensionality we restrict the di-
mensionality of a search for an accessible path from source to
target by only allowing a set of D randomly chosen positions
along the sequence to be mutated in the 1-mutant neighbour
measurement in Step 3 of the navigability algorithm above
(Section IV B 4). The dimensionalityD is the number of posi-
tions that may be mutated |D|, and the relative dimensionality
d := D/L. When D = L we have the original dimensional-
ity, while for D = 1 only a single sequence position may be
mutated. The GP map M itself is not changed under this di-
mensional restriction but rather the connectivity of genotypes
and therefore the connectivity of the fitness landscape.

We measure the navigability of S2,8, RNA12, HP3x3x3 and
HP5x5 by taking evenly spaced values for D on the range
D ∈ [1, L].

E. Measuring ruggedness

For fitness landscapes, related to navigability is the con-
cept of landscape ruggedness. We measure κ(g), whether a
genotype is a local fitness maximum, during the search from
source to target. The average proportion of genotypes that are
local fitness maxima provides a measure of ruggedness [26].
Whether a genotype g is a local fitness peak is determined by
the fitness of all accessible 1-mutant neighbours g′, such that:

κ(g) =

{
1 if FM(g′) < FM(g)∀g′ ∈ σ(g)
0 otherwise

(10)

where we have the function σ(g) which returns the set of 1-
mutants of genotype g. We calculate the ruggedness for a
landscape by taking the average of κ(g) over all genotypes
and all source-target pairs once the search has completed. We
denote the ruggedness as 〈κ〉.

F. Navigability in the functional RNA database

In Section II C, we examine navigability in a specific sub-
set of RNA phenotypes, namely those that are found in the
functional RNA database (fRNAdb) [35]. For a given length
we use all phenotypes in proportion to their occurrence in the
fRNAdb apart from the trial structure which we exclude as it
is assigned zero fitness here. We randomly choose Nt = 50
targets with Ns = 20 randomly chosen sources from this set.

In order to examine navigability between functional RNAs,
we must consider sequences longer than L = 15. In doing so,
we introduce additional computational overhead given the in-
creasing neutral set size resulting in the condition |u0|+|u1| >
T being more likely to be met. Therefore to maximise the

number of non-aborted runs, we perform a modified Depth-
First Search (DFS) where we attempt to greedily follow paths
of increasing gradient until we reach the max fit phenotype.
If the path fails, instead of moving back one step as in a stan-
dard DFS, we go all the way back to the start of the walk and
pick an unexplored neighbour with the lowest fitness to begin
a new uphill walk. In this way, we maximise the exploration
of new phenotypes by always starting our deep walks from the
lowest point while still maintaining the ability to perform long
walks during the search.

We write the modified DFS algorithm explicitly as:

1. A random genotype g that maps to the source phenotype
is chosen and added to u0.

2. Set the first element of u0 as g, and p =M(g)

3. For each alternative base a ∈ A at position j and for
each position j in D, measure genotype neighbour g′

and phenotype p′ =M(g′)

4. If any g′ has Fp′ > Fp and g′ /∈ u1 and g′ /∈ u0, add g′

to front of u0 and return to step 2

5. If any g′ have p = p′ and |u0| = 1, add one such neutral
case to the back of u0 if g′ /∈ u0 and g′ /∈ u1

6. Move g from u0 to u1

7. If |u0| = 0 or |u0|+|u1| > T (computational threshold)
or the target phenotype is found, return ‘aborted’ or ψ
respectively. Otherwise return to step 2.

We note that for searches where neutral mutations are not per-
mitted as part of the search, step 5 of the above is omitted.

G. Navigability estimation under evolutionary dynamics

We measured fitness landscape navigability as the average
probability that a given source-target pair could be connected
by way of an accessible path. We extend this definition to the
more strict requirement of evolutionary navigability where the
evolutionary dynamics of a population is considered instead of
just the existence of an accessible path in crossing the fitness
landscape.

We measure 〈ψe〉 as the proportion of source-target pairs
for which the target is reached without the majority popula-
tion phenotype undergoing a decrease in fitness before finding
the target. The majority was taken as being a phenotype that
occupied more than 50% of the population’s phenotypes. If
no phenotype met this condition in a given generation, then
the majority phenotype fitness is not updated.

Evolutionary dynamics were performed using Wright-
Fisher dynamics [61, 62], and the additional parameters used
for each evolutionary dynamical runs were the following:

• GA parameters: Ngen = 10, 000,Npop = 100, µ = 0.05

• fRNA parameters: L = 20 and 30
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Evolutionary runs that are terminated after Ngen = 10, 000
generations are treated in the same manner as those that are
aborted when estimating 〈ψ〉. Therefore, evolutionary nav-
igability 〈ψe〉 is the fraction of evolutionary runs that suc-
cessfully evolved to the target phenotype through the majority
population phenotype taking an accessible path across all runs
excluding those that were terminated at Ngen generations.
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Appendix A: Impact of computational thresholds on discovery
of estimation of navigability
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FIG. 5. (A) Navigability 〈ψ〉〈ψ〉〈ψ〉 for different length LLL for increas-
ing computational threshold TTT . Navigability is approximately 1.0
for all computational thresholds suggesting that navigability may be
persist for larger computational thresholds. (B) Proportion of esti-
mations aborted for four different thresholds for different fRNA
length LLL. Dashed lines provide quadratic interpolations to illustrate
potential computational thresholds for which a given abortion thresh-
old may be reached if the fit holds for extrapolation. As a guide,
we highlight the computational limit corresponding to one month of
chronological time given available computational resources.

To allow us to consider the plausibility of navigable land-
scapes for longer fRNA (L > 20), we explore the effect of
changing the computational threshold T (Section IV B 1) at
which the search for an accessible path is aborted. We test
four orders of magnitude for the threshold |u0| + |u1| < T
condition: Nthresh = {2× 103, 2× 104, 2× 105 and 2× 106}.
In each case we attempt Nt = 50 target phenotypes and for
each target Ns = 20 source phenotypes and attempt to iden-
tify an accessible path, where we record whether a search was
successful, unsuccessful or aborted.

In Fig. 5A and Fig. 5B we plot navigability and the pro-
portion of runs that are aborted respectively for the different
thresholds against the length of the fRNA sequences. The
change in the proportion of aborted runs is pertinent for un-
derstanding both how navigability changes when increasing
the threshold and also what level of T is required to be able
to reasonably estimate navigability for a given length L. With
respect to the first point, in Fig. 5A navigability 〈ψ〉 ≈ 1 for
all lengths L and thresholds T , showing that almost all non-
aborted runs have accessible paths. Extrapolating this obser-
vation we should expect high navigability for longer length
L > 30 if greater computation resource were available. With

respect to the required computational thresholds for a given
length L, we observe, very roughly, that around 50% aborted
proportion is reached for L = 20 at T = 2× 103, for L = 35
at T = 2 × 105 and L = 40 at T = 2 × 106. Extrapolat-
ing with quadratic fits we could hypothesise that the aborted
threshold could be reduced to 10% for L = 40 at between
[2× 107, 2× 108].
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