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ABSTRACT

1. Mutation, the source of genetic diversity, is the raw material of evolution; however,
the mutation process remains understudied, especially in plants. Using both a simulation
and reanalysis framework, we set out to explore and demonstrate the improved
performance of variant callers developed for cancer research compared to single
nucleotide polymorphism (SNP) callers in detecting de novo somatic mutations.
2. In an in silico experiment, we generated Illumina-like sequence reads spiked with
simulated mutations at different allelic fractions to compare the performance of seven
commonly-used variant callers to recall them. More empirically, we then reanalyzed two
of the largest datasets available for plants, both developed for identifying
within-individual variation in long-lived pedunculate oaks.
3. Based on the in silico experiment, variant callers developed for cancer research
outperform SNP callers regarding plant mutation recall and precision, especially at low
allele frequency. Such variants at low allelic fractions are typically expected for
within-individual de novo plant mutations, which initially appear in single cells.
Reanalysis of published oak data with Strelka2, the best-performing caller based on our
simulations, identified up to 3.4x more candidate somatic mutations than reported in
the original studies.
4. Our results advocate the use of cancer research callers to boost de novo mutation
research in plants, and to reconcile empirical reports with theoretical expectations.
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Introduction

DNA sequence mutation is the raw material for evolutionary change, but, despite its crucial role, many
fundamental questions around the mutation process are still open. Notwithstanding its apparent
simplicity, the understanding of mutation processes is one of the most common conceptual difficulties for
biologists (Smith & Knight, 2012; Prevost et al., 2013). Mutations are often assumed to occur at a
relatively constant pace (i.e. following the hypothesis of a 'perfect' molecular clock). Despite the
extremely low number of direct mutation rates estimates currently available in the literature, mutation
rates are, however, known to be highly variable across the tree of life, differing by several orders of
magnitude among species and kingdoms, and are considered as an evolvable trait per se Lynch et al.,
(2016). In mammals, the somatic mutation rate varies directly with life span (Cagan et al., 2022).
Mutations are assumed to be random, but the rate at which different nucleotides mutate strongly
depends on the genomic context, in particular the surrounding nucleotides (Martincorena & Campbell,
2015), hereafter referred to as a mutation spectrum. The mutation spectra themselves are now believed
to evolve over time (Milholland et al., 2017), even at relatively short evolutionary timescales (Harris &
Pritchard, 2017). The relative contribution of DNA replication and DNA repair errors to mutation rates
represents another timely evolutionary question in the field (Gao et al., 2019).

Unlike most animals that transmit to the next generation only mutations present in their germ cells
(i.e. sperm and eggs), plants are expected to produce heritable somatic mutations as they grow
throughout their lives, departing from the so-called Weismann's germ plasm theory (Weismann, 1893;
but see also Lanfear, 2018). As a consequence, long-lived species, such as trees, are generally assumed to
accumulate more heritable mutations than short-lived species per generation (Hanlon et al., 2019). To
generate new knowledge on plant mutation processes (Schoen & Schultz, 2019), several studies examined
within-individual variation in long-lived trees, whose individuals can live for more than a thousand years
(Schöngart et al., 2017). Two studies used the pedunculate oak (Quercus robur), a long-lived diploid and
highly heterozygous European tree species, as a plant model to identify somatic mutations.
Schmid-Siegert et al., (2017) identified 17 mutations by comparing sequencing data from two branches of
a 234-year-old individual. The authors therefore argued that their results are consistent with a low
mutation rate in pedunculate oak. Plomion et al., (2018) identified 46 mutations using three branches of a
younger century-old individual, which is an almost 10-fold higher rate after taking the tree age difference
into account. Plomion et al., (2018) also recovered these new mutations on acorn embryos collected on
the same branches as those used for the de novo mutation identification, therefore producing empirical
support for departure from Weismann's germ plasm theory in oaks. A shared limitation of both studies is
that the authors used a single variant caller for de novo mutation detection, without investigating
beforehand the robustness of the results from the selected variant caller. The absence of a simulation
work to identify the best suited detection method prior to the empirical investigations therefore
represents a major limit with regards to the accuracy and completeness of the previously reported de
novo mutations.

