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16 Abstract
17 A virus-infected cell triggers a signalling cascade resulting in the secretion of interferons (IFNs), which 

18 in turn induce the up-regulation of IFN-stimulated genes (ISGs) that play an important role in the 

19 inhibition of the viral infection and the return to cellular homeostasis. Here, we conduct detailed 

20 analyses on 7443 features relating to evolutionary conservation, nucleotide composition, gene 

21 expression, amino acid composition, and network properties to elucidate factors associated with the 

22 stimulation of genes in response to type I IFNs. Our results show that ISGs are less evolutionary 

23 conserved than genes that are not significantly stimulated in IFN experiments (non-ISGs). ISGs show 

24 significant depletion of GC-content in the coding region of their canonical transcripts, which leads to 

25 under-representation in the nucleotide compositions. Differences between ISGs and non-ISGs are also 

26 reflected in the properties of their coded amino acid sequence compositions. Network analyses show 

27 that ISG products tend to be involved in key paths but are away from hubs or bottlenecks of the human 

28 protein-protein interaction (PPI) network. Our analyses also show that interferon-repressed human 

29 genes (IRGs), which are down-regulated in the presence of IFNs, can have similar properties to ISGs, 

30 thus leading to false positives in ISG predictions. Based on these analyses, we design a machine 

31 learning framework integrating the usage of support vector machine (SVM) and feature selection 

32 algorithms. The ISG prediction achieves an area under the receiver operating characteristic curve 

33 (AUC) of 0.7455 and demonstrates the similarity between ISGs triggered by type I and III IFNs. Our 

34 machine learning model predicts a number of genes as potential ISGs that so far have shown no 

35 significant differential expression when stimulated with IFN in the cell types and tissue types compiled 

36 in the available IFN-related databases. A webserver implementing our method is accessible at 

37 http://isgpre.cvr.gla.ac.uk/.

38

39

40 Author summary
41 Interferons (IFNs) are signalling proteins secreted from host cells. IFN-triggered signalling activates 

42 the host immune system in response to intra-cellular infection. It results in the stimulation of many 

43 genes that have anti-pathogen roles in host defenses. Interferon-stimulated genes (ISGs) have unique 

44 properties that make them different from those not significantly up-regulated in response to IFNs (non-

45 ISGs). We find the down-regulated interferon-repressed genes (IRGs) have some shared properties 

46 with ISGs. This increases the difficulty of distinguishing ISGs from non-ISGs. The use of machine 

47 learning is a sensible strategy to provide high throughput classifications of putative ISGs, for 

48 investigation with in vivo or in vitro experiments. Machine learning can also be applied to human genes 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


2

49 for which there are insufficient expression levels before and after IFN treatment in various experiments. 

50 Additionally, the interferon type has some impact on ISG predictability. We expect that our study will 

51 provide new insight into better understanding the inherent characteristics of human genes that are 

52 related to response in the presence of IFNs.

53  

54 Introduction
55 Interferons (IFNs) are a family of cytokines originally defined for their capacity to interfere with viral 

56 replication. They are secreted from host cells after an infection by pathogens such as bacteria or viruses 

57 to trigger the innate immune response with the aim of inhibiting viral spread by ‘warning’ uninfected 

58 cells [1]. The response induced by IFNs is usually fast and feedforward, especially to synthesize new 

59 IFNs, which guarantees a full response even if the initial activation is limited [2]. In humans, seven 

60 IFNs have been discovered and grouped into three types based on distinct receptors on the cell surface, 

61 i.e., IFN-α receptor (IFNAR), IFN-γ receptor (IFNGR), and IFN-λ receptor 1 (IFNLR1)/interleukin-

62 10 receptor 2 (IL-10R2) in the signalling cascade (Fig 1) [3]. Type I and III IFNs both help to regulate 

63 and activate host immune response, but the function of the latter group is less intense than the former 

64 [4-6]. Type II IFNs are also anti-pathogen, immunomodulatory, and proinflammatory but focus on 

65 establishing cell immunity [5, 7, 8]. All three types of IFNs are capable of activating the Janus 

66 kinase/signal transducer and activator of transcription (JAK-STAT) pathway and inducing the 

67 transcriptional up-regulation of approximately 10% of human genes that prime cells for stronger 

68 pathogen detections and defenses [9-11]. Henceforth, these up-regulated human genes are referred to 

