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ABSTRACT:

Genome sequence data is no longer scarce. The UK Biobank alone comprises 200,000 individual 

genomes, with more on the way, leading the field of human genetics towards sequencing entire 

populations. Within the next decades, other model organisms will follow suit, especially domesticated 

species such as crops and livestock. Having sequences from most individuals in a population will 

present new challenges for using these data to improve health and agriculture in the pursuit of a 

sustainable future. Existing population genetic methods are designed to model hundreds of randomly 

sampled sequences, but are not optimized for extracting the information contained in the larger and 

richer datasets that are beginning to emerge, with thousands of closely related individuals. Here we 

develop a new method called TIDES (Trio-based Inference of Dominance and Selection) that uses data

from tens of thousands of family trios to make inferences about natural selection acting in a single 

generation. TIDES further improves on the state-of-the-art by making no assumptions regarding 

demography, linkage or dominance. We discuss how our method paves the way for studying natural 

selection from new angles.
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INTRODUCTION:

Genetic variation in natural populations is balanced among mutation, natural selection, and genetic 

drift. Whether most mutations in genomes are deleterious, neutral, or beneficial has been debated 

throughout the history of population genetics, and remains controversial (Hey 1999; Kern and Hahn 

2018; Jensen et al. 2019). One challenge in addressing this topic is that genetic diversity from natural 

populations likely has been affected by multiple evolutionary forces simultaneously, making it hard to 

isolate and test for the effects of any one such force (Barroso and Dutheil 2021). However, many non-

synonymous mutations are detrimental (Keightley and Lynch 2003) and since natural selection has 

limited efficiency in removing them from the population, segregation of deleterious polymorphism is 

unavoidable, with direct consequences on the fitness of individuals (Agrawal and Whitlock 2011). In 

humans, for example, this genetic load contributes to a ~50% miscarriage rate (Rice 2018), most of 

which occur in the first 12 weeks of pregnancy. Inferring the strength of selection is therefore a central 

goal in biology (Nielsen et al. 2007; Eyre-Walker and Keightley 2007). Equally important is 

characterizing the degree to which deleterious variants influence fitness when in heterozygous state, 

referred to as the dominance effect (Agrawal and Whitlock 2011; Huber et al. 2018). Together, 

knowledge of the selection coefficient (s) and the dominance coefficient (h) can inform about 

functional constraints in protein structure (Moutinho, Trancoso, and Dutheil 2019) and interaction 

networks (Park, Hescott, and Slonim 2019; Ratnakumar et al. 2020), shedding light into both 

evolutionary and medical genetics.

Existing methods to infer the strength of selection use the site frequency spectrum (SFS) to infer a 

distribution of fitness effects (DFE) of new mutations (Eyre-Walker, Woolfit, and Phelps 2006; Boyko 

et al. 2008; Kim, Huber, and Lohmueller 2017; Tataru et al. 2017; Keightley and Eyre-Walker 2007). 

Although they have greatly contributed to advancing population genetics in the past 15 years 

(Moutinho, Bataillon, and Dutheil 2020), these models have important shortcomings, stemming mostly 
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from the limited amount of information retained in the SFS. First, they neglect linkage disequilibrium 

(LD) and selective interference among sites (Hill and Robertson 1966; Garcia and Lohmueller 2020). 

Second, they only incorporate oversimplified demographic histories. Third, the SFS alone cannot 

disentangle between s and h (Huber et al. 2018) and consequently the DFE is typically inferred 

assuming additivity – which is problematic since deleterious mutations tend to be recessive (Huber et 

al. 2018; Bosse et al. 2018). Fourth – and perhaps most importantly – the magnitude of selection can 

change over time (Wittmann et al. 2017; Orr and Betancourt 2001). For example, genes that have been 

highly constrained in the past may experience relaxation upon environmental change or even become 

positively selected. Conversely, previously neutral alleles may become deleterious. Several methods 

model a DFE with a proportion of positively selected variants (Galtier 2016; Schneider et al. 2011; 

Boyko et al. 2008; Zhen et al. 2021) but these methods still capture long-term signals of selection from 

the SFS, effectively averaging s over several thousand generations. Such averaging may result in 

misleading inference if there have been substantial fluctuations in selective pressures during the history

of the population under study. Although progress has been recently made in inferring temporal 

trajectories of selection using ancient DNA samples (Mathieson 2020), a sufficient quantity of ancient 

samples is not always available from the relevant population. Taken together, these limitations reduce 

their ability to accurately infer selection occurring in contemporary populations.

Here we suggest a way forward to overcome these challenges in inferring fitness effects for mutations 

that takes a different perspective of modeling natural selection acting on a single-generation, rather than

throughout the entire history of the population. Our new approach is made possible by the explosion of 

genome re-sequencing data from natural populations. Largely due to the medical implications, humans 

have been the organism benefiting the most from this data deluge. For example, deCode genetics has 

genotype data on more than 160,000 individuals and 60,000 whole-genome sequences of much of the 

population of Iceland, including 2,926 family trios (Halldorsson et al. 2019). Other projects like the UK
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Biobank have genotype data on 500,000 individuals, 200,000 exome sequences and project 200,000 

whole-genome sequences by the end of 2021, while the TopMed project has sequenced 53,835 (Taliun 

et al. 2021), including 1,465 family trios (Kessler et al. 2020). It is anticipated that within the next few 

years, entire populations will be sequenced, incorporating hundreds of thousands of parent-offspring 

trios.