Variant callers are designed each for a specific purpose, with choices made by the developer on
sequence read filtering, and models and thresholds of sensitivity for the output of variants. Broadly, we
can distinguish 1. Single nucleotide polymorphism (SNP) callers designed to detect heterozygous sites, i.e.
sites with an expected allelic fractions of 0.5 in the analysed sample, and 2. Cancer callers, designed to
detect sites that are mutated in a fraction of mutated cells in a sample, i.e. with expected allelic fraction

0.5. When used to detect mutations, SNP callers primarily detect candidate mutations per sample≤
against the reference genome and validate mutation robustness by comparing results between sample
pairs (Fig. 1). The per-sample strategy used in SNP callers carries the risk of overlooking low-frequency
mutated reads in one or more samples, which risks invalidating the mutation in the other sample. To
better address the specificities of detecting low frequency mutations, the development of tools to detect
mutations in humans is rapidly expanding in cancer research (Kim et al., 2018; Alioto et al., 2015), where
cancer callers identify mutations by comparing two samples, one mutated and one normal sample,
against the reference genome (Fig. 1). Detecting mutations in cancers is conceptually similar to detecting
somatic mutations in plants, i.e., the aim is to detect mutations that potentially affect only a small fraction
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of the sequenced tissue. However, cancer research frequently uses very high sequencing depths (100X -
1000X), while the depth available for plants is often considerably lower (e.g., 34X for Hanlon et al., 2019;
40X for Wang et al., 2018; or 70X for Schmid-Siegert et al., 2017), bar a few exceptions (240X for Orr et al.,
2019; 250X for Plomion et al., 2018; or 1000X for Watson et al., 2016). Despite the advantage of cancer
callers to identify mutations, the specific challenge of detecting low frequency mutations is so far poorly
addressed in plants, where SNP callers have been the most frequently used method to detect somatic
mutations (Schmid-Siegert et al., 2017; Watson et al., 2016; Hanlon et al., 2019; Orr et al., 2019). To
demonstrate the advantages of using cancer callers in somatic mutation detection for basic and applied
plant research, we evaluated the performance of the cancer callers compared to SNP callers using
biological characteristics and sequencing depth typical of plant studies.

Here, we performed both an in silico and an empirical data-based evaluation of the performance of
variant callers to detect somatic mutations, using simulated reads with known mutations and two large
published datasets on the same species (pedunculate oak, Quercus robur) that applied different strategies
for sequencing depth and mutation detection (Schmid-Siegert et al., 2017; Plomion et al., 2018; see Fig.
S1 (Schmitt et al., 2022)). We particularly explored the cancer callers in a plant research context to answer
the following questions: (1) Can cancer research methods, both in terms of protocols (i.e. sequencing
depth) and tools (i.e. callers), improve the detection of plant somatic mutations?; and (2) Can reanalyses
of within-individual sequencing data provide new insights regarding plant mutation processes?

Methods

Study design
We developed two workflows: 1) to generate Illumina-like sequencing reads including mutations with

varying biological and sequencing parameters; and 2) to detect mutations with multiple variant callers
(Fig. S1). We used singularity containers (Kurtzer et al., 2017) and the snakemake workflow engines
(Köster et al., 2012) to build automated, highly reproducible (FAIR), and scalable workflows. We then used
both workflows to test for the best performing variant caller for mutation detection in silico based on
biological and sequencing parameters. We finally used the identified variant caller to detect mutations in
pedunculate oak, Quercus robur L., by re-analysing data from two somatic mutation projects on oaks led
by INRAE Bordeaux, France (Plomion et al., 2018) and the University of Lausanne, Switzerland
(Schmid-Siegert et al., 2017).

Generation of mutations
To ensure the feasibility of the project and to limit the computational load, a first step is to subsample

