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Abstract 

Single-cell spatial transcriptomics technologies leveraged the potential to 

transcriptionally landscape sophisticated reactions in cells. Current methods to 

delineate such complex interplay lack the flexibility in rapid target adaptation and are 

particularly restricted in detecting rare transcripts. We developed a multiplex single-

cell RNA In-situ hybridization technique, called ‘Molecular Cartography’ (MC) that can 

be easily tailored to specific applications and, by providing unprecedented sensitivity, 

specificity and resolution, is particularly suitable in tracing rare events at a subcellular 

level. Using a SARS-CoV-2 infection model, MC allows the discernment of single 
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events in host-pathogen interactions, dissects primary from secondary responses, 

and illustrates differences in antiviral signaling pathways affected by SARS-CoV-2, 

simultaneously in various cell types.  

 

Introduction 

Single-molecule RNA-fluorescence in situ hybridization (smFISH) together with 

single-cell RNA sequencing (scRNA-seq) techniques are the current pillars to record 

transcriptional responses to a disease or environmental agent and have proved 

highly useful in investigating e.g., Severe Acute Respiratory Syndrome Coronavirus 2 

(SARS-CoV-2), the agent responsible for the recent pandemic1-3. Several advanced 

multiplexed smFISH-based applications (MERFISH, Visium, Cartana, ZipSeq, 

SeqFISH, DSP) are available that provide analysis of spatio-transcriptional activities4-

9. These technologies are crucial assets to better understand the functional 

heterogeneity of cells as well as cell autonomous and paracrine effects as inherent 

principles of physiological and disease conditions, and to correlate such indices to 

genetic and developmental differences7,8,10. However, they are often limited in the 

number of simultaneously tested samples, time-consuming in adapting protocols to 

new targets or limited in the resolution or sensitivity necessary to spatially map the 

transcriptional landscape at a subcellular level, particularly when tracing and 

dissecting rare transcriptional events7,8,11-13.  

In particular, separating timely or spatially close but disparate events, e.g. responses 

in primary and secondary infection events, remains highly challenging. Yet, 

understanding the response dynamics between such primary and secondary infected 

cells especially in comparison to non-infected bystander cells is crucial to capture the 

priming of bystander cells towards a collective antiviral response. Shedding light on 

this very process may help us to better comprehend the disparate infectivity rates 
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and discordant inflammatory signaling observed in COVID-19 patients and its 

underlying pathogenesis on a molecular level14.  

To bridge this gap, we developed ‘Molecular Cartography’ (MC), a highly 

resolved multiplexed smFISH technique that, through enhanced sensitivity and 

specificity, allows tracing of even scarcely expressed, single RNA molecules of up to 

100 genes simultaneously at a subcellular resolution in multiple samples in parallel, 

or the analysis of up to 2400 genes in a single experiment. Using a set of 

fluorescently labeled probes that can easily be designed for specific applications, MC 

detects and codes single transcripts from individual genes in consecutive rounds that 

are decoded and counted by a specifically devised algorithm. The rapid design and 

flexibility to change these customizable probe sets, in particular, unlocks the 

analytical potential to dynamically adapt research hypotheses within a few days. 

Apart from illustrating the advances in specificity, sensitivity and reproducibility, we 

demonstrate its feasibility by investigating heterogeneous gene expression patterns 

of key viral entry factors within clonal populations in lung, colorectal, and 

hepatocellular cell lines and compare primary and secondary pathogen host 

responses in an infection model of SARS-CoV-215. We further investigate differences 

in overall infectivity and track pathways known to be affected by coronaviridae16-18. 

Finally, by simultaneously detecting and localizing context-enriched targets, we 

directly trace the response trajectory starting at primary infection sites (INFS) and 

highlight the complex propagation network of SARS-CoV-219. 

 

Results 

MC harbors the advantages of previous multiplexed smFISH based 

technologies but with increased flexibility (i.e. rapid adaptation to specific research 
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questions), sensitivity and specificity compared to current applications including 

concurrent analysis of multiple samples. The previously designed and synthesized 

probes are hybridized to their target species (Fig. 1a) followed by repeated rounds of 

probe colorization with fluorophores specific for a certain target species. Transcript-

specific probes are designed using an algorithm developed specifically for MC by 

Resolve BioSciences that allows the design of probe sets of almost all genes of an 

organism. In-silico probe design is one of the most critical steps for spatial 

transcriptomics analysis. In general, a proper probe design influences uniformity, 

sensitivity and specificity which has been shown in previous applications targeting 

probe design e.g., for microarrays20. Probe design for accurate sensitivity and 

specificity was optimized in several iterations of MC experiments including the design 

algorithm, which ultimately allowed the reduction of the probe number per transcript. 

For example, MC effectively quantifies short transcripts such as the human CCL8 

transcripts (length ~850 nucleotides) or mouse interleukin (IL) 18 (length: ~700 

nucleotides) in individual cells. This indicates that MC detects and quantifies even 

short transcripts or transcript variants. 

In total, eight consecutive rounds of colorization, imaging, de-colorization and 

re-colorization build up a combinatorial color code that is specific for every target 

sequence. All combinatorial coding schemes have in common that the number of 

combinations increases with the length of a single code N. The length of the code is 

given by the number of detection rounds and number of fluorophores (x) used for the 

multiplex smFISH approach (xN). Although the number of combinations increases 

with each round, we reduced the number of potential available codes therefore 

increasing the distance between the codes. This increases the Hamming distance, 

which in turn, results in several advantages. The large distance between codes 

allows for correction of the code, if a certain signal is not detected or wrongly 
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assigned. An increase in code distances thus strongly improves specificity and 

sensitivity by reducing rates of misidentification due to error recognition and 

correction.  

An example of three consecutive rounds of imaging (channel 1 of 2) is given in 

Fig. 1b. The first three images demonstrate how a color code is built up in three 

different rounds. Note that some fluorescent spots are detectable in all three rounds 

of the same channel, while others appear only in round 2 and/or 3, respectively. After 

de-colorization, individual spots disappear and re-appear depending on the code in 

the next colorization round, ultimately generating a unique molecular identifier per 

target (Fig. 1c). Although colorization and de-colorization is stable over more than 

ten rounds, we used only eight rounds for a faster analysis and to build up the code 

to obtain the most sensitive results. A software specifically developed for MC 

analyzes the images of all eight rounds to compute the color code and map the 

corresponding target transcript in xyz position within the sample. To facilitate high 

error robustness, the Hamming distance of the codes ensures the highest specificity 

of analyses (see Online Methods).  

Together, this process delineates the spatial distribution of numerous target 

transcripts at subcellular resolution (Fig. 1d, close-up images in the middle and right 

panel; Supplementary Video 1,). Only two (SARS-CoV-2 Np and FURIN) of more 

than 80 targets are highlighted for better visualization. Infection by SARS-CoV-2 is 

indicated by detecting the number of nucleocapsid protein (Np) transcripts (magenta 

color). 

 

Specificity, sensitivity and reproducibility. 