69 as IFN-stimulated genes (ISGs). They play an important role in the establishment of cellular antiviral 

70 state, the inhibition of viral infection and the return to cellular homeostasis [8-10, 12]. For example, 

71 the ectopic expression of ISG: heparinase (HPSE) can inhibits the attachment of multiple viruses [13, 

72 14]; interferon induced transmembrane proteins (IFITM) can impair the entry of multiple viruses and 

73 traffic viral particles to degradative lysosomes [15, 16]; MX dynamin like GTPase proteins (MX) can 

74 effectively block early steps of multiple viral replication cycles [17]. The qualitative nature of ISGs is 

75 determined by the balance between the activation of signal transducers and activators of transcription 

76 (STAT) and IFN-stimulated gene factor 3 complex (ISGF3)/IFN-γ activation factor (GAF) (Fig 1) 

77 [18]. Abnormality in the IFN-signalling cascade, e.g., the absence of signal transducer and activator 

78 of transcription 1 (STAT1) will lead to the failure of activating ISGs, making the host cell highly 

79 susceptible to virus infections [19]. 

80
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81
82 Fig 1. Illustration of signalling cascade triggered by different IFNs. In (A), type I IFN signals 

83 through IFNAR, Janus kinase 1 (JAK1), tyrosine kinase 2 (TYK2), STAT, and IFN-regulatory factor 

84 9 (IRF9) to form ISGF3, and then bind to IFN-stimulated response elements (ISRE) to induce the 

85 expression of type I ISGs. In (B), type II IFN signals through IFNGR, JAK1 and JAK2 to form GAF 

86 and then bind to gamma-activated sequence promoter elements (GAS) to induce the expression of type 

87 II ISGs. In (C), type III IFN signals through IFNLR1, IL-10R2, JAK1, TYK2, STAT, and IRF9 to 

88 form ISGF3, and then bind to ISRE to induce the expression of type III ISGs. Figure created using the 

89 BioRender (https://biorender.com/). Abbreviations: IFNs, interferons; IFNAR, IFN-α receptor; ISGF3, 

90 IFN-stimulated gene factor 3 complex; ISGs, interferon-stimulated human genes; IFNGR, IFN-γ 

91 receptor; GAF, IFN-γ activation factor; IFNLR1, IFN-λ receptor 1; IL-10R2, interleukin-10 receptor 

92 2; STAT, signal transducers and activators of transcription.

93

94 Most research on ISGs has focused on elucidating the role of ISGs in antiviral activities or 

95 discovering new ISGs within or across species [8-10, 15, 20, 21]. The identification of ISGs can be 

96 achieved via various approaches. Associating gene expression with suppression of viral infection is a 

97 good strategy to identify ISGs with obvious antiviral performance, exemplified by the influenza 

98 inhibitor, MX dynamin like GTPase 1 (MX1), and the human immunodeficiency virus 1 inhibitor, MX 

99 dynamin like GTPase 2 (MX2) [17]. CRISPR screening is a loss-of-function experimental approach 

100 to identify ISGs required for IFN-mediated inhibition to viruses, e.g., it enabled the discovery of 

101 tripartite motif containing 5 (TRIM5), MX2 and bone marrow stromal cell antigen 2 (BST2) [22]. 

102 Monitoring the ectopic expression of ISGs is an instrumental way to find some ISGs that are 

103 individually sufficient for viral suppression, e.g. interferon stimulated exonuclease gene 20 (ISG20) 
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104 and ISG15 ubiquitin like modifier (ISG15) [23]. Using fold change-based criterion to measure whether 

105 a target human gene is induced by IFN signalling now has become a well-accepted idea, but the 

106 upregulation cut-off may vary in different studies [21, 24, 25]. The online database, Interferome 

107 (http://www.interferome.org), provides an excellent resource by compiling in vivo and in vitro gene 

108 expression profiles in the context of IFN stimulation [21]. The Orthologous Clusters of Interferon-

109 stimulated Genes (OCISG, http://isg.data.cvr.ac.uk) provides an evolutionary comparative approach 

110 of genes differentially expressed in the type I IFN system for ten different species [8]. The later study 

111 employed a standardised experimental protocol of fibroblast cells stimulated by type I IFN. 

112 Although these studies contribute to a better understanding and detection of ISGs, the 

113 knowledge they compiled was limited to a specific IFN type in specific organs, tissues or cells [2]. 

