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Abstract

Large scale single cell omics profiling is revolutionising our understanding of cell types, especially in complex organs like the
brain. This presents both an opportunity and a challenge for cell ontologies. Annotation of cell types in single cell ’omics data
typically uses unstructured free text, making comparison and mapping of annotation between datasets challenging. Annotation
with cell ontologies is key to overcoming this challenge, but this will require meeting the challenge of extending cell ontologies
representing classically defined cell types by defining and classifying cell types directly from data. Here we present the Brain
Data Standards Ontology (BDSO), a data driven ontology that is built as an extension to the Cell Ontology (CL). It supports two
major use cases: cell type annotation, and navigation, search, and organisation of a web application integrating single cell omics
datasets for the mammalian primary motor cortex. The ontology is built using a semi-automated pipeline that interlinks cell
type taxonomies and necessary and sufficient marker genes, and imports relevant ontology modules derived from external
ontologies. Overall, the BDS ontology provides an underlying structure that supports these use cases, while remaining
sustainable and extensible through automation as our knowledge of brain cell type expands.
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Introduction cal methods of classifying neurons based on location, morphology,

marker expression and function have not come close to achieving

The large-scale application of omics profiling techniques at the
single cell level is producing enormous volumes of data. Cell on-
tologies are poised to play a critical role in making these data
searchable and integratable [1]. At the same time, the applica-
tion of these techniques is revolutionising our understanding of
cell types and cellular heterogeneity [2, 3]. The impact of this rev-
olution is especially dramatic for the brain. Due to the complex
cellular architecture of the brain, traditional qualitative, categori-

acoherent, unified view of brain cell types and their classifications.
This has begun to change with the application of massively paral-
lel single cell or nucleus RNA sequencing (sc/nRNAseq) methods,
measuring the transcript levels of thousands of genes within each
of hundreds of thousands of individual cells. The data from these
experiments provides the basis for a consensus, data-driven and
comprehensive quantitative framework for brain cell-type clas-
sification both within and between species. Evidence from sys-
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Figure 1. Graph illustrating the BDSO schema. This graph shows the relationship of the BDSO classes (Brain Data Standards Ontology nodes, light blue circles) to OWL
Individuals (Taxonomy nodes, brown circles) representing clusters in the data driven taxonomy used as input and to the build process, to classes in the Cell Ontology (green
circles) and from external ontologies (blue backgrounds) representing species (NCBITaxon), brain region (UBERON), morphology (PATO), and markers (Ensembl/PRO).

tems in which a more comprehensive classification of cell types
has been achieved by classical methods suggests that the classifi-
cations resulting from sc/nRNAseq analysis align closely with clas-
sically defined types [4].

In parallel with the development and use of sc/nRNAseq, tech-
niques have also been developed that can produce transcriptomic
profiles, morphology and/or functional measurements of the same
individual single neuron (e.g., Patch-seq), allowing function and
morphology to be mapped to cell types defined using sc/nRNAseq
data based on similarity in transcriptional profiles. The result is
an increasingly consistent, unified and integrated view of mam-
malian brain cell types.

How can we integrate definitions of cell types from sc/nRNAseq
dataanalysis, which take transcriptomic data from clusters of tran-
scriptomically similar cells as ground truth for cell-typing, into
cell ontologies in which cell type/classes are defined using simple,
categorical assertions about their morphological and functional
properties, location and marker expression? How can we do this in
a way that is transparent about the origins and evidence for these
classifications? How can we enable users to leverage the data used
todefine and classify reference cell types in the ontology in order to
classify cell types represented in their own data? Here we propose
an approach for data-driven cell type classification and semantic
representation to address these challenges.