The availability of sequences from thousands of closely related individuals presents both an 

opportunity and a challenge. One the one hand, these data will provide an opportunity to overcome the 

aforementioned limitations of SFS-based methods in the inference of selection. On the other hand, 

these data present methodological challenges, as traditional assumptions (e.g., sampled individuals are 

unrelated) break down with such large samples. Further, such datasets require dedicated models that are

accurate and computationally efficient. Here we overcome this challenge and develop a new model 

called TIDES (Trio-based Inference of Dominance and Selection) that is able to infer dominance and 

negative selection using tens of thousands of parent-offspring trios. Our method is designed to handle 

such large datasets efficiently, in anticipation of their availability in the near future. Moreover, a unique

feature of TIDES is that it is sensitive to the strength of selection acting on the current generation, and 

it is therefore ideal to study population-specific signatures of selection, while not being confounded by 

other evolutionary forces like demography, or averaging selective effects over long time periods. 

TIDES can be applied to either sets of variants across the genome or a single variant at a time, further 

showcasing its flexibility.

RESULTS:

Overview of the model

TIDES uses approximate Bayesian computation (ABC) (Pritchard et al. 1999; Beaumont, Zhang, and 

Balding 2002; Beaumont 2019) to model the effect of selection on genetic diversity during the span of 
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a single generation. It leverages phased sequences from parent-offspring trios to detect signatures of 

selection in the transmission of single nucleotide polymorphisms (SNPs). By exploiting the random 

shuffling of haplotypes during meiosis, family trio data becomes immune to external confounding 

factors that lurk in traditional population genetic studies (Bates et al. 2020), such as non-equilibrium 

demography (Sul, Martin, and Eskin 2018; Barton, Hermisson, and Nordborg 2019). The first step in 

our simulation framework is to use parental haplotypes and recombination maps to generate an array of

potential zygotes for each trio (Figure 1A, Algorithm 1). We then sequentially impose rounds of 

viability selection on the simulated zygotes, for independent values of s and h drawn from their prior 

distributions, and compute summary statistics from the set of “selected” zygotes (Figure 1B). 

Comparing genomes from children (the observed data) with genomes from simulated zygotes that 

could have been conceived by their parents provides information about the (unobserved) embryos that 

did not survive, and is therefore indicative of the strength of selection.

In essence, TIDES is a fitness-based model that mimics the process of meiosis followed by  natural

selection. We compute the fitness f of each individual (both real and simulated) using a multiplicative

model

f =(1+s)[khomo ]×(1+h×s)[ khet ]   (equation 1)

where khomo and khet are the counts of derived sites in homozygous and heterozygous states, 

respectively. To compute summary statistics, we consider the combined genetic diversity of the parents 

separately from the combined genetic diversity of the offspring. We use the relative differences in the 

averages of khomo and khet between offspring and parents as our two summary statistics, denoted Δhomo 

and Δhet. Specifically, let x0, y0 be the average number of homozygous and heterozygous sites among 

parents, and x1, y1 be the corresponding averages among children. We define Qobs as the vector storing 
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the dimensionless quantities Δhomo = (x1 – x0) / x0 and Δhet = (y1 – y0) / y0. Likewise, if x(i)
2 and y(i)

2 are 

the averages among simulated zygotes that have survived selection for the ith parameter combination, 

then Q(i)
sim is the vector storing Δhomo = (x(i)

2 – x0) / x0 and Δhet = (y(i)
2 – y0) / y0. Disregarding de novo 

mutations, such trio-based summary statistics can be used to model both negative and positive selection

on a set of candidate sites. When modeling negative selection, higher values of |s| (corresponding to 

stronger negative selection) should lead to sharper reductions in the overall number of deleterious 

variants in the offspring and therefore lower values of both Δhomo and Δhet. Higher values of h should 

result in lower values of Δhet but not Δhomo. Conversely, when modeling positive selection, higher values 

of s (corresponding to stronger positive selection) should lead to sharper increases in the overall 

number of beneficial variants in the offspring and therefore higher values of both Δhomo and Δhet. Higher 

values of h should result in higher values of Δhet but not Δhomo. Therefore, retaining genotype 

information instead of reducing genetic diversity to the SFS is key to disentangling the combined 

effects of dominance and selection.

Evaluating the performance of TIDES

Inferring the exome-wide strength of negative selection

We first evaluate TIDES’ ability to infer the strength of negative selection on a set of deleterious SNPs. 

To benchmark our model and method, we simulated trio sequence data from a population reflecting the 

European demographic history (Gravel et al. 2011) and sex-specific recombination maps (Halldorsson 

et al. 2019), as well as the human exome structure using SLiM (Haller and Messer 2018) (Methods). 

These simulated data should reflect a reasonable picture of deleterious standing variation, both in terms

of derived allele frequencies and their linkage disequilibrium patterns. We then sampled 60,000 

individuals from the final generation, matched females and males at random to generate offspring and 

finally down-sampled to 50,000 trios in each scenario, which became our test data sets for inference. 

Throughout the following simulation study we employed flat, un-informative priors in order to assess 
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TIDES’s ability to extract information from the data when there is weak a priori knowledge about the 

parameters. Specifically, we let h be uniformly distributed in the open interval (-0.1; 0.6) and s be log-

uniformly distributed in the open interval (-10-5 ; -10-1) (except for neutral simulations, where s was 

uniformly distributed in the open interval (-0.01; 0.01)). The ranges of the priors reflect values of s and 

h that are pertinent based on the population genetics literature. The log-uniform prior on s was chosen 

such that the parameter space reflects the “magnitude” of selection, implying even exploration of 

values around -0.01 and -0.0001, for example.