114 Despite some well-investigated ISGs, the majority of classified ISGs have limitedly expression 

115 following IFN stimulations [8, 21], which means the difference between ISGs and those human genes 

116 not significantly up-regulated in the presence of IFNs (non-ISGs) may not be obvious especially when 

117 being assessed more generally. It should also be noted that, within non-ISGs, there are a group of genes 

118 down-regulated during IFN stimulations. Here, we refer to them as interferon-repressed human genes 

119 (IRGs) and they constitute another major part of the IFN regulation system [8, 26]. Collectively, the 

120 complex nature of the IFN-stimulated system results in knowledge that is far from comprehensive.

121 Hence, we seek to characterise the properties of ISGs and to determine whether genes can be 

122 identified as ISGs using an in-silico machine learning approach. We choose experimental data from 

123 human fibroblast cells as the baseline and focus on human genes stimulated by the type I IFNs. We 

124 construct a refined high-confidence dataset consisting of 620 ISGs and 874 non-ISGs by cross-

125 checking the genes across multiple databases including the OCISG [8], Interferome [21], and 

126 Reference Sequence (RefSeq) [27]. The analyses are conducted primarily on our refined data using 

127 genome- and proteome-based features that are likely to influence the expression of human genes in the 

128 presence of type I IFNs. Then based on the calculated features, we design a machine learning 

129 framework with an optimised feature selection strategy for the prediction of putative ISGs in different 

130 IFN systems. Finally, we also develop an online webserver that implements our machine learning 

131 method at http://isgpre.cvr.gla.ac.uk/.

132

133
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134 Methods
135 Dataset preparation

136 In this study, we retrieve 2054 ISGs (Log2(Fold Change)>2), 12379 non-ISGs (Log2(Fold Change) 

137 <1), and 3944 human genes with low expression levels in IFN experiments (ELGs, expression-limited 

138 genes with less than 1 count per million reads mapping across the three biological replicates [28, 29]) 

139 from the OCISG (http://isg.data.cvr.ac.uk/) [8]. Gene clusters in the OCISG are built by using the 

140 Ensembl Compara database [30], which provides a thorough account of gene orthology based on whole 

141 genomes available in the Ensembl database [31]. Labels of these human genes are defined based on 

142 the fold change (before and after IFN treatments) and a false discovery rate following IFN treatments 

143 in human fibroblast cells. We search the collected 18377 entries against the RefSeq database 

144 (https://www.ncbi.nlm.nih.gov/refseq/) [27] to decipher features based on appropriate transcripts 

145 (canonical) [32] coding for the main functional isoforms of these human genes, obtaining 1315, 7304, 

146 and 2217 results for ISGs, non-ISGs and ELGs, respectively. These 10836 human genes are well-

147 annotated by multiple online databases and are used as the background set (i.e., dataset S1) in the 

148 analyses. 

149 For the purpose of generating a set of human genes with high confidence of being interferon-

150 up-regulated and non-up-regulated in response to the type I IFNs, we search labelled human genes 

151 against the Interferome database (http://www.interferome.org/) [21]. We filter out ISGs without high 

152 up-regulation (Log2(Fold Change) > 1.0) or with obvious down-regulation (Log2(Fold Change) < -1.0) 

153 in the presence of type I IFNs. This procedure guarantees a refined ISGs dataset with strong levels of 

154 stimulation induced by type I IFNs and reduces biases driven by IRGs for the analyses and predictions. 

155 We filter out non-ISGs showing enhanced expression after type I IFN treatments (Log2(Fold Change) 

156 > 0). The exclusion of these non-ISGs can effectively reduce the risk of involving false negatives in 

157 analyses and producing false positives in predictions. As a result, the refined dataset S2 contains 620 

158 ISGs and 874 non-ISGs with relatively high confidence. 

159 The training procedure in the machine learning framework is conducted on a balanced dataset: 

160 S2’ consisted of 992 randomly selected ISGs and non-ISGs from dataset S2. The remaining human 

161 genes in S2 are used for independent testing. Additionally, we also construct another six testing 

162 datasets for the purpose of review and assessment. Dataset S3 contains 695 ISGs with low confidence 

163 compared to those ISGs in dataset S2. Some of them could be IRGs in the type I IFN system. Dataset 

164 S4 contains 1006 IRGs from the human fibroblast cell experiments. Dataset S5, S6, and S7 are 

165 constructed based on records for experiments in type I, II, and III IFN systems from the Interferome 

166 database [21]. The criterion for an ISG in the latter three datasets is a high level of up-regulation 
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167 (Log2(Fold Change) > 1.0) while that for non-ISGs is no up-regulation after IFN treatments (Log2(Fold 

168 Change) < 0). The last testing dataset S8 is derived from our background dataset S1, containing 2217 

169 ELGs. A breakdown of the aforementioned eight datasets is shown in Table 1. Detailed information 

170 of the human genes used in this study is provided in S1 Data.