Misidentification of RNA species is a major drawback in spatial 

transcriptomics. We therefore tested the specificity i.e. misidentification rate of MC 
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including the entire colorization, imaging and decoding process by applying probe 

sets designed for human and mouse RNA transcripts to both human Hela and mouse 

NIH-3T3 cells and evaluated the rate of positive signals in both species. In total, we 

identified 860,000 human and 289,000 mouse transcripts in human and mouse cells, 

respectively (Supplementary Fig. 1). Overall, the fraction of spots decoded within 

the wrong cell type is 0.1 % (mouse codes in HeLa cells, Fig. 1e) and 0.55 % (human 

codes in mouse cells) and is slightly higher than the rate of false positives (hits in 

codes not in use) across three independent experiments. This experiment showed 

that the total MC process from probe design to hybridization, coding, and decoding 

showed an average specificity of 99.45 % to 99.9 %.  

Additionally, transcriptomics approaches are subject to a drop in calling rate 

due to incomplete detection of target RNAs. Hence, to demonstrate its sensitivity, we 

compared MC with a single-round smFISH approach. To differentiate true positives 

and false positives detected by single-round smFISH, we used two different probe 

sets labeled by two different fluorophores for a certain transcript. Both probe sets 

bind in an alternating mode on the transcript to exclude a bias by alternative splicing 

or hairpin structure formation. In comparative experiments, we performed MC on 

several instruments and by different users. We tested the copy numbers of the 

transcripts APC and CENPF, and calculated the average counts per cell in each 

experiment. Both MC and smFISH resulted in similar sensitivities with regard to both 

genes (Fig. 1f). This indicates that MC preserves the sensitivity of a single smFISH 

experiment across multiple rounds of signal detection. 

To further test for technical bias in MC experiments, we correlated the 

measured counts per RNA species per cell derived from two independent biological 

replicates in SARS-CoV-2 infected Huh7 cells and found an excellent correlation as 

determined by nonparametric Spearman correlation analysis (p<0.0001; Fig. 1g).  
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Together, the MC multiplex smFISH approach is highly suitable for detection, 

quantitation and localization of in particular rare transcripts in cells.  

 

Fig. 1. Workflow, data processing and validation of MC. a, Workflow of MC. Cartoon 

illustrating how SARS-CoV-2 infected and fixed cells are hybridized with probes, color coded, 

imaged and decolorized for repeated rounds of coloring and imaging. b, Image processing 

using the devised algorithm. Left panel, representative images of round 1-3. Right panel, 

overlay of round 1-8. c, Corresponding code for the spots identified in b. d, Illustration of two 

out of 81 transcripts (SARS-CoV-2 and FURIN) measured in Huh7 cells. Left panel, overview 

of the region of interest (ROI). Middle panel, single cell close-up view of a single cell within 

the ROI. Right panel, targets detected at a subcellular resolution close to the nucleus. Left 

and middle scale bar, 50 µm. Right scale bar, 5 µm. e, Specificity measurement of MC. Both 

human and mouse transcripts were hybridized to both human HeLa and mouse NIH-3T3 

cells and detected using MC (Supplementary Fig. 1). Data is shown as mean ± standard 

deviation (SD) from n = 3 independent technical replicates. f, Sensitivity measurement of MC 

using an orthogonal approach. Two probe sets labeled by two different fluorophores were 

hybridized to HeLa cells and tested using MC in comparison to standard smFISH. The copy 

number per target was calculated as the average count per cell per experiment. Results 
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derived from MC and smFISH were comparable across all experiments (n = 6 (smFISH) – 7 

(MC) total technical replicates). g, Correlation of the average count per RNA species per cell 

of two independent MC experiments using Huh7 cells (n = 2 biological replicates analyzing 

212 and 290 single cells, respectively). The Spearman correlation coefficient is 0.96 with a p-

value of <0.0001. The x = y axis is marked by a dashed line.  

 

Landscaping heterogeneous expression patterns. 

Given that clonal populations of cell lines exhibit severe transcriptional 

heterogeneity that is lost in bulk analysis, we used MC to investigate the expression 

patterns of multiple RNA species in individual cells15,21. We used SARS-CoV-2 

infected Huh7 cells to target both highly and lowly expressed genes and investigated 

their preferential subcellular localization to either cytoplasm or nucleus. We observed 

high expression rates of genes associated with immunity, and in general antiviral 

signaling in the context of COVID-19 (for example JAK2, HIF1A and NFκB1, Fig. 

2a)22-24. These highly abundant targets appeared rather homogeneously distributed 

and were primarily located in the cytoplasm, probably indicating ongoing translation. 

In contrast, lowly expressed targets such as PDGFRA, FOSL1 or STAT5B showed 

strong heterogeneity in both expression level and localization (Fig. 2a). PDGFs and 

FOSL1 regulate cell proliferation and differentiation25,26, while the universal 

transcription factor STAT5B exhibits numerous biological roles including proliferation 

and autoimmunity27. These observations were confirmed by single cell analysis of n = 

16 randomly chosen cells within the same population (Fig. 2b). Furthermore, 

distribution analysis of various targets revealed the cytoplasm as the primary 

localization site for the majority of probed targets, with the gene encoding the antiviral 

response receptor RIG-I (DDX58) and the interferon stimulated gene (ISG) C19orf66 
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more evenly distributed between the two localizations than for example transcripts of 

the STAT protein family (Fig 2c). 

The presented data is derived from 2D images, which could result in 

misidentification of cytoplasmic targets as nuclei-located when positioned in the 

cytoplasmic space above the nucleus. However, since highly abundant RNA species, 

such as JAK2, were found to be almost exclusively located in the cytoplasm, we can 

exclude localization errors due to stochastic distribution of targets and conclude that 

the localization of target RNAs to different cellular compartments by MC is feasible. 

Intriguingly, SARS-CoV-2 Np transcripts were primarily located in the cytoplasm yet 

close to the nucleus in a site-directed open or closed ring-conformation that suggests 

an association with the rough endoplasmic reticulum (rER) potentially indicating 

ongoing translation of Np particles in preparation for exocytosis of SARS-CoV-2 

virions28 (Fig. 2d, arrows, close-up image). These findings highlight the opportunities 

of using highly multiplexed spatial analysis for investigations in infectivity studies to 

capture processing of viral transcripts at their subcellular location. 
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Fig. 2. Heterogeneous subcellular distribution of RNA species identified in the MC 

experiment. a, Examples of both the heterogeneous expression and distribution of six 

distinct RNA species observed across several Huh7 cells. Scale bars, 50 µm. b, RNA 

species shown in a. were found to be either localized in the cytoplasm (JAK2, HIF1A and 

NFκB1A) or heterogeneously distributed between cytoplasm and nucleus (PDGFRA, FOSL1 

and STAT5B). Data shown of n = 16 individual cells. c, Distribution of multiple targets 
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between the cytoplasm and the nucleus averaged within one experiment (n = 18 cells). d, 

Distribution of the SARS-CoV-2 nucleocapsid protein (Np) RNA species within infected Huh7 

cells was found to be primarily located close to the nucleus indicating processing in the 

endoplasmic reticulum (ER). Furthermore, SARS-CoV-2 Np particles appeared polar to one 

side of the nucleus (arrows and white box with close-up view). Scale bars, 50 µm. 

 

Tracing antiviral responses in primary infected and bystander cells. 