Brain Data Standards Ontology

The Brain Data Standards Ontology (BDSO) is a data-driven ex-
tension of the Cell Ontology (CL) [5] that supports the navigation,
search, and organisation of information about cell types through
an integrated web portal, and also functions as an independent on-
tology for use in cell-type annotation. The initial focus of work
on this ontology utlises data from the BRAIN Initiative Cell Cen-
sus Network (BICCN) mini-atlas of the mammalian primary motor
cortex [6]. It attempts to solve the above-stated problems by using
a schema that directly defines cell types via links to reference (ex-
emplar) data and analyses, extending an earlier proposal for defin-
ing cell type classes from sc/nRNAseq experiment data and meta-
data (3].

Cell types in BDSO are defined by reference to clusters of tran-
scriptomically similar cells. Classification in BDSO is derived
from the hierarchical relationships between these transcriptomic
clusters. The clusters and their hierarchical arrangement derive
from unsupervised, hierarchical clusterings of single-cell tran-
scriptomes and epigenetic profiles of the primary motor cortex in
mouse, human, and non-human primates [6]. Each individual hi-
erarchical clustering (referred to from here as a taxonomy) is ei-
ther created from a single data set (e.g., in marmoset) or through
a consensus of two (human) or many (mouse) data sets. Lever-
aging transcriptomic similarity, a subset of clusters in these tax-
onomies are mapped across species [7]. Finally, using mouse tran-
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Figure 2. Example of an automatically generated class displayed in Protege, an ontology browser. In this example, we show L5 Extratelencephalic (ET), which is a grouping
class. The label, definition, and set of synonyms are auto-generated from OWL templates using a Dead simple OWL design patterns (DOSDP) pattern system. Automatic
axiomatisation includes brain region, species, NS-forest markers, projection pattern, and has_exemplar_data link to taxonomy node (cluster), using a reification pattern.
Other possible automated axiomatisation not shown in this figure include morphology and named markers.

scriptomics clusterings as an anchor, morphological and electro-
physiological profiles of single cells are mapped to omics-based
types using Patch-seq data [8]. All of this information is available
in a standard format developed by the BICCN to represent mam-
malian brain cell type taxonomies and the relationships between
them [9] These taxonomies are inputs to a semi-automated on-
tology build process that extends the Ontology Development Kit
[10]. This process drives templated term addition and import of
ontology term modules from the Cell Ontology (CL) [5], Uberon
[11], PATO [12], and Ensembl/PRO [13].

Web Ontology Language, OWL2 [14] makes a distinction be-
tween individuals, e.g., an individual neuron depicted in a micro-
graph, and classes, e.g. classes representing canonical types of
neurons. Each taxonomy is represented in BDSO as a collection
of OWL Individuals, each representing a cluster of single cell tran-
scriptomes. Hierarchical clustering is represented by relating clus-
ters to each other via a transitive subcluster_of relation (OWL ob-
jectProperty; see L5 ET_1 and L5 ET nodes in Figure 1). We create
classes (data-linked cell types) for all leaf node clusters in each tax-
onomy and a subset of grouping clusters that map to either known
classes or new classes defined by morphology and function based
on Patch-seq data. Each data-linked cell type ‘C’ islinked toa clus-
ter individual ‘X’ using a value restriction pattern (see L5 ET in
Figures1and 2):

{C} EquivalentTo 'native cell' and has_exemplar_data 1
value cluster {X}

With some additional axiomatisation, we can use a standard
OWL reasoner to automatically build a classification hierarchy for
the BDSO classes, mirroring the cluster hierarchy. Figure 3 illus-
trates this schema and details how it generates a classification hi-
erarchy. In this illustration, as in the BDSO, not all clusters are
used to define cell types, as not all intermediary nodes in a hierar-
chical clustering are equally biologically informative (in Fig 3, i2 is
not used to define cell types). Inferred classification still reflects
hierarchical clustering in these cases.