171

172 Table 1.  A breakdown of datasets used in this study.

Dataset Brief description IFN system ISGs Non-ISGs ELGs

S1 Well-annotated human genes Type I in fibroblast cells 1315 7304 2217

S2 Refined dataset with high confidence Type I in fibroblast cells 620 874 0

S2’ Training subset of S2 Type I in fibroblast cells 496 496 0

S2’’ Testing subset of S2 Type I in fibroblast cells 124 378 0

S3 ISGs with low confidence in S1 Type I in fibroblast cells 695 0 0

S4 IRGs divided from S1 Type I in fibroblast cells 0 1006 0

S5 ISGs from the Interferome database [21] Type I in all cells 1259 872 0

S6 ISGs from the Interferome database [21] Type II in all cells 2229 755 0

S7 ISGs from the Interferome database [21] Type III in all cells 33 1683 0

S8 ELGs divided from S1 Type I in fibroblast cells 0 0 2217

173 Abbreviations: ISGs, interferon-stimulated human genes; non-ISGs, human genes not significantly up-regulated by interferons; IRGs, 

174 interferon-repressed human genes, ELGs, human genes with limited expression in interferon experiments. 

175

176 Generation of parametric features

177 We encode 397 parametric features from aspects of evolution, nucleotide composition, transcription, 

178 amino acid composition, and network preference. From the perspective of evolution, we use the 

179 number of transcripts and open reading frames (ORFs) to reflect alternative splicing diversity and gene 

180 polymorphism respectively. Genes with more transcripts and ORFs have higher alternative splicing 

181 diversity and polymorphism to produce proteins with similar or different biological functions [33, 34]. 

182 We use the number of protein-coding exons in the canonical transcripts to reflect the complexity of 

183 the alternative splicing [35]. Genes with more protein-coding exons in their canonical transcripts are 

184 considered to produce more complex alternative splicing products [36]. Here, duplication and mutation 

185 features are measured by the number of within species paralogues and substitutions [37, 38]. These 

186 data are collected from the BioMart [31] to assess the selection on protein sequences and mutational 

187 processes affecting the human genome [39]. 

188 From the perspective of nucleotide composition, we calculate the percent of adenine, thymine, 

189 cytosine, guanine, and their four-category combinations in the coding region of the canonical transcript. 

190 The first category measures the proportion of two different nitrogenous bases out of the implied four 
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191 bases, e.g., GC-content. The second category also focuses on the combination of two nucleotides but 

192 involves the impact of phosphodiester bonds along the 5’ to 3’ direction, e.g., CpG-content [40]. The 

193 third category calculates the occurrence frequency of 4-mers, e.g., ‘CGCG’ composition to involve 

194 some positional resolution [41]. The last category considers the co-occurrence of some short linear 

195 motifs (SLims) in the complementary DNA (SLim_DNAs). From the perspective of transcription, we 

196 calculate the usage of 61 coding codons and three stop codons in the coding region of the canonical 

197 transcripts. Codon usage biases are observed when there are multiple codons available for coding one 

198 specific amino acid. They can affect the dynamics of translation thus regulate the efficiency of 

199 translation and even the folding of the proteins [42, 43]. 

200 From the perspective of amino acid composition, we calculate the percentage of 20 standard 

201 amino acids and their combinations based on their physicochemical properties [44]. Patterns in the 

202 amino acid level are considered to have a direct impact on the establishment of biological functions or 

203 to reflect the result of strong purifying selection [45]. Based on the chemical properties of the side 

204 chain, we group amino acids into seven classes including aliphatic, aromatic, sulfur, hydroxyl, acidic, 

205 amide, and basic amino acids. We also group amino acids based on geometric volume, hydropathy, 

206 charge status, and polarity, but find some overlaps among these features. For instance, amino acids 

207 with basic side chains are all positively charged. Aromatic amino acids all have large geometric 

208 volumes (volume > 180 cubic angstroms). Likewise, we also consider the co-occurrence of some 

209 SLims at the protein level. These co-occurring SLims in the protein sequence (SLim_AAs) may relate 

210 to potential mechanisms regulating the expression of ISGs [46].