one or several sequences of user-defined length in the reference genome. The first workflow named
generateMutations therefore uses a bespoke R script named sample_genome to generate these subsets
(Schmitt, 2022a). The workflow then takes advantage of the two scripts included in simuG (v1.0.1, Yue &
Liti, 2019), vcf2model.pl, and simuG.pl, respectively, 1) to build a model of heterozygous sites distribution
for an haploid reference genome based on a user-defined set of known heterozygous sites in vcf format
and 2) to build the second reference haploid genome comprising a user-defined number of heterozygous
sites to accurately represent diploidy. Typically, the user can define a number of heterozygous sites based
on the product of nucleotide diversity ( ) and genome length (L). The workflow then uses a homemade Rπ
script named generate_mutations to spike randomly the reference genome with a user-defined number
of de novo mutations which are drawn in a binomial distribution using a user-defined
transition/transversion ratio (R). Finally, the workflow takes advantage of InSilicoSeq (v1.5.3, Gourlé et al.,
2019) defined with the model option hiseq to generate datasets of mutated and non-mutated in silico
Illumina-like sequencing reads with a user-defined sequencing depth (C), sequentially using (1) the
reference haploid genome; (2) considering reference and alternate allele versions at heterozygous sites,
as the workflow was developed for a diploid species; and (3) considering, or ignoring, the simulated de
novo mutations which all feature the same user-defined allelic fraction (AF).
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Figure 1: SNP callers (top rows) detect candidate mutations per tissue sample (dark green and light
green) against the reference genome (blue) and validate the robustness of mutations by comparing

results between sample pairs, while cancer callers identify mutations by comparing two samples, one
mutated (tissue A, dark green) and one normal (tissue B, light green), against the reference genome

(blue). At low sequencing depth (A & E), neither the SNP nor the cancer variant callers detect a low (A) or
high (E) frequency mutation. At intermediate sequencing depths (B & F), both SNP and cancer callers

detect high-frequency mutations (F), but cancer callers are expected to be better at detecting
low-frequency mutations than SNP callers (B), which were originally designed to detect the expected

high-frequency heterozygous sites. At high sequencing depths (C & G), both the SNP and cancer callers
detect high frequency (C) and low frequency (G) mutations. However, with intermediate sequencing

depth (D & H), a poorly represented heterozygous site in one tissue may remain undetected in that tissue
by the SNP caller while it may be detected in the second tissue and thus be considered a mutation,

resulting in a false positive (D). By comparing the two samples together, cancer callers will avoid this error
(H).
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Detection of mutations
The second workflow named detectMutations (Schmitt, 2022b) aims to detect somatic mutations

from mapped sequencing reads on a genome reference. Paired-end sequencing reads of every library are
quality checked using FastQC (v0.11.9) before trimming using Trimmomatic (v0.39, Bolger et al., 2014)
keeping only paired-end reads without adaptors and a phred score above 15 in a sliding window of 4
bases. Reads are aligned against the reference per chromosome using BWA mem with the option to mark
shorter splits (v0.7.17, Li & Durbin, 2009). Alignments are then compressed using Samtools view in CRAM
format, sorted by coordinates using Samtools sort, and indexed using Samtools index (v1.10, Li et al.,
2009). Duplicated reads in alignments are marked using GATK MarkDuplicates (v4.2.6.1, Auwera et al.,
2013). Finally, the workflow uses seven variant callers to detect mutations, including variant callers
developed originally for SNP calling and variant callers developed initially for cancer research. SNP callers
to detect variants included GATK HaplotypeCaller with GATK GenotypeGVCFs (Auwera et al., 2013) and
freebayes (v1.3.2, Garrison & Marth, 2012) using and reporting genotype qualities, without priors on
allele balance, with a minimum alternate allelic fraction of 0.03, a minimum repeated entropy of 1 and a
minimum alternate allele count of 2. Cancer callers developed for mutation detection included VarScan
(v2.4.3, Koboldt et al., 2009), Strelka2 (v2.9.10, Kim et al., 2018), MuSE (v0.1.1, Fan et al., 2016), Mutect2
(using a panel of normal and without soft clipped bases; within v4.2.6.1; Benjamin et al., 2019), and
Somatic Sniper (v1.0.5.0, filtering reads with mapping quality less than 25, filtering mutations with quality
less than 15 with prior probability of a mutation of 0.0001; Larson et al., 2012). Then we only focused on
the simulated mutations, and therefore excluded from the analyses the known heterozygous sites
provided by the user thanks to the vcf file for GATK, freebayes, Somatic Sniper, and Strelka2 using
BEDTools subtract (v2.29.2, Quinlan & Hall, 2010) or directly within the variant caller for Mutect2 and
VarScan.