We demonstrate the applicability of MC in an infection model of SARS-CoV-2 

by using four different cell lines of pulmonary (Calu3), colorectal (Caco2) and 

hepatocellular origin (Huh7 and PLC5), imaged and analyzed simultaneously in one 

experiment to allow for meaningful side-by-side comparison. We initially determined 

the multiplicity of infection (MOI) in VeroE6 cells and finally used an MOI of 0.4 that 

yielded infection rates at various stages in all four human cell lines that were suitable 

for studies on antiviral responses in MC experiments. 

SARS-CoV-2 Np particle counts decreased with increasing distance to the 

primary infected cell in Huh7 cells (Fig. 3a), which resembled the infection pattern in 

Calu3, Caco2 and PLC5 cells (Fig. 3b). Here, RNAs coding for the key viral entry 

factors ACE2, FURIN and TMPRSS2 are highlighted29,30. To assess a receptor-

dependent susceptibility to SARS-CoV-2 infections including a potential associated 

virus-induced downregulation, we tested their expression patterns in infected and 

mock-infected cells (n = 13 individual cells per cell line) in relation to the SARS-CoV-

2 Np particle count (Fig. 3c). We found only low expression levels of ACE2 across all 

tested cell lines despite active viral replication, supporting previous findings14. 

However, ACE2 was the most prominent in Calu3 cells that also showed the highest 

amount of SARS-CoV-2 particles (normalized to total transcripts per cell). While 

FURIN was expressed at moderate levels across both hepatocellular cell lines and 
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was not affected by the infection state, TMPRSS2 was scarcely expressed in PLC5 

and was absent in Huh7 cells. Interestingly, expression of both FURIN and 

TMPRSS2 was slightly higher in non-infected Calu3 cells than in infected cells, 

indicating potential repression upon SARS-CoV-2 infection. However, although virus-

mediated down-regulation of entry factors has been previously reported31, we 

observed no significant deregulation in our experiments. To assess cell-type 

dependent differences in overall infectivity, we compared total SARS-CoV-2 Np copy 

numbers per cell within the entire sample population. Notably, Calu3 cells showed 

the highest rates of viral particles per single cell (369.7 ± 664 particles, mean ± S.D., 

n = 264), while Caco2 cells seemed the least infected (65.95 ± 380.6, n = 269, Fig. 

3d). Interestingly, Huh7 cells contained a substantially higher number of viral Np 

RNAs (168.9 ± 465.6, n = 502) per infected cell than PLC5 cells (61.8 ± 255.9, n = 

324).  

Next, we investigated the transcriptional responses to SARS-CoV-2 infections 

using a set of 81 genes in a single MC experiment and evaluated these relative to the 

viral load to assess potential virus-induced deregulation. A representative result from 

Huh7 cells (n = 502 single cells) is shown in Fig. 3e. Genes expressed in less than 

10 % of cells (if 0 transcripts detected) were excluded ensuring deliberate analysis of 

antiviral genes relevant to the solid majority of cells (i.e. 74 genes were evaluated in 

Huh7 cells). Counts were normalized to the total transcripts per cell (with exception of 

SARS-CoV-2 Np transcripts to prevent skewing of data in highly infected cells), and 

scaled within the individual gene. Using a semi-supervised clustering approach, the 

cells were ordered by decreasing z-scores of viral transcripts (top lane) and clustered 

using a one-minus-Pearson correlation. We classified cells with a SARS-CoV-2 z-

score value of 0 (equivalent to 168 viral particles per cell in Huh7 cells, termed group 

1) as highly or primary infected, which accounted to 20.7 % of cells of the total 
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population. The 20.7 % of cells at the very low end were regarded as lowly or not 

SARS-CoV-2 replicating cells (z-score of -0.32, < 18 viral Np particles, group 3) and 

were considered as bystander cells. Consequently, cells containing between 168 and 

18 viral particles (z-score 0 > -0.32, group 2) were considered as moderate or 

secondary infections. Remarkably, the increased rate of highly infected cells of 37.5 

% in Calu3 cells (> 392 viral Np particles, group 1) compared to 14.5 % in Caco2 (> 

65 viral Np particles) and 11.5 % in PLC5 cells (> 62 viral particles) using identical 

MOI for infection complements the spread of SARS-CoV-2 via airborne transmission, 

as previously reported32. However, it was baffling that we observed no specific 

threshold of SARS-CoV-2 Np particles at which cells clearly react to the infection with 

a pronounced primary or secondary antiviral response.  

Tempted by this observation, we went on to dissect the expression patterns at 

various stages comparing population-wide data in bulk analysis down to individual 

cells. We started by performing a pairwise correlation analysis and found four 

clusters of substantially co-regulated genes (minimum of four genes per cluster, Fig. 

3f). In addition to genes coding for transcription factors and proteins regulating 

survival and apoptosis, cluster 1 comprises genes characteristic for SARS-CoV-2 

infection such as ACE2, DDX58 and MX1, the latter two exemplifying ongoing 

antiviral defence30,33. While cluster 2 and 3 reveal a diverse set of immune regulatory 

chemo- and cytokines (CCL5 and IL6) as well as receptors (IL7R, TLR3), cluster 4 

clearly points to the role of JAK/STAT signaling in host immune responses against 

viruses. With numerous combinations of STAT/STAT transcription factor complexes 

at the dispense of innate immunity, this highly complex network regulates the 

expression of hundreds of interferon stimulated genes (ISGs) that are imperative to 

curb, and ultimately clear viral infections18,33,34. For example, sensing of double 

stranded RNA by RIG-1 (encoded by DDX58) and endosomal TLRs, activates IRF3, 
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IRF7 and NFκB, which results in the expression of type-I interferons (IFNα). These 

trigger the phosphorylation and therefore activation of a diverse set of STAT family 

members that promote the transcription of effector ISGs such as MX1 or OAS1 in an 

auto- and paracrine fashion. This contributes to priming of neighboring cells towards 

a collective antiviral response33. We assessed SARS-CoV-2-mediated deregulation 

of these clusters and implicated genes by comparing the previously defined groups 

(Fig. 3g). Genes in cluster 1 remained widely unaffected by varying infection rates 

while cluster 2 and 4 were significantly deregulated in highly infected cells, yet 

diametrically opposite.  

We next tested whether differences observed on the level of gene clusters are 

also represented in the expression of selected individual genes (Fig. 3h). 

Surprisingly, DDX58 expression declined in group 1 compared to group 2 which may 

indicate virus-induced downregulation that was not observed for MX1. Furthermore, 

MUC1 and PDCD1, genes encoding cell surface proteins crucial in mediating 

inflammatory processes35,36, were significantly downregulated in group 1 suggesting 

interference of SARS-CoV-2 with diverse immune-regulatory processes beyond 

antiviral signaling. SCGB1A1, a component of cluster 4 that codes for a pulmonary 

surfactant protein, was recently suggested as a novel target for COVID-19 treatment 

due to its anti-inflammatory function37. Elevated levels of SCGB1A1 observed in 

Huh7 cells that were lacking in Calu3 and Caco2 cells may thus support previous 

findings on the severity of organ-specific manifestations of COVID-19, which reported 

rather low levels of SARS-CoV-2-mediated liver injury in non-hospitalized 

patients38,39, potentially due to mitigation of hepatic inflammation by SCGB1A1. 