211 When trying to measure the network preference for the gene products, we construct a human 

212 protein-protein interaction (PPI) network based on 332,698 experimentally verified interactions 

213 (confidence score > 0.63) from the Human Integrated Protein-Protein Interaction rEference database 

214 (HIPPIE, http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/) [47]. Nodes and edges of this network 

215 are provided at http://isgpre.cvr.gla.ac.uk/. Eight network-based features including the average shortest 

216 path, closeness, betweenness, stress, degree, neighbourhood connectivity, clustering coefficient, and 

217 topological coefficient are calculated from this network. Isolated nodes or proteins are not included in 

218 our network and are assigned zero value for all these eight features. The shortest path measures the 

219 average length of the shortest path between a focused node and others in the network. Closeness of a 

220 node is defined as the reciprocal of the length of the average shortest path. Proteins with a low value 

221 of the shortest paths or closeness are close to the centre of the network. Betweenness reflects the degree 

222 of control that one node exerted over the interactions of other nodes in the network [48]. Stress of a 

223 node measures the number of shortest paths passing through it. Proteins with a high value of 

224 betweenness or stress are close to the bottleneck of the network. Degree of a node counts the number 
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225 of edges linked to it while neighbourhood connectivity reflected the average degree of its neighbours. 

226 Proteins with high degree or neighbourhood connectivity are close to the hub of the network. They are 

227 considered to play an important role in the establishment of the stable structure of the human 

228 interactome [49]. Clustering and topological coefficient measure the possibility of a node to form 

229 clusters or topological structures with shared neighbours. The former coefficient can be used to 

230 identify the modular organisation of metabolic networks [50] while the latter one may be helpful to 

231 find out virus mimicry targets [51].

232

233 Generation of non-parametric features

234 In this study, non-parametric features are used to check the occurrence of SLims in the genome and 

235 proteome. The SLim_DNAs we constructed in this study contain three to five random nucleotides, 

236 producing 708,540 alternative choices. SLim_DNAs with no restrictions on their first or last position 

237 are not taken into consideration as their patterns can be expressed in a more concise way. A 

238 SLim_DNA will be picked out to encode a binary feature when its occurrence level in the coding 

239 region of the canonical ISG transcripts is significantly higher than that for non-ISGs (Pearson's chi-

240 squared test: p < 0.05). SLim_AAs are constructed with three to four fixed amino acids separated by 

241 putative gaps. The gap can be occupied by at most one random amino acid, producing 1,312,000 

242 alternative choices. Likewise, binary features are prepared for SLim_AAs showing significant 

243 enrichment in ISGs products than in non-ISG products (Pearson's chi-squared test: p < 0.05). Since 

244 there are lots of results rejecting the null-hypothesis, we adopt the Benjamini-Hochberg correction 

245 procedure to avoid type I error [52]. Additionally, we also encode two features to check the co-

246 occurrence or absence of multiple SLim_DNAs and SLim_AAs. This co-occurrence status may be a 

247 better representation of functional sites composed of short stretches of adjacent nucleobases or amino 

248 acids surrounding SLim_DNAs or SLim_AAs[45]￼.

249

250 Assessment of associations between feature representation and IFN-triggered stimulations

251 In this study, we obtain 8619 human genes with expression data from the OCISG [8]. 4111 of them 

252 are annotated with a positive Log2(Fold Change) ranging from 0 to 12.6, which means they are up-

253 regulated after IFN treatments. In order to measure the average level of feature representation (AREP) 

254 for genes with similar expression during IFN stimulations, we introduce a 0.1-length sliding-window 

255 to divide the data into 126 bins with different Log2(Fold Change). Here, Pearson’s correlation 

256 coefficient (PCC) is introduced to test the association between the representation of parametric features 

257 and IFN-triggered stimulation (Log2(Fold Change) > 0). It can be formulated as:
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𝑃𝐶𝐶(𝑓) =
1

