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 2

Resistance to amikacin in Gram-negatives is usually mediated by the 6'-N-32 

acetyltransferase type Ib [AAC(6')-Ib], which catalyzes the transfer of an acetyl group 33 

from acetyl CoA to the 6' position of the antibiotic molecule. A path to continue the 34 

effective use of amikacin against resistant infections is to combine it with inhibitors of 35 

the inactivating reaction. We have recently observed that addition of Zn2+ to in-vitro 36 

enzymatic reactions, obliterates acetylation of the acceptor antibiotic. Furthermore, 37 

when added to amikacin-containing culture medium in complex to ionophores such as 38 

pyrithione (ZnPT), it prevents the growth of resistant strains. An undesired property of 39 

ZnPT is its poor water-solubility, a problem that currently affects a large percentage of 40 

newly designed drugs. Water-solubility helps drugs to dissolve in body fluids and be 41 

transported to the target location. We tested a pyrithione derivative described previously 42 

(Magda et al. Cancer Res. 2008, 68:5318-5325) that contains the amphoteric group 43 

di(ethyleneglycol)-methyl ether at position 5 (compound 5002), a modification that 44 

enhances the solubility. Compound 5002 in complex with zinc (Zn5002) was tested to 45 

assess growth inhibition of amikacin-resistant Acinetobacter baumannii and Klebsiella 46 

pneumoniae strains in the presence of the antibiotic. Zn5002 complexes in combination 47 

with amikacin at different concentrations completely inhibited growth of the tested 48 

strains. However, the concentrations needed to achieve growth inhibition were higher 49 

than those required to achieve the same results using ZnPT. Time-kill assays showed 50 

that the effect of the combination amikacin/Zn5002 was bactericidal. These results 51 

indicate that derivatives of pyrithione with enhanced water-solubility, a property that 52 

would make them drugs with better bioavailability and absorption, are a viable option for 53 

designing inhibitors of the resistance to amikacin mediated by AAC(6')-Ib, an enzyme 54 

commonly found in the clinics.55 
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Introduction 56 

Water-solubility helps drugs dissolve in body fluids and be transported to the target 57 

location 1. Unfortunately, about half of the chemical compounds identified as potential 58 

new medicines are poorly soluble in water 2,3. Currently, many efforts and techniques 59 

focus on enhancing the water-solubility of lead compounds, which illustrates this 60 

property's importance for pharmacological tools 1-7.  61 

Studies to isolate inhibitors of aminoglycoside-modifying enzymes, in particular the 62 

aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib], a widely distributed enzyme 63 

that specifies resistance to the semisynthetic amikacin 8-10, showed that Zn2+ complexed 64 

to pyrithione (ZnPT) (Fig. 1) counter the action of AAC(6′)-Ib in bacterial cells in culture 65 

11,12. Consequently, combinations amikacin/ZnPT produced a substantial reduction in 66 

the minimal inhibitory concentration of amikacin of AAC(6′)-Ib-containing Acinetobacter 67 

baumannii, Escherichia coli, Enterobacter cloacae, and Klebsiella pneumoniae isolates 68 

11-14. However, complexes formed between pyrithione and divalent metal cations, which 69 

occur through the oxygen and sulfur atoms, have very low solubility in aqueous 70 

solvents, impairing bioavailability 15. To deal with this limitation, Magda et al. designed 71 

pyrithione derivatives with substitutions at position 5 to enhance their solubility in 72 

aqueous solvents 7. Here, we show that a complex formed between a water-soluble 73 

pyrithione derivative, compound 5002, and Zn2+ (Zn5002) (Fig. 1) exhibits amikacin 74 

resistance inhibitory properties similar, albeit not as robust, to those observed when 75 

testing ZnPT.  76 
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Results 78 

The addition of Zn2+ to reaction mixtures containing AAC(6′)-Ib and aminoglycosides 79 

known to be substrates for this enzyme exerts a strong inhibition effect of the antibiotic’s 80 

acetylation 12. However, inhibition of resistance in cells in culture requires very high 81 

concentrations of zinc salts in the culture medium. The concentrations of zinc ions 82 

required to reverse resistance can be drastically reduced supplementing the growth 83 

medium with the complex ZnPT 11,12. An inconvenience to develop ZnPT as an adjuvant 84 

to aminoglycosides to treat resistant bacteria is its poor solubility in water. Previous 85 

work by Magda et al. showed that substituting the hydrogen at position 5 of pyrithione 86 

by some amphoteric chemical groups results in derivatives with higher water-solubility 87 

that can still diffuse across the membrane 7. We synthesized compound 5002, in which 88 

the hydrogen at position 5 is replaced by di(ethyleneglycol)-methyl ether group (Fig. 1). 89 