In silico experiment
We used the generateMutations workflow to generate 1,000 mutations in the oak genome with

varying biological and sequencing parameters. To ensure consistency between the in silico experiment
and the reanalysis of empirical data, we used the reference genome "Qrob_PM1N'' of Quercus robur 3P
from Bordeaux, ENA accession number PRJEB8388 (Plomion et al., 2018), thus assessing the behaviour of
variant callers in the same genomic context as used for the empirical work. To reduce the computational
load, we only generated mutations on the first megabase of the first chromosome of the oak assembly
("Qrob_Chr01") in order to later focus the detection on this region. To check that the conclusions
regarding the callers are independent of the considered genomic region, we ran five independent
investigations based on randomly selected genome areas of a megabase in length. Our results were highly
congruent over all our investigations (Pearson's correlations across all callers and all simulations, recall:
0.999, precision: 0.947, but see Table S1 for differences among callers). We used known heterozygous
sites from the reference genome (Plomion et al., 2018) to simulate back ten thousand heterozygous sites

(N = x L = , assuming = 0.01 (Plomion et al., 2018) and L = 1 Mb). We used varying values ofπ 104 π
transition/transversion ratio (R = [2, 2.5, 3]), allelic fraction (AF = [0.05, 0.1, 0.25, 0.5]), and sequencing
depth (C = [25, 50, 100, 150, 200]), resulting in 60 simulated datasets of mutated and associated base
reads (3R x 4AF x 5C). We then used the detectMutations workflow to detect (recall) spiked mutations
with every variant caller (Mutect2, freebayes, GATK, Strelka2, VarScan, Somatic Sniper, and MuSe). Using
known spiked mutations, we assessed the number of true positive (TP), false positive (FP), and false
negative (FN) for each variant caller to detect mutations and each combination of biological and

sequencing parameters. We used the resulting confusion matrix to calculate the recall ( ) and the
𝑇𝑃

𝑇𝑃+𝐹𝑁

precision rates ( ). The recall rate represents the ability of the variant caller to detect all mutations,
𝑇𝑃

𝑇𝑃+𝐹𝑃
while the precision rate represents the ability of the variant caller to not confound other sites with
mutations. We finally assessed each variant caller to detect mutations using the recall and the precision
rates with varying transition/transversion ratio (R), allelic fraction (AF), and sequencing depth (C) to
identify the best performing variant caller based on biological and sequencing parameters.
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Oak data reanalyses
We re-analyzed publicly available data on pedunculate oak from two projects conducted in Lausanne,

Switzerland (Schmid-Siegert et al., 2017) and Bordeaux, France (Plomion et al., 2018) (SRA PRJNA327502
and ENA PRJEB8388, respectively). Sequenced reads of every library were quality checked, trimmed, and
mapped with the same strategy than previously described for the simulation work, i.e. using FastQC,
Trimmomatic, and BWA mem. We then used the best-performing variant caller at low coverage and allelic
fraction based on our in silico investigation, Strelka2, and the variant caller for mutation detection from
the original publication to compare the results, i.e., GATK with Best Practices for the data from
Schmid-Siegert et al. (2017) and Mutect2 for the data from Plomion et al. (2018). The former comprised 2
libraries of medium sequencing depth (60X) representing one lower and one upper branch. The latter
comprised 3 libraries of high sequencing depth (160X) representing 3 branches (lower, mid, and upper).
For both data sets, we compared each pair of sample points sequentially as the reference library and the
potentially mutated library to distinguish mutations among branches from heterozygous sites and
sequencing errors. For the data from Plomion et al. 2018, we further filtered out candidate somatic
mutations by using a cross-validation procedure to keep a coherent temporal pattern among mutations
following the original publication (Plomion et al., 2018). Contrary to a general expectation and a common
view in the field (Schmid-Siegert et al., 2017, Orr et al., 2019), detected mutations do not always
accumulate following the developing plant architecture (Zahradníková et al., 2020; Ren et al., 2021). As a
consequence, our cross-validation represents a conservative strategy for the mutation detection, but it
should be noted that this strategy could have removed some true somatic mutations. We used these raw
datasets to identify the mutations from the original studies after realigning the megabase containing the
mutation on the 3P genome using BLAT (Kent, 2002). For both datasets, we finally kept candidate
mutations with (1) a read depth for both the normal and mutated samples between half and two times
the mean sequencing depth (30-120X and 80-320X for Schmid-Siegert et al., (2017) and Plomion et al.,
(2018) datasets, respectively), (2) an absence of the mutated allele in the normal sample, and (3) a
minimum of 10 copies of the mutated allele in the mutated sample. In addition, Strelka2 calculates an
empirical variant score (EVS) based on a supervised random forest classifier trained on data from
sequencing runs under various conditions, which provides an overall quality score for each variant (Kim et
al., 2018). We took advantage of the EVS to define a conservative set of candidate mutations for both
datasets, hereafter referred to as the EVS datasets. Given that the proportion of the genome falling within
the sequencing depth boundaries used for the detection (i.e. between 50 and 200% of the mean
sequencing depth) varies depending on the dataset, we weighted the observed number of mutations by
the proportion of the genome satisfying the sequencing depth criteria to provide a more accurate and
comparable estimate of the real total number of mutations. Across both empirical studies, the proportion
of the genome with 50-200% sequencing depth varies between 71 and 87%.