𝑛 ― 1

𝑛

𝑖=1
(

𝐿𝐹𝐶𝑖 ― 𝑀0

𝑆𝐷0
) × (

𝐴𝑅𝐸𝑃𝑖 ― 𝑀𝑓

𝑆𝐷𝑓
) (1)

258 where 𝑛 is the number of divided parts that equals to 126 in this study; 𝐿𝐹𝐶𝑖 and 𝐴𝑅𝐸𝑃𝑖 are the value 

259 of Log2(Fold Change) and AREP in the 𝑖-th part; 𝑀0 and 𝑆𝐷0 are the mean and standard deviation of 

260 Log2(Fold Change), which is set as 6.4 and 3.7 respectively in this study; 𝑀𝑓 and 𝑆𝐷𝑓 are the mean 

261 and standard deviation of 126 AREP that reflect the representation of the considered feature. To make 

262 fair comparisons among features with different scales, we normalise them based on the major value of 

263 their representations:

𝑁𝑜𝑟𝑚(𝑓) = {    1, 𝑓 > 𝑈𝐵(𝑓)
𝑓 ― 𝐿𝐵(𝑓)

𝑈𝐵(𝑓) ― 𝐿𝐵(𝑓)
    0, 𝑓 < 𝐿𝐵(𝑓)

, 𝐿𝐵(𝑓) < 𝑓 < 𝑈𝐵(𝑓) (2)

264 where 𝐿𝐵(𝑓) and 𝑈𝐵(𝑓) are the lower and upper bound representing the 5th and 95th percentile within 

265 representation values for the target feature. The representation of feature is considered to have a 

266 stronger positive/negative association with IFN-triggered stimulations if the PCC calculated from the 

267 normalised features is closer to 1.0/-1.0 and the p value calculated by the Student t-test is lower than 

268 0.05.

269

270 Machine learning and optimisation

271 In this study, we introduce a machine learning framework for the prediction of ISGs. Firstly, all 

272 features are encoded and normalised based on their major representations (Equation 2). Then we use 

273 an under-sampling procedure to generate a balanced dataset from the main dataset for training and 

274 modelling. Support vector machine (SVM) with radial basis function (RBF) [53] is used as the basic 

275 classifier, and it maps the normalised feature space to a higher dimension to generate a space plane to 

276 better classify the majority of positive and negative samples. Since there are usually lots of noisy data 

277 distributed in the feature space, it is necessary to remove disruptive features. This will effectively 

278 reduce the dimensionality of the feature space and make it easier for the SVM model to generate a 

279 more appropriate classification plane that involved fewer false positives and false negatives. Here, we 

280 develop a subtractive iteration algorithm driven by the change of area under the receiver operating 

281 characteristic curve (AUC) to filter out disruptive features (Fig 2). In each iteration, we traverse the 

282 features and remove those that do not improve the AUC of the prediction results. Theoretically, this 

283 algorithm can greatly optimise the feature space and remove all disruptive features after multiple 

284 iterations. In the testing procedure, we encode the optimum features for testing samples and place them 

285 in the optimised feature space. Samples with longer distance to the optimised classification plane 
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286 indicate a stronger signal of being ISGs or non-ISGs. They are more likely to get higher probability 

287 scores (close to 0 or 1) from the SVM model.

288

289
290 Fig 2. The pseudo-code of the AUC-driven subtractive iteration algorithm. Abbreviations: AUC, 

291 area under the receiver operating characteristic curve.

292

293 Performance evaluation

294 In this study, the prediction results are evaluated with three threshold-dependent criteria, i.e., 

295 sensitivity (SN), specificity (SP), and Matthews correlation coefficient (MCC) [54] and two threshold-

296 independent criteria: SN_n and AUC. SN and SP are used to assess the quality of the machine learning 

297 model in recognising ISGs and non-ISGs respectively while MCC provides a comprehensive 

298 evaluation for both positives and negatives. The number of ‘n’ in the SN_n criterion is determined 

299 based on the number of ISGs used for testing. It is used to measure the upper limit of the prediction 

300 model as well as to check the existence of important false positives close to the class of ISGs from the 

301 perspective of data expression. Finally, AUC is a widely used criterion to evaluate the prediction ability 

302 of a binary classifier system. The group of interest is almost unpredictable in a specific binary classifier 

303 system if the AUC of the classifier is close to 0.5.