We found that in neutral simulations, TIDES infers s to be tightly centered around zero (Figure S1), 

indicating that noise in the sampling of parental SNPs (i.e., genetic drift) does not generate a spurious 

signal of selection. TIDES has overall high accuracy in the six combinations of s (-10-4, -10-3, -10-2) and

h (0, 0.5) that we tested, with the medians of the inferred posterior distributions centered around the 

true values of s (Figure 2). In general, precision is higher in the recessive scenarios and especially as 

selection becomes stronger. This change in power occurs because we treat our sample of parents as a de

facto population, and project it forward by one generation where (disregarding de novo mutations) 

negative selection has the opportunity to reduce deleterious genetic diversity. Therefore, similarly to the

classic population genetics result where selection becomes more efficient as |Ne * s| grows beyond 1 

(Kimura 1979), in TIDES, the product of n (the number of trios) and s must be large enough to have 

high inferential power. Indeed, for our sample size of 50,000 trios, |n * s| equals 500 in the strong 

selection scenario and 50 in the moderate selection scenario, but only 5 when selection is weak. Taken 

together, these results suggest that for sufficiently large sample sizes, our trio-based framework can 

accurately infer the strength of ongoing selection for an arbitrary range of selection coefficients.

It has been well established that the selection coefficients of deleterious SNPs vary by several orders of 

magnitude, from nearly neutral to lethal (Eyre-Walker, Woolfit, and Phelps 2006; Boyko et al. 2008; 
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Kim, Huber, and Lohmueller 2017). To assess the performance of TIDES in the presence of a DFE, we 

performed simulations where the selection coefficient of new mutations comes from a Gamma-

distributed DFE parameterized by α = -0.186 and β = 0.071. As negative selection purges strongly 

deleterious alleles more efficiently, the average selection coefficient of segregating SNPs is expected to

be less negative than that of the DFE of new mutations. In our simulations of the European 

evolutionary history, the average s of new mutations is -0.013 whereas that of segregating SNPs is -

0.00015. Since TIDES focuses on a single generation instead of modeling long-term frequency 

trajectories, it aims at inferring the average s of SNPs segregating in the parents. Although the value of 

-0.00015 falls within the weak selection regime where our power with 50,000 trios is reduced, the 

medians of the posterior distributions are located near the true value (Figure 3A), showing that when 

mutations have different selection coefficients, TIDES can infer their average.

Finally, we asked whether TIDES could capture a shift in the strength of selection happening in current 

generation. The goal of this simulation was to mimic a scenario of environmental change where the 

selective pressure is abruptly reduced, and to assess the performance of our method in these data. To 

this end, we started from the same parental sequences from the recessive scenario with historical s = -

10-2 except this time we imposed viability selection in the offspring generation by changing s of all 

segregating SNPs to -10-3. Although a 10-fold decrease in the strength of selection is a statistically 

challenging signal to capture (because the level of standing variation reflects the previously stronger 

selection and is therefore reduced relative to the new expectation, with respect to both the number of 

SNPs and their frequencies), TIDES recovers the updated value of s (Figure 3B), showcasing that our 

model is sensitive to the strength of ongoing selection and is not burdened by memory of the past.

Inferring the selection coefficient of single deleterious SNPs
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The results above suggest that TIDES can infer the (average) selection coefficient from a set of 

deleterious SNPs, but in some situations, single SNPs may be of interest. A few methods have been 

recently developed to infer selection coefficients of single SNPs using contemporary data (Stern, 

Wilton, and Nielsen 2019) or their temporal trajectories using ancient DNA data (Mathieson 2020), but 

tools for detecting ongoing selection are still lacking. To achieve high accuracy with single variants in 

TIDES, we once again should require that |n * s| >> 1, noting that only informative trios (those where 

at least one parent is heterozygous, hence the couple has the potential to produce more than one kind of

offspring) should be included in the analysis. Because interest in individual SNPs may be motivated by 

situations where large effects are expected, we tested TIDES’s accuracy to infer strong negative 

selection using the open interval (-10-4 ; -100) as a log-uniform prior on s. We simulated datasets where 

the frequency q of the deleterious allele among parents is ~0.5, and we varied the number of 

informative trios (10,000, 30,000 or 100,000), as well as s (-0.01, -0.05 or -0.1) and h (0.0 or 0.5). 

TIDES is accurate in all scenarios of s = -0.1, whereas it requires at least 30,000 informative trios to 

have high accuracy when s = -0.05 and does not start to perform well until 100,000 trios and recessive 

selection for s = -0.01 (Figure 4). This means that unsurprisingly, TIDES’ accuracy on single SNPs 

depends on higher values of |n * s| than for exome-wide inference (since all couples are highly 

informative in the latter case due to the higher number of SNPs they carry), but that given enough data 

our model is able to infer ongoing selection on a single deleterious variant. 