Moreover, the strong upregulation of STAT2 expression and the downregulation of 

the ISG IFIT1 in highly infected cells strongly supports viral interference at the level of 

nuclear translocation rather than transcription40. However, IFITs are also directly 
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induced by IRF3 ensuring effective antiviral activity already during early stages of 

infection and are thus also expressed independently of type-I IFN signaling41.  

Previous analysis demonstrated the application of MC in semi-bulk analysis at 

both the cell and target level. To further exploit the potential of MC, we set out to 

analyze expression levels of various genes on a single cell level (Fig. 3i). Notably, 

several genes were differently regulated on a single cell basis when compared to 

bulk analysis such as DDX58, SCGB1A1 and STAT2, further emphasizing the role of 

single cell analysis in infection studies. 

Remarkably, MC allows the simultaneous analysis of multiple samples at 

once, which is pertinent for directly comparing antiviral responses across various cell 

lines. Targeting DDX58, MX1 and C19orf66 concurrently in all four cell lines 

(representative images in Fig. 3j, left panel) grouped by the infection state, we found 

highly dispersing expression signatures across cell types and groups indicating 

differential regulation (Fig. 3j, right panel). Overall, counts in group 2 seemed to be 

the least deregulated with exception of downregulated DDX58 and MX1 in Calu3.  
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Fig. 3. Infectivity of different cell lines with SARS-CoV-2 and spatial transcriptomics of 

key antiviral response genes. a, Huh7 cells infected with SARS-CoV-2. The primary 

infected cell (arrow) is surrounded by several secondary infected cells. Cell borders are 

outlined in blue. Transcripts of SARS-CoV-2 Np (magenta) and key SARS-CoV-2 entry 
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factors ACE2 (yellow), FURIN (green) and TMPRSS2 (gray) are highlighted. Scale bar, 100 

µm; inlay scale bar 50 µm. b, ACE2, FURIN and TMPRSS2 RNA species highlighted in 

Caco2, Calu3 and PLC5 cells. Scale bars, 50 µm. c, RNA species of SARS-CoV-2, ACE2, 

FURIN and TMPRSS2 in infected and mock-infected Calu3, Caco2, Huh7 and PLC5 cells (n 

= 13 individual cells per cell line and sample). d, SARS-CoV-2 Np copy number per cell in 

infected Calu3 (n = 264), Caco2 (n = 269), Huh7 (n = 502) and PLC5 (n = 324) cells. Box 

plots comprise data from two independent biological replicates (n = 2) and indicate the 

overall mean ± SD. e, Heatmap of infected Huh7 cells (n = 502) ordered by decreasing 

number of detected SARS-CoV-2 Np RNAs per cell and hierarchical clustering of 74 different 

RNA species. Cells with a z-score of >0 (corresponding to >168 SARS-CoV-2 Np particles) 

were defined as highly infected and were classified as group 1, representing 20.7 % of the 

total evaluated cells overall. These were hypothesized to mainly contain primary infected 

cells. The 20.7 % of cells at the lower end of the heatmap were therefore inversely 

considered as slightly or not infected (z-score < -0.32, < 18 Np particles) and classified as 

group 3. Cells containing between 168 and 18 SARS-CoV-2 Np particles (z-score 0 > - 0.32) 

constituted group 2 and were considered as moderately or secondary infected. f, Matrix of all 

pairwise correlation coefficients of the expression of genes shown in e. Correlated genes are 

clustered by color as cluster 1 (blue), cluster 2 (orange), cluster 3 (green) and cluster 4 (red). 

g, Overall expression of genes per cluster sub-grouped in group 1, group 2 and group 3. 

Genes in cluster 2 and 4 were inversely deregulated in group 1 when compared to both 

groups 2 and 3, indicating expressional regulation depending on the infection rate. Data 

shown as mean ± standard error of the mean (SEM). h, Expression levels of selected genes 

per cluster comparing cells in group 1 – 3. Data shown as mean ± SEM. Significance levels 

in g. and h. were calculated by nonparametric Kruskal-Wallis test with Dunn`s test for 

multiple comparison. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. i, Single cell response 

of multiple genes of one cell per group. j, Antiviral response in different cell types. Left panel, 

close-up images of cells vicinal to the primary infection site (SARS-CoV-2 Np transcripts 

highlighted in magenta). Transcripts of DDX58 (yellow), MX1 (gray) and C19orf66 (green) 
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are highlighted. Scale bars, 50 µm. Right panel, comparison of expression patterns of 

DDX58, MX1 and C19orf66 across four cell lines subdivided by infection state as indicated 

by group 1-3. Data shown as mean ± SEM. 

 

Profiling of spatial response dynamics in primary INFS. 

We next used MC to investigate the viral propagation network including the 

coherent spatio-transcriptional response emanating from the primary infected cell. 

The spread of viral particles occurs either by diffusion, surface retention and cell-cell 

adhesion or cell-cell adhesion and polarization42 while viruses such as vaccinia virus 

induce virion repulsion to accelerate virus spread43. In an attempt to investigate the 

dissemination of SARS-CoV-2 particles within a single INFS, we evaluated viral 

particles including the coherent transcriptional antiviral responses in neighboring cells 

by dividing primary INFS in Calu3 cells into four regions of interest (ROI) separated 

by a distance of about one cell diameter (15 µm intervals, Fig. 4a). Here, two 

juxtaposed INFS are depicted showing the SARS-CoV-2 Np transcripts (magenta) as 

well as transcripts of DDX58 (yellow), MX1 (gray) and C19orf66 (green). Note that, 

although INFS 2 contains a similar level of SARS-CoV-2 Np particles in ROI 1, the 

antiviral response in neighboring cells adjacent to the primary infected cell (ROI 0) is 

substantially less pronounced than in INFS 1. Based on this observation, we 

hypothesized that INFS 2 emerged at a later time point and hence is in an earlier 

state of viral replication. This may be due to a postponed replication of virus particles 

by a lower number of SARS-CoV-2 virions during initial infection, or due to INFS 2 

starting as a secondary infection conveyed by diffusing particles emerging from INFS 

1. To further explore this hypothesis, we compared the expression levels of target 

genes between the INFS attributed to their spatial distribution within the ROIs (Fig. 

4b). Initially, endosomal entry of SARS-CoV-2 activates pattern recognition receptors 
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(PRRs) such as TLR3 which leads to phosphorylation of IRF3 and IRF7 that activate 

expression of IFNα and, via JAK/STAT signaling, the expression of ISGs33. TLR3 

was strongly upregulated in ROI 2 in INFS 1 and moderately in INFS 2. Expression of 

IRF3 and IRF7 in ROI 2 was weaker in INFS 1 than in INFS 2 suggesting a delayed 

or even curbed IFNα response to emerging SARS-CoV-2 virions which indicates viral 

propagation to ROI 214,44. STATs were highly expressed in ROI 1 in both INFS but 

only INFS 1 showed consistent elevation extended to ROI 2. Regarding IFIH1 and 

IFIT1, potent ISGs involved in early stage viral inhibition, we found upregulation in 

ROI 2 only in INFS 1. Overall, the findings that upregulation of antiviral response 

genes in INFS 1 progressed to ROI 2 while remaining restricted to ROI 1 in INFS 2 

supports the hypothesis of differently advanced infection events and advocates the 

necessity of highly-resolved multiplexed transcriptomics in studies on viral infection 

and replication. 