304

305

306 Results
307 Evolutionary characteristics of ISGs

308 In this study, we construct a dataset consisting of 620 ISGs and 874 non-ISGs (dataset S2) from 10836 

309 well-annotated human genes (dataset S1). Human genes in the S1 dataset have higher confidence based 
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310 on their records in both the OCISG [8] and Interferome [21] databases. Human genes in both dataset 

311 S1 and S2 are evolutionarily unrelated as they are retrieved from the OCISG [8] that compiles clusters 

312 of orthologous genes based on whole-genome alignments. However, they may still have inherent 

313 characteristics that have resulted in their different expressions in response to the type I IFNs. Here, we 

314 explore features relating to polymorphism [34], alternative splicing [35], duplication [37] and mutation 

315 [38]. We use the number of ORFs in a human gene to measure its polymorphism. By calculating the 

316 average number of ORFs with respect to different Log2(Fold Change) levels of expression (window 

317 size = 0.1) in the presence of IFNs, we find that human genes with higher Log2(Fold Change) tend to 

318 have lower levels of polymorphism (Fig 3A). Although low polymorphism seems to be associated 

319 with obvious IFN up-regulation, it is not a necessary condition. Compared to the background human 

320 genes we include in dataset S1, we find that ISGs tend to have more ORFs, but these differences are 

321 not statistically significant (Mann-Whitney U test: p > 0.05). We use the number of transcripts to 

322 represent the diversity of alternative splicing for a human gene and use the number of protein-coding 

323 exons in the canonical transcript to reflect the complexity of the alternative splicing. For these two 

324 features, similar negative relationships are observed when Log2(Fold Change) increases (Fig 3B & 

325 3C). These results illustrate that the simpler the alternative splicing is, the higher the IFN upregulation. 

326 Particularly, as the lowest value of Log2(Fold Change) for human genes not differentially expressed 

327 only reaches around -0.9. Points placed left of the boundary (x = -0.9) are IRGs. They are generally 

328 placed below those with Log2(Fold Change) around zero, suggesting the three features (number of 

329 ORFs, transcripts and exons) are all differentially represented in some IRGs compared to the remaining 

330 non-ISGs. This distribution also indicates that some IRGs have similar feature patterns to ISGs, 

331 especially to those highly up-regulated after IFN treatments (right part of the scatter plots in Fig 3). 

332

333
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334 Fig 3. The average representation of features associated with type I IFN stimulations in human 

335 fibroblast cells. (A) The number of ORFs as a proxy for gene polymorphism. (B) The number of 

336 transcripts as a feature of alternative splicing diversity. (C) The number of protein-coding exons in the 

337 canonical transcript as a measurement of the alternative splicing complexity. These three plots are 

338 drawn based on the expression data of 8619 human genes with valid fold change in the IFN experiment 

339 (S1 Data). ELGs are excluded as they have insufficient read coverage to determine a fold change in 

340 the IFN experiments. Points in the scatter plot are located based on the average feature representation 

341 of genes with similar expression performance in IFN experiments. Abbreviations: IFN, interferon; 

342 ORFs, open reading frames; ELGs, human genes with limited expression in interferon experiments.

343

344 To determine whether ISGs tend to originate from duplications, we count the number of within 

345 human paralogs of each gene (Fig 4A). The results show that there are around 22% of singletons in 

346 our main dataset, whilst ISGs have 15% and non-ISGs have 26%. The result of a Mann-Whitney U 

347 test [55] indicates that the number of paralogs is significantly under-represented in ISGs compared to 

348 the background human genes in dataset S1 (M1 = 10.5, M2 = 11.5, p = 8.8E-03). We hypothesize that 

349 such a difference is mainly caused by the imbalanced distribution of singletons in ISGs and non-ISGs. 