Since the frequency of deleterious SNPs segregating in natural populations is inversely proportional to 

the strength of negative selection against them, more strongly deleterious variants will tend to be kept 

at lower frequency, requiring larger samples from the population in order to find a sufficient number of 

informative trios. On the other hand, the number of informative trios required for inference decreases 

with increasing deleteriousness of variants because in this case each SNPs exerts a stronger signal in 

the data (i.e., sharper transmission distortion). Therefore, the overall sample size required for accurate 
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inference (with subsequent down-sampling to consider only informative trios) is a function of both of 

these parameters that act on opposing directions. To assess whether it is realistic to expect that any 

single, strongly deleterious variant segregates at appreciable frequencies in humans, we performed 

simulations with exponential population growth where the final population size is 10,000,000, and 

assumed that the total number of target sites subject to mutations of each selection coefficient is 

1,000,000 for with s = -0.1; 5,000,000 for s = -0.05; and 5,000,000 for s = -0.01 (Methods). In all cases,

we found SNPs segregating at the absolute frequency thresholds required for accurate inference with 

TIDES. Specifically, there were 149 variants with s = -0.1 and  >= 20,000 copies; 27 variants with s = -

0.05 and >= 60,000 copies; and 12 variants with s = -0.01 and >= 200,000 copies (Table 1). In other 

words, this simulation shows that we would expect a few strongly deleterious SNPs to segregate at 

frequencies high enough such that it would be possible to subset a collection of 10,000,000 trios down 

to a sample size where both q ~ 0.5 and we meet the required number of informative trios. We conclude

that there are strongly deleterious variants likely segregating in the population at sufficient frequency to

be analyzed using TIDES in the foreseeable future. With the sample sizes described here, it will already

be possible to use the single-variant model in TIDES to test for strong ongoing selection, which can 

provide valuable biological information for prioritizing particular sites of functional importance (e.g., 

in regulatory regions). 

Table 1. Segregation of strongly deleterious variants in simulations. For each selection coefficient, 
we show the number of target sites simulated, the number of trios required for accurate inference by 
TIDES and the number of SNPs segregating at frequency q ~0.5 (shown as SNP count among parents).

s no. target sites no. trios required SNP freq. threshold no. SNPs  > threshold
-0.1 1,000,000 10,000 20,000 149
-0.05 5,000,000 30,000 60,000 27
-0.01 5,000,000 100,000 200,000 12

Inferring the selection coefficient of single beneficial SNPs
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While strongly deleterious SNPs tend to segregate in very small numbers even in large samples, the 

opposite is true for beneficial variants, which are subject to positive selection. Although the fraction of 

the genome where mutations are expected to be beneficial is considerably smaller than for deleterious 

mutations, there are examples of SNPs putatively under strong positive selection in recent human 

history (Stern, Wilton, and Nielsen 2019; Mathieson 2020). To investigated whether TIDES could be 

used to infer the strength of positive selection acting on single SNPs, we simulated datasets where the 

frequency q of the beneficial allele among parents is ~0.5, and we varied the number of informative 

trios (10,000, 30,000 or 100,000), as well as s (0.01, 0.05 or 0.1) and h (0.5 or 1.0). We opted for 

including fully dominant beneficial alleles in order to explore TIDES’s power in this typically less 

explored (but still plausible) scenario. When performing inference, we flipped the sign of the prior on s 

(log-uniform in the open interval (10-4 ; 100)). As expected, our statistical power is very similar to the 

analogous analysis of negative selection. TIDES is accurate in all scenarios of s = 0.1, whereas it 

requires 30,000 informative trios to have high accuracy when s = 0.05 and does not start to perform 

well until 100,000 trios and dominant selection for s = 0.01 (Figure 5). Since such variants are 

expected to segregate at a range of frequencies on their way to fixation (depending on their age and 

fitness effect), finding the necessary number of informative trios should not require that entire 

populations are sequenced, expediting the application of TIDES to study candidate beneficial SNPs. A 

particularly attractive application of our method will be to test whether variants with a strong signal of 

positive selection in the last few thousand years of human evolution are still under strong selection 

today. Lactase persistence is a canonical example of such recent and strong positive selection, 

(Bersaglieri et al. 2004), with the 13910*T variant segregating at frequencies of ~0.77 and ~0.43 in 

Northern and Southern Europeans, respectively (Liebert et al. 2017). Therefore, a total of ~40,000 

random trios from Northern Europe or ~25,000 random trios from Southern Europe would be required 

to find ~10,000 informative trios in each of these populations. Assuming that the children are old 

enough such that the advantage conferred by the derived allele has had the opportunity to be 
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manifested, with these numbers, it will already be possible to test the hypothesis that the strength of 

(population-specific) ongoing selection is ~0.1 or greater.

Inferring the dominance coefficient

In its pursuit of estimating selection coefficients, population genetics has paid less attention to the 

dominance effect of mutations, often assuming additivity (h = 0.5) (Eyre-Walker, Woolfit, and Phelps 

2006; Boyko et al. 2008; Galtier 2016; Kim, Huber, and Lohmueller 2017; Tataru et al. 2017). But how

mutant and wild-type alleles interact to influence fitness in heterozygous genotypes is crucial for 

understanding the evolutionary fate of alleles as well as their impact on genetic load and individual 

health. While s and h are mutually unidentifiable with SFS data (Huber et al. 2018), modeling the 

transmission of genotype counts in family trios allows us to tease them apart because h directly impacts

the expected number of heterozygous but not homozygous sites in the children (equation 1). When 

inferring posterior distributions for the dominance coefficient using the exome-wide data from the 

simulations described above, we observe similar trends in accuracy as for the selection coefficient: the 

posterior distributions fall near the true values of h in both the strong and moderate selection scenarios, 

but not for weak selection due to the small value of |n * s| since the strength of selection also affects 

our ability to infer h from SNP transmission distortions (Figure 6). On the other hand, estimating the 

dominance coefficient for single variants is more challenging than estimating the selection coefficient 

in terms of the required sample size. For both negative selection (Figure 7) and positive selection 

(Figure 8), posterior distributions of h are too wide when |s| = 0.01 (spanning almost the entire range of

the prior) whereas we need >30,000 informative trios when |s| = 0.1 and >100,000 informative trios 

when |s| = 0.05 for accurate inference.