Lastly, to identify whether genes are mutually regulated in both INFS despite 

the deviating stage in viral propagation, we correlated the expression of all target 

genes between the INFS and traced their expression signatures across all four ROIs 

(Fig. 4c). We selected genes for tracing which were located in ROI 1 either in 

quadrant Q1 (upregulated, red colors) or Q4 (downregulated, blue colors) and were 

correlated with a maximum deviation of a z-score of 0.5 (dashed line) to the x = y 

axis (solid line). Remarkably, genes upregulated in ROI 1 tend to normalize their 

expression in ROI 2 and seem to become downregulated in ROI 3, a trend that was 

enhanced in ROI 4. This pattern was inversely true for genes downregulated in ROI 

1. Similar to Huh7 cells, major upregulated genes in Calu3 cells within ROI 1 

contained antiviral effector genes (MX1, OAS1) and members of the JAK/STAT 

signaling pathways (STAT1, STAT3) including their downstream-activated ISGs 

(IFIH1). Since we observed viral Np particles spreading in a rather circular pattern to 
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the primary infected cell, we suggest that under the applied cell culture conditions, 

SARS-CoV-2 spreads primarily by conventional cell-to-cell adhesion through iterative 

rounds of infection, replication and release.  

Together, these findings emphasize the role of STAT-pathway mediated 

antiviral defense and highlight the vast advantages of MC as a spatial, highly-

resolved and multiplexed RNA profiling technique that allows the simultaneous study 

of early and late stage responses in various samples and target sites. 

	

Fig. 4. Spatially resolved, multiplexed profiling of response dynamics in primary 

infection sites (INFS). a, Representative image of two SARS-CoV-2 INFS in Calu3 cells 

with regions of interest marked by the primary infected cell (ROI 0), and outbound 

propagation of viral particles across ROI 1 – 4 including the coherent expression of antiviral 

genes. Highlighted RNA species comprise SARS-CoV-2 Np (magenta), DDX58 (yellow), 

MX1 (gray) and C19orf66 (green). Scale bar, 50 µm. INFS 1 is enlarged for better 

visualization. b, Expression of multiple genes per ROI comparing INFS 1 and 2 (z-score 

calculated per infection site individually). c, Response trajectory of genes deregulated in both 

INFS across ROI 1 to ROI 4. Genes in Q1 and Q4 within 0.5 deviation (dashed line) from x = 

y (solid line) were considered for further analysis. Genes collectively upregulated in ROI 1 

(Q1, red colors) tend to normalize their expression in ROI 2 and become downregulated in 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.10.11.463936doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.463936
http://creativecommons.org/licenses/by/4.0/


21	
	

ROI 3, which seems to be fostered in ROI 4. The inverse pattern was observed for genes 

downregulated in ROI 1 (Q4, blue colors). Genes marked by the coherent colors are stated 

on the right side of panel c.  
 

Discussion 

Spatial transcriptomic technologies are highly relevant for understanding 

biological behavior and architecture of cells and tissues as they allow the elucidation 

of location-dependent gene expression changes of multiple genes within cell 

communities or tissues. We developed a new technology, called MC, to complement 

the field of spatial transcriptomics with an approach that can be rapidly tailored to 

specific research needs and is particularly targeted at detecting and quantifying rare 

transcripts that are often missed in other applications5,13,45, necessitating both 

surpassing sensitivity and specificity. MC plugs into the standard smFISH workflow 

as a multiplex technology, theoretically providing the entirety of its advantages.  

To verify the specificity of MC, we measured false positives (codes not in use) 

and misidentification rates (codes in use but no transcripts are expected) that 

represent meaningful specificity criteria and are subject to the whole MC process of 

hybridization, colorization, coding and de- and recoding. Considering the rate of 

misidentification, probe sets designed for human and mouse RNA transcripts applied 

to both human HeLa and mouse NIH-3T3 cells revealed a very low number of 

decoded signals (~0.1 to 0.5 %) in non-target cells, thereby confirming the low rate of 

false positives (codes not in use). Remarkably, the number of false positives is 500 to 

1000-fold lower than true positives as indicated by codes in use. Together, this 

ensures that a positive signal within the cell truly represents a specific transcript of 

the decoded gene. Concerning sensitivity, Miedema et al. reported smFISH to be one 

of the most sensitive spatial RNA detection methods and highly suitable for low 
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abundance genes46, considering it to be the gold standard of spatial in-situ methods. 

Therefore, we compared MC with smFISH in their ability to detect two transcripts 

(APC and CENPF) against the background of multiple others and found their 

sensitivity to be indeed indistinguishable. This is supported by NGS data from 

RNAseq analysis that revealed an FPKM value of 7.6 for the APC gene and 37.1 for 

CENPF47. Since the coefficient of variation of APC detection was similarly low (~0.12) 

compared to the more abundant CENPF transcript (~0.11, Fig. 1f) in our 

experiments, despite being performed on several MC instruments and by different 

users, the quantification of transcripts of much lower abundance was considered to 

work equally well using smFISH and MC.  

To demonstrate the vast applicability of MC, we localized both abundant and 

rare transcripts mapped at their subcellular resolution, including SARS-CoV-2 Np 

transcripts and dissected coherent antiviral responses of multiple genes in four 

different cell lines at once, which allowed evaluating response trajectories and 

demonstrating viral induced regulation of pathways affected by SARS-CoV-2. 

Remarkably, MC allows the analysis of both infected and non-infected cells directly 

within the same culture allowing the tracing of effects induced by paracrine signaling. 

Our study corroborates several aspects of viral interference with the host defense 

mechanism reported at the leading edge of SARS-CoV-2 studies. In localization 

studies, MC detects SARS-CoV-2 Np transcripts adjacent to the nucleus, suggesting 

ongoing translation of viral proteins in preparation for exocytosis28. The deviating 

nature of COVID-19 manifestations in multiple organs necessitates investigations in 

several cell types in direct side-by-side comparison38,48. MC facilitates such analysis 

and indeed revealed deviations in infectivity rates in cell lines of different origin. 

These were complemented by detecting and allocating transcript counts of key entry 

factors such as ACE2 that were so far reported as low or undetectable14, further 
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illustrating the sensitivity of MC for rare targets. We found moderate to high infection 

rates of SARS-CoV-2 depending on the cell type, which allowed investigating viral 

propagation at various stages. In line with previous studies, we reported several high-

interest targets to be deregulated in a sub-population of highly infected cells, most 

importantly members of type-I IFN stimulated pathways alongside downstream-

activated ISGs14,49,50. Especially in the context of dynamic cell-to-cell or cell-to-

pathogen mediated signaling, MC allows the mapping of both response propagation 

and trajectory, hence pinpointing at induction the antiviral state in bystander cells 

induced by paracrine signaling. Studying cells along this very edge of the infection 

gradient may help to better understand the interaction between effective viral 

clearance and immune escape mechanisms observed widely in COVID-1951.  

MC provides several additional advantages, as it, for example, holds the 

potential to analyze multiple samples at once allowing direct side-by-side 

comparison; or appending immunostaining to exactly correlate transcriptomics data 

to expression patterns of related proteins. A pivotal asset of MC is the flexibility in 

target probe design that allows to quickly readjust working hypotheses, thus 

expediting day-to-day research. In practical terms, MC needs a single hybridization 

step of gene-specific probes with short steps of de- and re-colorization, followed by 

automated imaging. Although the MC experiments reported in this study were limited 

to a number of about 80 target genes related to SARS-CoV-2 induced cellular 

responses, a broad spectrum of future applications is envisaged.  