Each class has axiomatisation that records species, brain re-

1 Currently being requested from the Relations Ontology (RO).
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Figure 3. Representative schema for data driven classification. Blue nodes (i1-
3) are OWL individuals representing clusters of single cell transcriptomes, while
tan nodes (c1, c2) are OWL classes representing cell types. Hierarchical clustering
is represented using the transitive subcluster_of relation (objectProperty) to link
individuals. Each class is defined by reference to a cluster individual (i), via the re-
lation (objectProperty) as equivalent to (any) cell that has_examplar (value) i. Rea-
soning via a chain of these two properties (bottom and right sides of the diagram
above) is sufficient to infer that c3 has_examplar value i1and so, combined with the
assertion that it is a (type of) cell, fulfils the conditions required to be a subclass of
i1.
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gion, and gross classification, based on division of the taxonomy
into gross cell types including GABAergic neuron, glutamatergic
neuron, and oligodendrocyte. Additionally, we add marker expres-
sion axioms corresponding to the minimal set of markers required
to distinguish the exemplar from all other clusters in the taxon-
omy, generated using NS-Forest [15]. Data-driven classes defined
for intermediate nodes in the hierarchy are further classified us-
ing classes added to the Cell Ontology as part of this work (e.g.,
see 'L5 extratelencephalic’ class in Figure 1). These include classes
that are defined by expression of classical markers (e.g., VIP ex-
pressing GABAergic neurons), morphology (pyramidal) or projec-
tion pattern (extratelencephalic projecting), mapped based on co-
collected transcriptomic profiles [6]. Each BDS class also has an
auto-generated label, definition, and set of synonyms driven by
an OWL Template through a Dead simple OWL design patterns
(DOSDP) system [16]. An example of a semi-automatically gen-
erated class can be found in Figure 2 shown through an ontology
browser, Protégé [17].

The BDSO’s code base is available at GitHub
(http://purl.obolibrary.org/obo/cl/bds/)  including documen-
tation of the full technology stack and details of the approach. A
provisional release of the ontology is available for download from
http://purl.obolibrary.org/obo/cl/bds/bds.owl and is hosted on
a dedicated instance of the EMBL-EBI ontology lookup service
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(OLS) [18] at http://purl.obolibrary.org/obo/cl/bds/browser/. OLS
provides ontology search, browsing, visualisation capabilities
and enables web services driven programmatic access to the BDS
Ontology.

Integration of BDSO and brain cell type data in a
web application.

A key function of the BDSO is to support organisation, navigation
and searching of data in a community-accessible view of the cell
types defined in the BICCN mini-atlas of the mammalian primary
motor cortex [6] through a web-based application (web-app) that
integrates cell type descriptions and related data, provisionally
known as ”Cell Type Cards”. Each page in this web-app corre-
sponds toa cell type defined with reference to a cluster in one of the
BICCN taxonomies, represented in the BDSO, and features a wide
range of data and analysis from multiple cross integrated datasets.
The aim of the ontology driven search and navigation tools is to
support access to these pages in the web-app.

While expressiveness of ontologies is an advantage for
semantic data processing, using ontologies as the data layer
of a web application brings several challenges (such as blank
nodes, existential restrictions, annotations, entailments and
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Figure 4. A mockup of the cell type cards web app, incorporating planned search and navigation functionality driven by the BDSO. (A) The panel on the left shows
information about an ontology term associated with a cell type card (the corresponding card is shown in panel B on the right). This includes the ontology term ID, name,
synonyms, definition, parent cell types, location, species and markers. It also includes a set of semantic tags corresponding to species, brain region, and cell properties such
as morphology (pyramidal) and projection pattern (extratelencephalic). Clicking on one of these panels drives faceted search, prompting display of a results page listing all
cards with that tag. This can be further refined by selecting additional tags as facets. Panel (B) shows an autocomplete search. Selecting a BDSO class corresponding to a
cell-type card (arrow with “Cell Type” label) displays that card. Cell type cards will display the ontology panel seen in (A), but also summary data related to that cell type
(e.g. transcriptomics profiles, example morphology, electrophysiology, etc.). Selecting a BDSO class that does not correspond to a single card (arrow with “Grouping Term”
label), but which subsumes classes that do, prompts display of a results page listing subsumed cards. This can be further refined via faceted search as shown in panel A.
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scalability) compared to conventional data persistence solu-
tions. For this purpose, we extended a library, neoj2owl
(https://github.com/VirtualFlyBrain/neo4j2owl), developed
for the Virtual Fly Brain project [19, 20], that ensures logical
projection of OWL ontologies into labelled property graphs.
Neosj2owl imports the BDSO and associated ontologies into Neo4j
in a way that preserves entailments and annotations, but not the
syntactic complexities. Neo4j20WL also allows the addition of
semantic tags, driven by OWL DL or SPARQL queries, that can be
used to drive faceted search. For example we can tag all classes
corresponding to subclasses of GABAergic neuron, or all classes
fulfilling an OWL DL query for classes of neuron with pyramidal
morphology (see Figure 4b).