In addition to inferring posterior distributions for h, we can compare the fit of different models of 

dominance through Bayesian model selection (Csilléry et al. 2010; Csilléry, François, and Blum 2012). 
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To this end, we fitted constrained models to each exome-wide dataset, then computed posterior 

probabilities for each model based on their acceptance rates in the rejection algorithm. We tested 

TIDES’ ability to distinguish between ‘neutral’, ‘additive’ and ‘recessive’ models, all of which carry 

historical meaning in population genetics. In the ‘additive’ and ‘recessive’ models h is fixed to 0.5 and 

0, respectively, and only s is drawn from its prior distribution. In the ‘neutral’ model, s is fixed to 0 and 

any fluctuation in the frequency of SNPs is due to genetic drift alone. To benchmark the accuracy of 

our method in model selection, we ascribed equal prior probabilities to the three models (in ABC, we 

do this by considering the same number of candidate simulations under each model). Using this 

framework, TIDES shows remarkable accuracy in classifying data sets (Figure 9), with posterior 

probabilities of 1.0 being assigned to the correct model in all 20 replicates of the strong selection 

regime. Likewise, posterior probabilities of 1.0 are assigned to ‘recessive’ in all 10 replicates of 

recessive & moderate selection whereas posterior probabilities > 0.9 are assigned to ‘additive’ in all the

10 replicates of additive & moderate selection. As seen above, the weak selection regime is the most 

challenging, where the posterior probabilities are diffuse across the three models in all 20 replicates. 

Here, TIDES often cannot reject a neutral model of evolution, in agreement with sample size being 

insufficient for efficient negative selection. In summary, our model offers high accuracy and precision 

to distinguish between recessive and additive models of selection.

Implementation and software availability

We opted to embed TIDES in an ABC framework because its high flexibility will foster extensions of 

the model in the future. ABC has been employed to study a wide range of complex problems in 

population genetics, where an expression for the likelihood is bypassed by simulating the evolutionary 

process extensively (Beaumont 2019; Csilléry et al. 2010). The idea is to generate data according to 

parameter values drawn from prior distributions and retain those that best approximate the observed 

data, according to a suitable set of summary statistics that reduces the dimensionality of the data. In the 
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Bayesian paradigm, the resulting posterior distributions represent our updated knowledge about the 

parameters of interest. Crucial to the performance of ABC methods is (1) the ability to simulate the 

data-generating process with high fidelity and speed (in order to build a large number of datasets that 

will be used to “train” the model); and (2) access to summary statistics that contain enough information

about the parameters (in order to objectively score the similarity between simulated and observed data).

Up to a limit, the accuracy and precision of ABC methods depend on the total number of simulations 

performed (Beaumont 2019). To optimize our sampling scheme of parameter values, we implemented a

two-step procedure (Algorithm 1 and Algorithm 2): 1) TIDES executes a pilot set of simulations and 

employs the rejection algorithm to generate posterior distributions for s and h; 2) it uses samples from 

such posteriors as empirical priors for a second and larger round of simulations, which is then 

forwarded downstream to perform the final inference in R using regression adjustment techniques 

(Beaumont, Zhang, and Balding 2002; Csilléry, François, and Blum 2012; Blum 2018). This approach 

follows naturally from the Bayesian paradigm, adding information to the prior distributions while 

allowing full parallelization of the parameter draws within each step, and is similar in spirit to 

population Monte Carlo (Cappé et al. 2004; Sisson, Fan, and Tanaka 2007). As a result, TIDES’ speed 

increases almost linearly with the number of computing threads. Naturally, the choice of prior also 

reflects on the accuracy and precision of the posterior distributions. In our simulation study, we used 

uniform, weak priors to assess how much information our model can extract from the data, and in this 

sense our results were somewhat conservative with respect to accuracy. In principle, however, one can 

specify any arbitrary distribution as priors for s and h. A public link to the TIDES software package 

(composed of the simulation engine written in C++ and R scripts for downstream analyses and 

visualization of the results) will be available upon publication.

DISCUSSION:
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Sequence data from family trios offers a new perspective for the inference of natural selection. We have

implemented these ideas into a new statistical model called TIDES, which has several conceptual 

improvements over traditional SFS-based methods. First, the parent-offspring structure grants 

immunity to biases arising from a complex demographic history (Bates et al. 2020). Demography sensu

lato (including population size changes, sub-division and migration) has been shown to be a strong 

confounder in the inference of selection in general (Nielsen et al. 2007; 2009; Williamson et al. 2005), 

and eliminating this effect consists a major enhancement in model design. Second, TIDES does not 

require the specification of putatively neutral variants as a measure of contrast. In SFS-based methods 

these are usually represented by synonymous SNPs, which is sub-optimal because synonymous SNPs 

may be themselves under selection for codon usage (Plotkin and Kudla 2011). Third, we explicitly 

model linkage and selective interference among SNPs, which is particularly relevant in regions of low 

recombination rate. Fourth, TIDES jointly infers the dominance coefficient h. This not only improves 

inference of s by integrating it over a range of dominance values, it also enables directly testing for 