Results

To advocate the use of cancer callers in somatic mutation detection for plant research, we simulated
sequencing data containing new mutations at a given allelic fraction (i.e. fraction of simulated reads per
genomic position carrying the mutated allele), and using varying depths of sequencing (for variable
transition/transversion ratios, see Fig S2). We then evaluated the performance of variant callers as a
function of allelic fraction and sequencing depth. We found marked differences in: (1) the recall, the
ability to recover the simulated mutations; and (2) the precision, the proportion of true simulated
mutations among all variants detected. For allelic fractions equal to, or lower than, 0.25, cancer variant
callers (Strelka2, Mutect2, MuSE, but not Somatic Sniper) outperform SNP callers such as GATK, freebayes,
and VarScan (Fig. 2 and S3), mainly based on the recall. For allelic fractions over 0.25, all variant callers
perform similarly well, except for freebayes, which identified many false positives. Over the 80 tested
parameter combinations, Strelka2 was the best performing variant caller for various allelic frequencies
and sequencing depths (in 57/80 simulated datasets , with an average recall of 0.95 for a precision of
0.98, Fig. S2-4 and Table S2 and S3) and an excellent computational efficiency (second fastest caller, Fig.
S9).

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted November 7, 2022. ; https://doi.org/10.1101/2021.10.11.462798doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.11.462798


We further investigated the performance of the best performing variant caller based on our in silico
experiment, Strelka2, on two empirical datasets on pedunculate oak (Schmid-Siegert et al., 2017; Plomion
et al., 2018) in comparison to the variant callers used in the original publications, i.e., GATK and Mutect2,
respectively. Mapping the raw data of Schmid-Siegert et al., (2017) and Plomion et al., (2018) on the oak
genome that we used as a mapping reference for our empirical study, we successfully mapped 14 and 60
of the mutations detected in the original articles, respectively. Across variant callers, we recovered 12
(86%) and 60 (100%) of these original mutations in our total list of candidate somatic mutations (Fig. 3A),
strongly supporting the results shown by the two previous studies. However, our analyses were able to
detect far more candidate mutations than initially reported. The filtering based on sequencing depth
reduced the proportion of the genome covered with adequate sequencing depth to 72% (assuming
30-120X) for Schmid-Siegert et al., (2017) and to 84% (assuming 80-320X) for Plomion et al., (2018).
Similarly, the cross-validation between branches following the plant development (see Materials and
Methods for details) filtered out 27% of mutations detected for the dataset of Plomion et al., (2018).
Using filtering based on sequencing depth and mutated allele copies with cross-validation, Strelka2
produced a smaller set of candidate mutations than GATK but similar to Mutect2, with an estimated
number of mutation candidates 2- to 4.3-fold higher than that of the original studies (Fig. 3A). Adding
Strelka2 recommended filtering based on empirical variant scores (EVS) yielded the most conservative
dataset with a 1.5 to 3.4-fold increase compared to the original number of mutations. Due to lack of
access to biological material from the original studies, conclusions were drawn from this list of
conservative candidate somatic mutations (but see discussion regarding validation of mutations). The
distribution of allelic fractions of detected mutations partly explains differences among detection
methods (Fig. 3A), with Strelka2 and Mutect2 detecting mutations with lower allelic fractions than the
candidate mutations presented in the original publications, especially for the Plomion et al., (2018) study
that used higher sequencing depths allowing the identification of these numerous low frequency
mutations.