This compound was complexed to Zn2+ (Zn5002) and tested as a potentiator to 90 

amikacin to overcome resistance in AAC(6′)-Ib-carrying A. baumannii, and K. 91 

pneumoniae cells.  92 

All four strains tested were cultured in the presence of amikacin, the ionophore-zinc 93 

complex, or a combination of both compounds at different concentrations. Fig. 2 shows 94 

the growth curves corresponding to the combinations that include the minimum possible 95 

concentration of each component to inhibit growth completely. The figure also shows 96 

that when none or only one of the components was used to supplement the Mueller-97 

Hinton broth there was healthy bacterial growth. Although the concentrations required to 98 

inhibit growth vary from strain to strain, there was an appropriate combination in all 99 

cases such that the individual components did not impede growth. It can also be noted 100 
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that the ZnPT concentration necessary to overcome the resistance to amikacin is 101 

consistently lower than that of Zn5002.  102 

The results obtained in the experiments described above indicate that the complex 103 

Zn5002, as we showed before for ZnPT, is responsible for the phenotypic conversion to 104 

amikacin susceptibility in bacterial pathogens harboring the resistance enzyme AAC(6′)-105 

Ib. However, these experiments did not inform about the bactericidal or bacteriostatic 106 

effect of the combination. Therefore, we carried out time-kill assays to confirm that the 107 

inhibition of growth observed in the presence of Zn5002 and the antibiotic is due to a 108 

bactericidal effect. For comparison, we carried out another series of assays using 109 

amikacin and ZnPT. Fig. 3 shows that the addition of amikacin and Zn5002 or ZnPT is 110 

followed by rapid loss of bacterial cell viability. Conversely, addition of amikacin or zinc-111 

ionophore alone did not result in cell death. These assays showed that amikacin has a 112 

robust bactericidal activity on the AAC(6′)-Ib-carrying A. baumannii A144, A155, 113 

A118(pJHCMW1), and K. pneumoniae JHCK1 strains when administered in 114 

combination with the complexes.   115 
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Discussion 117 

Water-solubility is a desirable characteristic of drugs for enhanced bioavailability 2,3. 118 

Various routes of administration, such as oral or parenteral, depend on the drug water 119 

solubility to be viable options 5,16. Drugs that readily dissolve in the aqueous body fluids 120 

are more efficient in reaching the desired concentrations, being transported to, and 121 

reaching their target 1. These characteristics make them therapeutically effective without 122 

the need to use high doses that could be the cause of secondary effects 1. Conversely, 123 

low water-solubility is the cause of failure of numerous drug candidates 1.  124 

Amikacin is an aminoglycoside most commonly administered intravenously and 125 

intramuscularly, yet other routes are also utilized, such as intrathecal, intraventricular, 126 

topical, and inhaled 8,17,18. In our quest to identify compounds that inhibit the AAC(6′)-Ib 127 

amikacin-disabling action, we recently found that various cations effectively interfere 128 

with the enzymatic inactivation 11,12,19-21. In the case of Zn2+, the concentrations needed 129 

to inhibit growth of amikacin-resistant cells in the presence of the antibiotic are 130 

significantly reduced if the cation is added to the growth media in complex with 131 

ionophores 11-13,20-22. A very effective complex to reduce amikacin resistance levels in 132 

various bacteria is ZnPT, a compound already being researched and repurposed for 133 

cancer treatments and that has low toxicity when tested on mice 23,24. However, a 134 

drawback is its poor solubility in aqueous media and low bioavailability 7,25. Addition of 135 

an amphoteric group, di(ethyleneglycol)-methyl ether, to position 5 of pyrithione 136 

(compound 5002) enhances the chemical’s solubility in water without increasing toxicity 137 