additive vs recessive effects of mutations, a notoriously challenging problem in human population 

genetics because h and s are unidentifiable in the SFS (Huber et al. 2018). Methods to infer strong 

negative selection must rely on the assumption of mutation-selection balance (Haldane 1937; Weghorn 

et al. 2019), hence can only infer the strength of selection against the heterozygote genotype (Cassa et 

al. 2017). Finally, TIDES is notably sensitive to the strength of selection acting on the current 

generation. This is an unique feature of our method that avoids conflating the selective constraint from 

different periods in time into a single estimate. For instance, it is conceivable that human cultural 

evolution (the advent of medicine in particular) may have modulated the selective pressure on several 

genes, and our method captures such updated state of selective constraint. These improvements come at

the cost of targeting inference at the average s rather than a DFE (when using multiple SNPs) and 

requiring sample sizes of the order of tens of thousands of trios. Fortunately, extravagantly large 

genomic datasets are becoming commonplace, and we anticipate that TIDES will make its debut 
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analyzing human data within the next few years. Application to domesticated species will follow, where

breeding and genetic engineering are employed to impose changes along phenotypic gradients. 

There are yet other properties that distinguish TIDES from existing methods. First, because TIDES 

computes summary statistics conditioning on the parental haplotypes, it is able to perform inference in 

biased data sets (e.g., where genetic load is higher than average), whereas existing methods require 

random samples from the population. Second, the type of polymorphism analyzed is not restricted to 

SNPs. It is straightforward to infer the s and h from structural variants such as copy number variation 

and chromosomal inversions, some of which have already been hypothesized to have strong phenotypic

and fitness effects (Alonge et al. 2020; Hämälä et al. 2021). Considering the flexibility that results from

TIDES’ properties put together, we anticipate that within the next few years, it will fundamentally 

change inference of natural selection.

A thought-provoking possibility is that TIDES may open an avenue for experimental evolution in 

multi-cellular organisms with relatively long generation times. Our results suggest that it is possible to 

infer s and h of single SNPs artificially introduced in model organisms (e.g., by CRISPR (Ran et al. 

2013)). By measuring fitness in a large sample but in a single generation (as opposed to small samples 

collected over hundreds of generations, as traditionally done in single-cell organisms), TIDES can be 

used to study fitness effects of mutations (e.g., (Sarkisyan et al. 2016)) in highly constrained genes 

where natural variation is too low for traditional methods to work. Much like sequencing itself, the ease

and cost of genetically-editing model organisms is expected to greatly improve in the upcoming years, 

broadening the range of application of single-generation inference of selection.

Future progress in genomics depends on extracting information from large data sets where assumptions

about the relatedness of individuals (or lack thereof) break down. We have demonstrated that going 
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beyond random samples from a population allows statistical methods to capture signals that are both 

more subtle (e.g., with respect to time-scale) and more robust (requiring fewer assumptions about the 

data-generating process) than the current state-of-the-art. Therefore, we believe that upcoming studies 

should prioritize the inclusion of family trios in their sequencing efforts, since they provide an overall 

richer data structure that can be exploited to infer present-day recombination rates (Halldorsson et al. 

2019), mutation rates (Francioli et al. 2015) and now dominance as well as selection. We hope that as 

the TIDES framework continues to develop, it will also inspire other groups to consider how to 

leverage the future abundance of family trio data to infer other types of selection.

METHODS:

TIDES is a fast simulator of meiosis followed by selection. Here we outline a typical execution with 

default options. For each of n trios, TIDES simulates an array of 150 zygotes. The number of zygotes 

each parent generates is proportional to the number of children they have in the dataset, avoiding bias 

in the presence of siblings. Since meiosis is independent of s and h, the n arrays are pre-constructed and

retained throughout the execution of the program (Figure 1A), substantially improving computational 

performance. TIDES then iteratively 1) draws s and h values from their prior distributions; 2) computes

the fitness of all zygotes and samples one per trio with probability proportional to their fitness (Figure 

1B); 3) computes summary statistics for the batch of “selected” zygotes (Figure 1C, Algorithm 1; note

that sampling one zygote with probability proportional to its fitness is more efficient than sampling one

zygote at random, imposing viability selection, and repeating this process until a zygote survives in 

each trio). Contrasting summary statistics computed from the simulated survivors (Qsim) with those 

computed from the actual children (Qobs) offers an objective approach to inference: values of s and h 

that generate substantial differences between Qsim and Qobs are discarded, while those that best agree are

used to paint posterior distributions for the parameters. In the pilot run, we use an uniform prior (e.g., (-

0.1, 0.6)) for h and a log-uniform (e.g., (-10-5, -10-1)) prior for s, the latter in order to more frequently 
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sample from regions of low selection coefficients that would otherwise not be sufficiently explored by 

an uniform prior.

ABC implementation

Given sufficient summary statistics, the accuracy of ABC converges to that of full likelihood methods 

as the acceptance rate of proposed parameters decreases towards zero (Beaumont 2019). In practice, the

performance of specific ABC methods is limited by the total number of simulations performed by their 

engine (Csilléry et al. 2010). Therefore, motivated by improving computational efficiency, several 

approaches have been developed to sample parameter values from a region of high posterior density 

(Fan and Sisson 2018). These mostly rely on proposing a new set of values conditional on the 

acceptance of previous proposals. Consequently, these approaches complicate parallelization of the 

simulation engine, being of most value when individual simulations are computationally expensive. 