Figure 2: Variant caller performances to identify simulated mutations for varying allelic fractions and
sequencing depths (see Fig. S5 for all parameter combinations).  The recall is the ability to detect
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(recover) the simulated mutations. The precision is the proportion of simulated mutations among all
variants detected (i.e. including false positives). Each point represents the averaged mutation recall or

precision (10 simulations) for increasing allelic fraction and sequencing depth. The shaded area
represents the variation of recall and precision rates over the 10 replicates computed for all callers, but

only visible for the precision of Muse, Mutect2, and VarScan. Linetype distinguishes SNP callers (dashed)
and cancer callers (solid).

Based on the set of conservative mutations detected by Strelka2 (EVS), we then explored annotations
and mutation spectra in both datasets (Fig. 3B-C), which have rarely been explored in model plant species
(but see first evidence based on mutation accumulation lines in Arabidopsis thaliana in Weng et al., 2019)
and never in the wild. The proportions of mutations found in different genomic regions (e.g. genic,
intergenic) were highly correlated between both original studies and proportional to the representation
of the genomic regions, supporting a random distribution of mutations throughout the genome (Fig. 3B).
Mutation spectra of the two studies are significantly correlated (Pearson’r=0.49, p<10-5), with an
enrichment in C>T transitions, particularly in some specific genomic contexts (Fig. 3C).

Figure 2: Candidate mutation spectra depending on variant callers and filtering in Schmid-Siegert et
al., (2017) and Plomion et al., (2018). A. Allelic fraction distribution for every dataset, including the

candidate mutations from the original article present in the raw data from the reanalysis (red), the results
of GATK with Best Practices (blue), Mutect2 after filtering (green), and Strelka2 after filtering (purple), and
the results of Strelka2 using the filtering based on empirical variant scores named EVS (orange). The labels

indicate the number of candidate mutations in each dataset. Per caller comparisons are available in Fig.
S7. B. Annotation of the mutations detected by Strelka2 across chromosomes using the filtering based on

empirical variant scores named EVS for Schmid-Siegert et al., (2017, green) and Plomion et al., (2018,
orange) compared to the genomic expectation (grey, see Supplementary Note S1). Error bars represent

the standard deviation (SD) of the observed percentages across chromosomes, and the annotation above
the columns indicates the significance of the Student's t-test two-sided comparing the mean percentage
of mutations to the mean genomic expectation, with ns, **, and *** corresponding to non-significant,
p<0.01, and p<0.001 differences, respectively. C. Context-dependent mutation spectra depending on
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mutation types for the results of Strelka2 using the filtering based on empirical variant scores named EVS.
Mutation types have been summarised into six main classes with thicker lines for transversion compared

to transition, and then differentiated depending on their 5’ and 3’ genomic contexts, see Fig. S8-9.
Pearson’s correlation r measures the two-sided correlation of the mutation spectra between

Schmid-Siegert et al., (2017) and Plomion et al., (2018). All figures compare the reanalysed data and not
the original results.

Discussion

Mutation research in plants still primarily uses SNP callers and methodologies that are not developed
for the specificity and complexity of within-individual de novo mutation detection. We demonstrated that
plant mutation research could benefit from the development of tools and protocols initially designed for
human cancer research, which is a rapidly expanding field (Kim et al., 2018). We quantified expected
marked differences in the performance of variant callers for mutation detection based on sequencing
depth and allelic fraction. We demonstrated that cancer callers performed better than SNP callers for
mutation detection at low or intermediate allelic fraction or with low sequencing depth, and similarly well
for high allelic fraction. The overall higher detection efficiency demonstrates the benefit of using tools
and protocols initially designed for human cancer research. Low allelic fraction mutations, potentially due
to the chimeric nature of plant shoot apical meristems structures (Burian, 2021), might be very important
due to their great abundance that may balance out their low chance of transmissions. Therefore, plant
mutation studies should make greater use of cancer variant callers such as Strelka2 rather than SNP
callers such as GATK to detect somatic mutations, in agreement with previous studies on germline
mutations detection (Chen et al., 2019), especially for detecting low frequency mutations and when using
low sequencing depth. The importance of allele fraction-dependency in variant detection is not restricted
to somatic mutations, but also concerns for instance polyploid species, which includes many agriculturally
important autopolyploid plant species (e.g. potato, sugarcane). Our simulation framework therefore
provides general insights regarding the impact of allele fraction in mutation detection which go beyond
somatic mutation detection.