(Fig. 1) 7. A comparison of the complexes Zn5002 and ZnPT showed that both 138 

compounds act as adjuvants to amikacin. The addition of Zn5002 plus amikacin to the 139 
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nutrient medium inhibits growth and has a bactericidal effect. The active concentrations 140 

of the components, amikacin and Zn-ionophore complex, varied from strain to strain. 141 

This characteristic can be due to aac(6′)-Ib gene dosage or other mechanisms or 142 

properties that may help the resistance, such as efflux pumps or low permeability. 143 

Inspection of the results indicates that the active concentrations of Zn5002 were 144 

consistently higher than those of ZnPT, suggesting that a reduction in activity 145 

accompanied the gain in solubility in aqueous solutions. However, the fact that a highly 146 

water-soluble derivative of ZnPT conserved the activity indicates that further research 147 

will permit us to design other robust adjuvants with high water-solubility. Those 148 

compounds will be strong potentiators to aminoglycosides to overcome resistance. 149 

 150 
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Methods 152 

Bacterial strains 153 

The bacterial strains used in this study were A. baumannii A155 26, A144 27, and 154 

A118(pJHCMW1) 28, and K. pneumoniae JHCK1 29. A. baumannii A155 and A144 are 155 

multidrug-resistant and include aac(6′)-Ib in their genomes 26,27. A. baumannii A118 is a 156 

blood isolate characterized for being susceptible to most antibiotics 28. This strain was 157 

transformed with pJHCMW1, a plasmid that carries aac(6′)-Ib 30. K. pneumoniae JHCK1 158 

is a multidrug-resistant isolate from cerebrospinal fluid of a neonate with meningitis 31.  159 

General procedures 160 

Routine bacterial cultures were carried out in L broth (Lennox, 1% tryptone, 0.5% 161 

yeast extract, 0.5% NaCl), with the addition of 2% agar for plates. was tested 162 

inoculating 100-μl Mueller-Hinton broth in microtiter plates with the specified additions 163 

using the BioTek Synergy 5 microplate reader 164 

Inhibition of growth was determined by inoculating Mueller-Hinton broth (100-μl) 165 

containing the indicated additions. The microtiter plates were incubated with shaking at 166 

37°C in a BioTek Synergy 5 microplate reader as previously described 20. The cultures' 167 

optical density values at 600 nm (OD600) were determined at regular intervals. ZnPT 168 

was purchased from MilliporeSigma, and Zn5002 was synthesized and purified to 169 

97.87% by BioSynthesis Inc. All cultures to determine the action of zinc-ionophore 170 

complexes inhibition of resistance to amikacin or bactericidal effect included 0.5% 171 

dimethylsulfoxide (MilliporeSigma). Time-kill assays were performed as before 20. 172 

Briefly, cells were cultured in Mueller-Hinton broth until they reached 106 CFU/ml. At this 173 
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time, the compounds to be tested were added, and the cultures were continued at 37°C 174 

with shaking. The number of cells was determined by taking aliquots after 0, 4, 8, 20, 175 

and 32 h.  176 
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Data availability 178 

Bacterial strains used in this work are available upon request. 179 
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Legends to Figures 304 

 305 

Figure 1. Zn5002 and ZnPT complexes chemical structures. Chemical structures of 306 

ZnPT (upper) and Zn5002 (lower). 307 

 308 

Figure 2. Effect of Zn5002 and ZnPT complexes on resistance to amikacin. 309 

A. baumannii A155, A144, A118(pJHCMW1), K. pneumoniae JHCK1, or E. coli 310 

TOP10(pNW1) were cultured in 100 μl Mueller-Hinton broth in microtiter plates at 37°C 311 

with the additions indicated to the right of each panel, and the OD600 was periodically 312 

measured. All cultures contained 0.5 % DMSO. AMK, amikacin. 313 

 314 

Figure 3. Time-kill assay curves for amikacin in the presence of Zn5002 and ZnPT. 315 

A. baumannii A155, A144, A118(pJHCMW1), K. pneumoniae JHCK1, or E. coli 316 

TOP10(pNW1) were cultured in 100 μl Mueller-Hinton containing 0.5% DMSO until they 317 

reach 106 CFU/ml. At this moment the cultures were supplemented with the additions 318 

indicated to the right of each panel, the cultures were continued at 37°C with shaking 319 

and samples were removed periodically to determine CFU/ml. AMK, amikacin. 320 

 321 
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