When focusing on the one-generation interval between parents and offspring, however, each individual 

simulation is computationally cheap such that in TIDES we prioritized multi-threading over elaborate 

sampling techniques. After obtaining a reference table of the simulation using TIDES, all downstream 

analyses regarding model selection and parameter inference were performed using a combination of 

packages abc, rethinking, scales, cowplot and tidyverse in R 3.6 (scripts available in the GitHub 

repository).

The algorithms below describe the ABC implementation of TIDES.

Algorithm 1

1) Setting up
Compute summary statistics Qobs for the actual children;
For each trio 1..n, generate 150 zygotes based on parental haplotypes and sex-specific
recombination maps;

2) Pilot simulations
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For each pilot simulation 1..MPILOT:
a. draw s and h from their prior distributions;
b. for each trio 1..n, compute the fitness of zygotes 1..150;
c. for each trio 1..n, sample one zygote with probability proportional to its fitness;
d. compute summary statistics Qsim for the sample on n selected zygotes;

3) Updating priors
Accept a proportion t of the pilot simulations using the standard rejection algorithm based on 
the Euclidean distances between Qobs and each Qsim;
Set the sorted arrays of accepted s and h values as prior distributions for step 4;

4) Final simulations
For each simulation 1..MFINAL:

a. draw s and h from their updated prior distributions using Algorithm 2;
b. for each trio 1..n, compute the fitness of zygotes 1..150;
c. for each trio 1..n, sample one zygote with probability proportional to its fitness;
d. compute summary statistics Qsim on the sample on n selected zygotes;

5) Use TIDES output files as input for abc_adjust.R to paint the posterior distributions of s and 
h using rejection followed by regression adjustment.

Algorithm 2

1) Let w1 be an element drawn uniformly at random from the sorted array of parameter values;

2) If w1 is the first element of the array, let w2 be the next element;
Else if w1 is the last element of the array, let w2 be the previous element;
Else set w1 and w2 as the previous and next elements in the list, respectively;

3) Draw a random number uniformly between w1 and w2.

Simulation study

When benchmarking inference on individual SNPs, genomes for the test datasets were simulated 

trivially within TIDES itself – each of the two haplotypes in each parent received the derived allele 

with 50% probability. Then, when joining females and males in couples, we avoided matches where 

both parents were homozygous for the same allele. When benchmarking inference on a large set of 

candidate SNPs (e.g,, all non-synonymous mutations), the simulation of the test dataset was more 

involved. Parental genomes were generated using SLiM 3.1 (Haller and Messer 2018). The sequences 

were 66.8 Mb in size, approximately the size of the human exonic coordinates obtained with Ensembl 
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annotation in the biomaRt package. Non-synonymous sites were distributed according to exome 

coordinates provided for GRCh38 in Ensembl, after removing overlapping genes. The non-

synonymous mutation rate was set to 6.65e-09 per site per generation and we used sex-specific 

recombination maps from deCODE (Halldorsson et al. 2019). The non-synonymous mutation rate is in 

the low end of the spectrum commonly adopted, meaning that our simulations are conservative with 

respect to the amount of standing deleterious diversity and therefore our simulation study is likewise 

conservative with respect to statistical power. The demography of the sample approximated the 

demography of Europeans (Gravel et al. 2011), where we omitted African populations for 

computational efficiency as well as increased the number of generations from 58,000 to 58,300 so that 

~60,000 diploid individuals are sampled in present time. To allow reproducibility, we set the random 

seed of simulations in each evolutionary scenario to its corresponding replicate number (1-10). All 

scripts necessary to reproduce the above procedures will be found in the GitHub repository upon 

publication.

To follow the human demographic model precisely and generate a realistic and predictable amount of

standing genetic variation, the simulations above were carried out under the Wright-Fisher model that

uses relative fitness among individuals and where selection occurs in the mating stage of the life cycle.

Because we focused on viability selection, we had SLiM output genomes from the parental generation

exclusively. These were then input in TIDES where they underwent viability selection followed by

random pairing of females and males, reproduction, and finally viability selection was imposed on the

resulting embryos.  These trios became the “observed” data  in each of our simulated scenarios.  To

ensure that in all scenarios exactly 50,000 children are available after viability selection in the embryos

(i.e., so we can directly relate statistical power to sample size), we over-shot and generated 10 embryos

per couple, subsequently down-sampling the number of surviving children to 50,000 at random. Since

for some couples more than one child survives this process, our simulated data sets naturally contain
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siblings. Viability selection was executed according to the description in the SLiM manual (individuals

where deleted if their fitness was smaller than a uniform random number between 0 and 1) and using

the same s and h values as in the Wright-Fisher step of the simulation, except for simulated data sets

where the purpose was to test sensitivity to recent changes in s (Figure 3b). For the data sets where the

selection coefficient of each mutation follows a DFE, this information was extracted from the VCF

files output by SLiM and the fitness of each individual was computed using its exact genotype-fitness

map. In summary, the simulated trios experienced a Wright-Fisher human demographic model with

mating  selection,  followed by non-Wright-Fisher  dynamics  with  viability  selection  in  the  last  two

generations.