Overall, MC is very flexible and highly suitable for multiple qualitative and 

quantitative applications of spatial transcriptomics approaches; particularly in studies 

targeting rare transcripts by providing utmost specificity, sensitivity, and 

reproducibility at high resolution (see Fig. 1e to g). By multiplexed detection of these 

transcripts at high resolution, MC promotes our ability to study subtle yet 
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sophisticated cellular reactions especially in dynamic biological and medical 

processes. 
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Online Methods 

Cell culture. HeLa (DSMZ, Cat. No. ACC 57) and NIH-3T3 cells (DSMZ, Cat. No. 

ACC59) were cultured in DMEM supplemented with 10 % FCS, 1 % penicillin-

streptomycin (P/S, 10,000 U/mL), 200 mM L-Glutamine and 1 % MEM Non-Essential 

Amino Acids Solution (100X, all media and components from Gibco, ThermoFisher 

Scientific). African green monkey kidney epithelial Vero E6 cells (Biomedica, VC-

FTV6) were maintained in MEM (Gibco), 5 % FCS and 1 % P/S. The following human 

cell lines were purchased from the Center for Medical Research (ZMF, Graz, Austria) 

and verified by short tandem repeat (STR) DNA profiling (ZMF). Human lung 

adenocarcinoma cell line Calu3 and human colon adenocarcinoma cell line Caco2 

were maintained in MEM with 10 % FCS, 1 % P/S and 200 mM L-Glutamine. Human 

hepatocellular carcinoma cell line Huh7 and hepatoma PLC5 cells were maintained 

in DMEM with 10 % FCS and 1 % P/S. All cells were maintained at 37°C and 5 % 

CO2.  

 

Probe design. Multiple probes per targeted transcript were designed using an 

automated probe-designer software from Resolve BioSciences. Briefly, the probe-

design was performed at the gene-level using all full-length protein-coding transcript 

sequences from the ENSEMBL database tagged as ‘basic’52,53. To speed up the 

process, the calculation of computationally expensive off-target searches, highly 

repetitive regions were filtered via the abundance of k-mers in the background 

transcriptome using Jellyfish54. A probe candidate was generated by extending a 

seed sequence until a certain target stability was reached. A set of rules was applied 

to discard sequences containing homopolymers, di- and trinucleotide repeats and 

strong compositional bias (e.g., lack of one base).  
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After these fast screens, every kept probe candidate was mapped to the background 

transcriptome using ThermonucleotideBLAST55 and probes with stable off-target hits 

were discarded. Specific probes were then scored based on the number of on-target 

matches (isoforms), which were weighted by their associated APPRIS level56, 

favoring principal isoforms over others. A bonus was added if the binding-site was 

inside the protein-coding region. From the pool of accepted probes, the final set was 

composed by picking the highest scoring probes. 

 

Sample preparation. Sample preparation of cultured cells on the slides was 

performed as described in the handbook Cell preparation for Molecular Cartography. 

Briefly, approximately 1 x 104 cells (defined per cell line) were seeded per well on MC 

slides and grown to 30-50 % confluence. The cells were grown for 1 or 2 days at 37 

°C in the appropriate medium. After the medium was aspirated, cells were washed 

and fixed using methanol at -20 °C for 10 min. Slides were dried and stored at -80 

°C. 

 

Hybridization of transcript specific probes. All steps were performed exactly 

according to the protocol of the Molecular Cartography Hybridization (Cells) Kit. 

Briefly, the cells were pretreated with 70 % ethanol followed by solution BSC1, and 

wash buffer 1. Thereafter, gene-specific probes were hybridized for 15-18 h at 37 °C 

in pre-warmed hybridization solution. Subsequently, the cells were washed twice 

using wash buffer 2 for 10 min each before the temporary addition of wash buffer 1 

before color development. The storage buffer may be applied to store the slide at 4° 

C for up to two weeks. All buffers, solutions, and reaction conditions are described in 

the MC Hybridization (Cells) protocol.  
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Color development and Decolorization. The color code of the hybridized probes 

develops over eight cycles to efficiently distinguish the individual transcripts. 

Therefore, the following protocol was repeated eight times. For round 1, color-

solution 1 was prepared to contain the reagent CR1. After incubating the hybridized 

cells with color-solution 1 for 45 min at 25° C, a washing step was performed to 

eliminate excess reagent. Thereafter, color-solution 2 was applied containing the 

reagents CD1 and CD2 and incubated for 45 min at 25° C. Subsequently, cells were 

washed three times followed by the addition of imaging buffer and microscopic 

imaging. After the 1st round of imaging, a second round is initiated using reagent 

CR2. Before the second round, a decolorization of 1st round color is performed. For 

decolorization, the cells were washed five times using pre-warmed wash buffer 1 for 

6 min at 41° C before proceeding with the next colorization round using a freshly 

prepared color solution 1 containing the CR2 reagent. Washing steps, the incubation 

with color-solution 2, and imaging is performed as described above. For the following 

rounds, the reagents CR3 to CR8 are used. All steps,  buffer ingredients, colorization, 

and decolorization solutions are stated in the protocol provided by Resolve 

BioSciences.  

 

MC Imaging. The imaging was done by a customized Zeiss Celldiscoverer 7 (CD7) 

device, using the 50x Plan Apochromat water immersion objective with an NA of 1.2 

and the 0.5x magnification changer, resulting in a 25x final magnification. Standard 

CD7 LED-light source, emission filters, and dichroic mirrors were used together with 

customized emission filters optimized for detecting the specific signals. Excitation 

times per image were 1000 ms for each channel (DAPI was 20 ms). A z-stack was 

taken at each region with a distance of 300 nm per z-slice. The custom CD7 CMOS 

camera (Zeiss Axiocam Mono 712, 3.45 µm pixel size) was used resulting in an 
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image pixel edge length of 138 nm. The total size of an image was 295.9 µm x 295.9 

µm, defining the size of one imaging region. 

For each region to be analyzed, a z-stack for each of the two fluorescent colors was 

imaged in every imaging round. A total of 8 imaging rounds was performed for each 

position, resulting in 16 z-stacks per region. The fully automated imaging process 

(including water immersion generation and precise relocation of regions to image in 

all three dimensions) was realized by a custom Python script using the scripting API 

of the Zeiss ZEN software (open application development). 

 

Primary analysis of raw data. The primary data analysis was done in several steps, 

which are detailed below: Preprocessing: All images were corrected for background 

fluorescence. Based on the raw data image, the 20 % darkest local pixel values and 

positions were determined and copied to a new empty image (background image) 

having the same size as the image to be corrected. The remaining 80 % of pixels of 

the background image were generated based upon the surrounding existing pixel 

values using a distance weighted average value. Finally, the background-corrected 

image (bc-image) was created by subtracting the background image values from the 

raw data image values. The bc-image was used for all subsequent analysis steps. 

 

Extraction of features from the bc-images. In a first step, a target value for the 

allowed number of maxima was calculated based on the area of the slice in µm² 

multiplied by an empirically optimized factor (0.5x). The resulting target value was 

used to adapt the threshold for the algorithm iteratively searching local 2D-maxima. 