Validation of mutations
Intuitively, after identifying candidate mutations, one expects their "validation". In our study, it was

impossible to validate mutations using genotyping or resequencing because we performed a reanalysis of
already available sequence data, without having access to the biological material. Yet, we argue that
validation is more complex than generally thought. We specifically discuss (i) allele fraction, (ii)
fraction-aware approach, and (iii) offspring validation. High frequency mutations (e.g. AF=0.5) will be
easily confirmed by genotyping or Sanger sequencing. But if one considers that low frequency mutations
are only present in a fraction of the tissue, SNP genotyping technologies are hindered by the complexity
of defining the genotype clustering while Sanger sequencing is hindered by the difficulty of isolating the
allelic assay from the background when reading the chromatogram. Therefore, such validation strategies
are conservative and favour high frequency mutations. To unambiguously validate low-frequency
mutations using intra-individual samples, an allelic fraction-aware approach can be used, such as a
hybridisation capture-based sequencing strategy targeting regions of candidate mutations with
high-coverage sequencing. However, this would mean that the validation is based on another round of
sequencing, bringing back all the biases of the bioinformatics steps. Another strategy could be genotyping
of inherited mutations in offspring, working at the family rather than the individual level, which also has
its limitations (see Note S2). From our point of view, the current literature on somatic mutations in plants
does not mention the limits of validation, focusing on "fully validated" mutations, thus probably favouring
high frequency mutations. However, high-frequency mutations are expected to be relatively rare
compared to low-frequency mutations, which affect conclusions about the total number of somatic
mutations. In the relatively near future, the use of single cell sequencing approaches to reveal
intra-individual genetic variation is likely to eliminate the problem at its source, avoiding the use of mixed
samples of mutated and non-mutated cells, leading to simple detection and validation.
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Limits and future directions
Our study provided a first simple case of evaluating the performance of callers to detect somatic

mutations in plants. Our study was limited to variant callers in the cases of mutated and normal sample
pairs using the recommended default parameters. Future studies should consider and quantify the
performance of other types of callers, such as subclonal or mosaic variant callers (e.g. deepSNV and
MosaicForecast). Future studies could also consider exploring tuning parameters for the specific task of
detecting plant somatic mutations. We hope that the open-source automated, highly reproducible, and
scalable workflows constructed for our study, generateMutations and detectMutations, will allow further
exploration of these questions. Our study also overlooked the importance of genome size, as plants can
have larger genomes than humans. Trees have a very wide range of genome sizes, from small genomes
(0.35 GB) to very large genomes (>20 GB), and our study focused on the relatively small oak genome (0.75
GB). A large genome will obviously be a barrier to high sequencing depth with a fixed budget, but with
regard to mutation detection, our study argues for the use of cancer callers in large genomes as they also
outperform SNP callers in terms of computational time (Fig. S9). Similarly, our study did not take into
account the role of polyploidy as we only focused on a diploid species. We assume that for ploidy greater
than two, the performance of cancer callers relative to SNP callers will increase since the cancer caller will
be even more efficient at low frequencies. But future studies could also take advantage of our tools to
explore the role of polyploidy in caller performance. Another problem that may arise when analysing
sample pairs with cancer callers is the rapid increase in pairwise comparisons when using a larger sample
size than previous studies (e.g., N=3 in Plomion et al. 2018). A simple solution is the use of a single
reference sample such as a cambium sample from the base of the tree, which is therefore considered as
the closest genome to the seed, to compare it to all samples from branches (Hanlon et al., 2019).

Conclusion
By reanalyzing the raw oak data (Schmid-Siegert et al., 2017; Plomion et al., 2018), we found that the

marked differences in the performance of variant callers could account for the discrepancies in
genome-wide plant somatic mutation rate estimates. Our reanalysis using the best-performing caller
based on our simulations, Strelka2, suggests an up to 3.4-fold higher number of mutations than
previously reported, a value closer to the expectations based on the theory (Schoen & Schultz, 2019;
Burian, 2021). We argue that knowledge and methodological transfers from cancer to plant mutation
detection are expected to contribute strongly to the upward trend of this field and to reconcile empirical
reports with theoretical expectations.
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