For  the  simulations  to  assess  the  frequency  of  strongly  deleterious  variants  segregating  in  the

population (Table 1), we used a simpler demographic model where the population size is constant at

10,000  individuals  for  57,000  generations  and  then  grows  for  1,000  generations  until  it  reaches

10,000,000. In these simulations, the number of target sites is 1,000,000 (for s = -0.1); 5,000,000 (for s

= -0.05); and 5,000,000 (for s = -0.01), with a constant recombination rate of 10-3 between each pair of

sites in order to partially mimic their dispersion across the genome. Simulations to benchmark single-

SNP inference were conducted within TIDES itself by assigning the derived allele to each parental

haplotype according to a Bernoulli trial with p = 0.5. When performing inference on (single) beneficial

SNPs,  we subtracted 0.2 from the fitness of each individual throughout the ABC simulations to prevent

individuals from having survival probabilities > 1.

In our simulation study  of human-like exons, we omitted  de novo  mutations  (in the last generation)

from our  test  data  in  order  to  focus  on  the  reduction  of  deleterious  variation  caused by negative

selection  between  parents  and  offspring.  However,  we  provide  two  options  for  TIDES  users  to

accommodate de novo mutations in real data sets. First, one can specify the total number of sites that
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can be targeted by deleterious mutations (L) as well as the mutation rate per site per generation among

these  sites  (μ).  In  this  case,  SNPs are added to each simulated  zygote with  Poisson rate  equal  to

L×μ . In case the user-specified rate is zero (its default value), de novo mutations are identified as

those absent from parents but present in children, from which they are removed. These options are

presented in the test run that can be found in TIDES  GitHub page, which will become public upon

acceptance of the manuscript.
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Figure 1: Schematic representation of TIDES. A: Observed family trios (black outline) together with 
the zygotes generated from parental haplotypes (gray outline). B: Illustration of the TIDES simulation 
engine for two draws from the prior distribution of s and h representing strong (blue) and weak (red) 
values of selection. The middle row shows the computation of zygotic fitness and natural selection. C: 
Comparison between the observed summary statistics (green) and the summary statistics from the 
simulations using the selection parameters from the prior distribution (red and blue). The left panel 
shows the comparison of the number of homozygous genotypes (ΔHOMO ) and the right panel shows the 
comparison for the number of heterozygous genotypes (ΔHET).
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Figure 2: Inference of s from a genome-wide set of deleterious SNPs for different strengths of 
selection and dominance effects. Each scenario includes the estimates from 10 simulated datasets. True 
values are shown as black horizontal segments, with medians of the inferred posterior distributions 
denoted by gray circles and their 95% credible intervals by gray vertical lines. Y-axis in log10 scale, all 
values in absolute numbers. Here 50,000 trios are used.
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Figure 3: Inference s from a genome-wide set of deleterious SNPs under more complex models of 
selection. Each scenario includes the estimates from 10 simulated datasets. Left panel shows the results
when the true DFE follows a gamma distribution (mean value of s shown by black horizontal line). The
right panel shows the case where there was a 10-fold reduction in the selection coefficient. Ancient and 
current values of s shown by dashed and solid horizontal lines, respectively. Medians of the inferred 
posterior distributions denoted by gray circles and their 95% credible intervals by gray vertical lines. Y-
axis in log10 scale, all values in absolute numbers. Here 50,000 trios are used.
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Figure 4: Inference of s for a single deleterious SNP with different dominance effects. Each scenario 
includes the estimates from 10 simulated datasets. Columns show different values of the true selection 
coefficient, and rows show different sample sizes, in terms of the number of trios used. True values are 
shown as black horizontal segments, with medians of the inferred posterior distributions denoted by 
gray shapes and their 95% credible intervals by gray vertical lines. Y-axis in log10 scale, all values in 
absolute numbers.
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Figure 5: Inference of s from a single beneficial SNP with different dominance effects. Each scenario 
includes the estimates from 10 simulated datasets. Columns show different values of the true selection 
coefficient, and rows show different sample sizes, in terms of the number of trios used. True values are 
shown as black horizontal segments, with medians of the inferred posterior distributions denoted by 
gray shapes and their 95% credible intervals by gray vertical lines. Y-axis in log10 scale.
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Figure 6: Inference of h from a genome-wide set of deleterious SNPs for different strengths of 
selection and dominance effects. Each scenario includes the estimates from 10 simulated datasets. True 
values are shown as black horizontal segments, with medians of the inferred posterior distributions 
denoted by gray circles and their 95% credible intervals by gray vertical lines. Each scenario includes 
50,000 trios.
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Figure 7:  Inference of h from a single deleterious SNP with different dominance effects. Each scenario
includes the estimates from 10 simulated datasets. Columns show different values of the true selection 
coefficient, and rows show different sample sizes, in terms of the number of trios used. True values are 
shown as black horizontal segments, with medians of the inferred posterior distributions denoted by 
gray shapes and their 95% credible intervals by gray vertical lines.
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Figure 8: Inference of h from a single beneficial SNP with different dominance effects. Each scenario 
includes the estimates from 10 simulated datasets. Columns show different values of the true selection 
coefficient, and rows show different sample sizes, in terms of the number of trios used. True values are 
shown as black horizontal segments, with medians of the inferred posterior distributions denoted by 
gray shapes and their 95% credible intervals by gray vertical lines.
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Figure 9: TIDES can accurately distinguish among neutral, recessive, additive models of selection. 
True models are shown above each simplex. Coordinates along each axis denote posterior probabilities 
assigned to the respective model. Color of each tile represents the proportion of simulations that fall 
within that probability bin (scale shown in far right).
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Figure S1: Posterior distributions of s under neutrality. Each color represents the posterior density 
inferred from one of 10 replicate scenarios. Here 50,000 trios are used.
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