The threshold leading to the closest number of maxima equal to or smaller than the 

target value was used for further steps and the respective maxima were stored. This 

procedure was done for every image slice independently. Maxima that did not have a 
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neighboring maximum in an adjacent slice (called z-group) within a radius of one 

pixel were excluded. For the resulting list of maxima, the absolute brightness (Babs), 

the local background (Bback), and the average brightness of the pixels surrounding 

the local maximum (Bperi) were measured and stored. The resulting maxima list was 

further filtered in an iterative loop by adjusting the allowed thresholds for (Babs-

Bback) and (Bperi-Bback) to reach a feature target value based upon the total 

volume of the 3D-image. Only maxima still in a z-group with a size of at least 2 were 

passing the filter step. Each z-group was counted as one hit. The members of the z-

groups with the highest absolute brightness were used as features and written to a 

file. These features resemble 3D point clouds. 

 

Iterative closest point algorithm for determination of transformation matrices. 

To align the raw data images from different imaging rounds, these images had to be 

corrected for the 6 degrees of freedom in 3D-space. To do so, the extracted feature 

point clouds were used to find the transformation matrices. For this purpose, an 

iterative closest point cloud algorithm was used to minimize the error between the 

point clouds. Prior to the alignment the feature point clouds of the different colors in 

one round were merged based upon the assumption to be aligned already. The point 

clouds of each round were aligned to the point cloud of round one (reference point 

cloud). The sequence of alignments was always from round 2 to round 8. The points 

from round 2 to 4 were added to the reference point cloud, when no point of the 

current reference point cloud was in vicinity after transformation. The resulting 

transformation matrices were stored for downstream processes. Based upon these 

transformation matrices a transformation of the corresponding images was 

performed.  
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Pixel evaluation. The aligned images were used to create a profile for each pixel 

consisting of 16 intensity-values, one from each of the 16 images (two colors, eight 

rounds). Pixel profiles with low variance were removed and the remaining profiles 

were compared to each profile of the encoding scheme used in the experiment. 

Profiles were then further filtered based upon similarity between best and second-

best match, as well as by their ratio of summed signals that are contributing to the 

matched profile (constructive signal) to summed signals that were not expected 

(noise signal) based on the encoding schema. The match with the highest score 

(constructive signal minus noise signal) was assigned as an ID to the pixel. 

 

Filtering and evaluating pixel groups. Pixels with neighbors having the same ID 

were grouped. The pixel groups were filtered by group size, number of direct 

adjacent pixels in the group, number of dimensions with size of at least two pixels. 

The local 3D-maxima of the groups were determined as potential final transcript 

locations. Maxima were excluded if there was no corresponding maximum in the raw 

data images. Remaining maxima were further evaluated by their fit to the 

corresponding code. The final list of maxima was written to the results file and 

considered to resemble transcripts of the corresponding gene. Not all possible valid 

words of the encoding schema are used in an experiment. The ratio of expected 

words (these are used in the experiment) and words matching to valid codes that 

were not used in the experiment were used to measure specificity and estimate false 

positives. 

 

Determining specificity. The specificity of the probe sets was evaluated by 

simultaneously hybridizing 16 human and 8 mouse genes to both cell types and 

testing each for positive and negative signals. Human Hela Cells and mouse NIH-3T3 
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cells were grown overnight as described above. Probe sets were hybridized and 

transcripts within the cells were detected according to the standard MC protocol. 

Counts for transcripts of human and mouse cells were determined individually. Three 

independent experiments were conducted (n = 3 biological replicates). 

 

Determining sensitivity. The sensitivity of MC was tested in comparison to smFISH. 

Human Hela cells were grown overnight as described above. For MC, probe sets for 

19 human genes were hybridized to fixed HeLa cells and transcripts were detected 

using the standard MC protocol. For smFISH, we chose two probe sets per gene 

(each of which contains > 45 probes). Both probe sets are differentially labeled by 

different fluorophores. The probe sets were designed so that a probe with 

fluorophore A binds vicinal to a probe with fluorophore B. Both probe sets are 

hybridized simultaneously using the protocols and buffers offered by Biosearch 

technologies for smFISH experiments. A signal was evaluated as positive only if the 

signal was detectable by both fluorophores. 

 

Preparation of SARS-CoV-2 virus stock. SARS-CoV-2 (Human 2019-nCoV Isolate, 

Ref-SKU 026V-03883), as disclosed by the Center for Disease Control and 

Prevention, was obtained from Charité Universitätsmedizin Berlin. SARS-CoV-2 was 

grown in Vero E6 cells in EMEM supplemented with 10 % FBS and 1 % P/S, frozen 

and thawed once, centrifuged at 900 g and filtered through a 0.22 µm filter 

(ThermoFisher Scientific). Infection titers were determined by focus forming assay 

and TCID-50/mL calculated with Spearman-Kaber and Reed-Muench test. 

Experiments of propagating and applying infectious SARS-CoV-2 were performed in 

the bio-safety-level 3 (BSL-3) facility at the Diagnostic & Research Center for 
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Molecular BioMedicine at the Medical University of Graz, Austria, following 

institutional biosafety guidelines. 

 

Verification of SARS-CoV-2 infectivity. Infectivity of SARS-CoV-2 virus stocks was 

determined in VeroE6 cells by infecting cells grown to a confluence of 70-80 % at an 

MOI of 0.002 for 1 h, washed twice with PBS and incubated for 24 h at 37 °C, 5 % 

CO2. RNA was extracted from the supernatant using the QIAamp Viral RNA Mini Kit 

(Qiagen). Viral replication was quantified by RT-qPCR using the CDC 2019-Novel 

Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (2019-nCoV_N1 

Forward Primer 5’-GAC CCC AAA ATC AGC GAA AT-3’ and 2019-nCoV_N1 

Reverse Primer 5’-TCT GGT TAC TGC CAG TTG AAT CTG-3’ with the 2019-

nCoV_N1 Probe 5’-FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1-3’, 57) on 

a Rotor-Gene (Qiagen) using the following protocol: hold 1: 30 min 50 °C, hold 2: 15 

min 95 °C, cycling 3 s 95 °C, 30 s 55 °C for 45 cycles. A commercially available 

standard (Genomic RNA from 2019 Novel Coronavirus, ATCC, VR-1986D) was used 

to assess viral copy number. The infectivity of the virus stock was further verified by 

immunohistochemistry (IHC) using a primary rabbit monoclonal antibody against the 

SARS-CoV-2 (2019-nCoV) nucleocapsid protein (SinoBiological, 40143-R019) and 

commercial staining reagents (Agilent Technologies, K346430-2, K406189-2) 

following the manufacturer’s instructions. 

 

SARS-CoV-2 infection for MC. For SARS-CoV-2 infection experiments, 7.000 Huh7 

cells, 15.000 PLC5 cells, 15.000 Caco2 cells and 20.000 Calu3 cells were seeded 

into 8x glass bottom slides (Ibidi) at a confluence of 30-50 % and infected with SARS-

CoV-2 at an MOI of 0.4 (if applied to VeroE6 cells, titer maintained for comparison 

across cell lines) for 60 min at 37 °C at 5 % CO2. The cells were then washed two 
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times with medium and incubated for 24 h at 5 % CO2 at 37 °C. Supernatant was 

collected to verify viral replication as stated above. The cells were fixed by incubation 

in ice-cold methanol for 10 min and ethanol for 1 min. The slides were stored at -80 

°C until further use.  