A sample of the resulting property graph is shown in Figure 1.
Cloud hosted property graphs RESTfully serve knowledge to cell-
type cards in web-friendly formats such as JSON.

Ontology based navigation and search function through two
mechanisms - autocomplete (which takes advantage of curation
of synonyms in the ontology) and faceted search (Fig 4). Auto-
complete allows users to search for cell-type ontology terms, dis-
playing a list of lexical matches for users to choose from. Choosing
a term corresponding to a single cell type card takes the user to
that card, whereas choosing a term that subsumes multiple cards
prompts display of alist of terms corresponding to subsumed cards.
A mockup of the interface, illustrating this behavior, is shown in
Figure 4a. Faceted search of cell type cards works via a set of tags
corresponding to gross classifications (e.g. GABAergic), intrinsic
properties (e.g. pyramidal morphology) and extrinsic properties
(brain region location, species) of cell types, added to cell type
neo4j nodes via OWL DL queries of the underlying ontologies. This
allows users to take advantage of the semantics of OWL for faceted
search at a practical level of granularity/partitioning. A mock-up
of faceted search implementation in cell-type cards is shown in
Figure 4b.

Conclusion

The BDSO is a faithful representation of the data driven, consen-
sus cell type classification that constitutes the BICCN mini-atlas
of the mammalian motor cortex [6]. By using a schema that de-
fines classes logically via links to an OWL representation of data
and analyses, the BDSO is able to directly leverage data-driven clas-
sification using OWL reasoning. As a result, classes retain direct
links to the data and analyses that define them and the origins of
this classification are transparent and insulated from the manual
editing process which might alter or obfuscate them. Using tem-
plated specification of ontology classes, the BDSO build process is
scalable and extensible and allows a flexible mix of automation and
manual curation. It also makes it possible to update as new, im-
proved versions of data driven classifications of the same cell types
are released.

The linked data can potentially be used to replicate analyses
and to map cell types represented in other datasets (e.g. Azimuth
[21], NS-forest [15], FR-match [22]). The addition of NS-Forest
Markers [15], representing minimal markers for distinguishing,
with high confidence, cell types from other cell types defined in
the analysis, provides a simple mechanism for mapping cell types
from third party transcriptomics data to the BDSO.

Challenges remain. The current representation lacks links to
representations of transcriptomic data from Patch-seq data used
to map morphologically defined types. Furthermore, accurately
mapping cell types that were historically derived through categor-
ical assertions, before the age of single cell transcriptomics, to
cell types that are defined with reference to algorithmic cluster-
ing of transcriptomic profiles presents a challenge and requires
consensus by the community. Using transcriptomics clustering
as ground truth for an ontology also comes with its inherent chal-

lenges. Penetrance of marker expression and location to a spe-
cific cortical layer varies across clusters, so quantified assertions
of marker expression in OWL will always be an approximation if
ground truth is defined by clustering on similarity and will al-
ways require some assessment of thresholds - either automated
or qualitative. Finally, nomenclature issues frequently arise when
data driven classifications are mapped onto classically defined
classes. For example, the literature is full of references to the VIP-
expressing GABAergic neurons, identified using VIP as a marker,
but clustering defines a broader group of related GABAergic neu-
rons including some subtypes that do not express VIP. This leaves
difficult questions around how such grouping classes should be
named to reflect their close relationships to the classically defined
class.
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