 

Hierarchical clustering and covariation analysis. Expression data was normalized 

to the total counts per cell (with exception of SARS-CoV-2 Np transcripts to avoid 

skewing of data) or ROI (Fig. 4) and scaled using Excel (Microsoft). 

Genes expressed in less than 10 % of cells (if 0 transcripts detected) were excluded 

to emphasize transcriptional signatures relevant to the solid majority of cells. This 

threshold can be adjusted to identify expression patterns of abundant or rare 

transcripts depending on the research question. Generation of heat maps and 

hierarchical clustering for all experiments was conducted using the open source 

platform Morpheus58. For heat maps, data was organized by decreasing number of 

SARS-CoV-2 z-scores and clustered by one-minus-Pearson correlation coefficient of 

the cell-to-cell variations of the detected copy numbers of each pair of RNA species. 

Hence, genes with strongly correlated expression patterns appear closer, while 

distantly correlated genes appear further apart. These distances were used for the 

construction of a pairwise correlation matrix. Groups with at least four genes with 

substantial covariations were selected for further analysis.  

 

Data analysis and visualization. Analysis of raw data was performed using excel 

(Microsoft, Washington, US) and GraphPad Prism (version 8.4.3,59) for statistical 

analysis and graphical representation. Data was tested for normal distribution using a 

Shapiro-Wilk normality test. Since no data set passed the normality test, we 

performed statistical analysis using non-parametric Spearman rank test (two-tailed) 
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for correlation analysis and a Kruskal-Wallis test with Dunn`s multiple comparison 

test for data sets with group or target comparison as indicated in the figure legends. 

Statistical significance was considered at p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) 

and p < 0.0001 (****). Final figures were prepared using GraphPad Prism.  

 

Reporting summary. Further information on research design is available in the 

Nature Research Reporting Summary linked to this article. 

 

Data availability.  

Data underlying the reported findings is available from the corresponding author on 

request.  
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Tables 

Table 1: Probes (including catalogue numbers) used for infection experiment. 

AC004551.1 
(PVX31) 

CDH5 
(PYV36) 

FGFR4 
(PKV3W) 

IL10 
(PCW3M) 

MCL1 
(P0V39) 

SARS-
CoV2-N_p 
(PWR37) 

ACE2 
(P7139) 

CLEC4M 
(PVW32) 

FOSL1 
(P1Y37) 

IL1A 
(P4X3C) 

MUC1 
(P1W39) 

SCGB1A1 
(PXX33) 
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AREG 
(P5T3G) 

CTSL 
(PCY3J) 

FOXP3 
(PV13X) 

IL1B 
(P5X3D) 

MX1 
(P7X3F) 

STAT1 
(PGW3R) 

B3GAT1 
(PEH1Z) 

CXCL10 
(PAT3N) 

FURIN 
(PFS3T) 

IL2  
(P5W3E) 

MYC 
(P9Y3G) 

STAT2 
(P2V19) 

C19orf66 
(PYX34) 

CXCL16 
(PNX3W) 

FUT4 
(PQH17) 

IL2RB 
(PTV32) 

NFKB1 
(P8V1G) 

STAT3 
(PHW3S) 

CCL2 
(P3V1A) 

CXCL8 
(P7W3G) 

GATA3 
(P1X38) 

IL4R 
(PVV33) 

NFKBIA 
(PSX3L) 

STAT5A 
(PJW3T) 

CCL5 
(PSW30) 

CXCR1 
(PJX3S) 

HAS2 
(P2X39) 

IL6   
(PCA12) 

NOS2 
(PTX30) 

STAT5B 
(PKW3V) 

CCL8 
(PTW31) 

DDX58 
(P2T3D) 

HERC6 
(PQX3Y) 

IL6R 
(PTS34) 

PDCD1 
(P5M1M) 

TLR3 
(P3T3E) 

CCR5 
(PDW3N) 

EDN1 
(P0X37) 

HIF1A 
(PFW3Q) 

IL7   
(P6W3F) 

PDGFRA 
(PWV34) 

TMPRSS2 
(PZX35) 

CCR7 
(PMH14) 

ETS1 
(P8Y3F) 

HMGB1 
(P3W3C) 

IL7R 
(PPK14) 

PDGFRB 
(P7M1P) 

TNF 
(P7V1F) 

CD2 
(PPV3Z) 

F3     
(PXV35) 

IFIH1 
(PNT3Z) 

IRF3 
(PRX3Z) 

PDPN 
(PWX32) 

TNFRSF1A 
(PSV31) 

CD27 
(P0J1H) 

FASLG 
(PZV37) 

IFIT1 
(PPT3L) 

IRF7 
(PYT37) 

PLAT 
(P7V3H) 

TNFSF15 
(P9S3N) 

CD274 
(P0W38) 

FGF1 
(P5Y3C) 

IFNB1 
(PAW3K) 

JAK2 
(PMW3W) 

PTPRC 
(PCM1T) 

TSLP 
(PAY3H) 

CD70 
(PQV3L) 

FGFR1 
(PF718) 

IFNG 
(P7K1Q) 

LTA 
(P2W3A) 

RAG1 
(P4W3D) 

VEGFA 
(PMA1A) 

 

Table 2 Probes used for HeLa cells (reproducibility and sensitivity) 

ACO2 
(PJX1Q) 

AURKB 
(PQ61J) 

BIRC5 
(P1A1S) 

CDC25C 
(P4125) 

DDX5 
(PJ31G) 

HPRT1 
(P4X19) 

AKT1 
(PNT1X) 

BCL2 
(PT71M) 

BRCA1 
(PQ02S) 

CDK1 
(P6127) 

E2F1 
(PPA1D) 

KRAS 
(PCX1H) 

AOX1 
(PY02L) 

BCR 
(PZX13) 

CCNE1 
(P2123) 

CENPF 
(P8129) 

EGFR 
(PDX1J) 

TP53 
(PEX1K) 

APC 
(PJ71C) 

      

Table 3: Probes used for HeLa cells (specificity experiment) 

AURKA 
(PWA1K) 

CD70 
(PQV3L) 

DHFR 
(PC22C) 

IL4R 
(PVV33) 

MTIF3 
(PPV1X) 

WASF2 
(PMT1W) 

BUB1B 
(PD32C) 

CD83 
(PKX3T) 

GTSE1 
(PC22C) IL6 (PCA12) 

PILRB 
(PCV1K) 

 CCL2 
(P3V1A) 

CDKN1A 
(P4A1W) 

IFI44 
(P4V1C) 

MKI67 
(P1Z14) 

PLIN3 
(P9C20) 

  

Table 4: Probes used for mouse NIH-3T3 cells 
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AMIGO2 
(P7Z2C) 

GLRX3 
(P8P1N) 

IL18 
(PPP55) 

NEAT1 
(PVP16) 

CFD   
(P8C1Z) 

GSDMD 
(PDD11) 

MKI67 
(P2Q3G) 

PLIN3 
(PTD2G) 
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