350 The differences become smaller when singletons are excluded from the test (M1 = 12.4, M2 = 14.6, p > 

351 0.05). Next, we use the number of non-synonymous substitutions per non-synonymous site (dN) and 

352 synonymous substitutions per synonymous site (dS) within human paralogues as a measurement of 

353 differences in mutational signatures between different classes [56]. As shown in Fig 4B, non-

354 synonymous substitutions are more frequently observed in ISGs than in background human genes (M1 

355 = 0.62, M2 = 0.55, p = 4.0E-03). On the other hand, ISGs also have a higher frequency of synonymous 

356 substitutions than background human genes (M1 = 37.7, M2 = 34.6, p = 1.1E-02) (Fig 4C) but the 

357 difference is not as obvious as for non-synonymous substitutions. The distribution of dN/dS ratios 

358 within human paralogues (Fig 4D) indicates that most human genes are constrained by natural 

359 selection but ISGs, in general, tend to be less conserved (M1 = 0.036, M2 = 0.045, p = 8.3E-03). When 

360 eliminating the influence of duplication events, ISGs are still less conserved than non-ISGs but the 

361 difference in the dN/dS ratio is not significant (M1 = 0.053, M2 = 0.031, p > 0.05).
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362
363 Fig 4. Differences in the evolutionary constraints of human genes. (A) Paralogues within Homo 

364 sapiens. (B) Non-synonymous substitutions within human paralogues. (C) Synonymous substitutions 

365 within human paralogues. (D) dN/dS ratios within human paralogues. Here, ISGs and non-ISGs are 

366 taken from dataset S2 while the background human genes are from dataset S1. Mann-Whitney U tests 

367 are applied for the hypothesis testing between the feature distribution of different classes. Boxes in the 

368 plot represent the major distribution of values (from the first to the third quartile); outliers are added 

369 for values higher than two-fold of the third quartile; cross symbol marks the position of the average 

370 value including the outliers; upper and lower whiskers show the maximum and minimum values 

371 excluding the outliers. Abbreviations: ISGs, interferon upregulated genes; non-ISGs, human genes not 

372 significantly up-regulated by interferons; dN, non-synonymous substitutions per non-synonymous site; 

373 dS, synonymous substitutions per synonymous site.

374

375 Differences in the coding region of the canonical transcripts

376 Compared to general profile features (e.g., number of ORFs), the sequences themselves provide more 

377 direct mapping to the protein function and structure [57]. Here, we encoded 344 parametric features 

378 and 7026 non-parametric features from complementary DNA (cDNA) of the canonical transcript to 

379 explore features specific to ISGs. We divide the parametric features into four categories and compare 

380 their representations among different classes of human genes, i.e., ISGs, non-ISGs, and the background 

381 human genes (Fig 5). Firstly, guanine and cytosine are both more depleted in ISGs than non-ISGs, 

382 leading to an under-representation of GC-content in ISGs (Mann-Whitney U test: M1 = 52%, M2 = 

383 55%, p = 2.3E-11). This attribute is antithetical to the GC-biased gene conversion (gBGC), making 

384 ISGs less stable with weak evolutionary conservation (Fig 4) [58]. Additionally, the under-

385 representation of GC-content also influences the representation of other dinucleotide features. Among 

386 all dinucleotide depletions in ISGs, CpG composition is ranked the first followed by GpG and GpC 

387 composition (p = 2.9E-14, 4.9E-13 and 1.2E-10, respectively). In turn, adenine and thymine-related 
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388 dinucleotide compositions, exemplified by ApT and TpA are more enriched in ISGs than non-ISGs (p 

389 = 8.0E-10 and 8.5E-10, respectively). 

390 Next, we compare the usage of 64 different codons in the third category as their frequencies 

391 influence transcription efficiency [43]. Differences between ISGs and background human genes are 

392 observed in codons for 11 amino acids including leucine (L), isoleucine (I), valine (V), serine (S), 

393 threonine (T), alanine (A), glutamine (Q), lysine (K), glutamic acid (E), arginine (R), and glycine (G). 

394 The most significant difference was observed in the usage of codon ‘AGA’. Among all arginine-

395 targeted alternative codons, codon ‘AGA’ is usually favoured, and its usage reaches an estimated 25% 

396 in ISGs, but reduces to 22% in the background human genes and is even significantly lower in non-

397 ISGs, at 18% (p = 1.4E-05 and 1.9E-13, respectively). On the other hand, compared to background 

398 human genes, the codon ‘CAG’ coding for amino acid ‘Q’ is the most under-represented in ISGs. It is 

399 less favoured by ISGs than non-ISGs (M1 = 72%, M2 = 78%, p = 7.3E-13) although it dominates in 

400 coding patterns. As for the three stop codons, comparing with background human genes, the usage of 

401 the ochre stop codon, i.e., ‘TAA’ is over-represented in ISGs (M1 = 28%, M2 = 33%, p = 9.7E-03). In 

402 this category of codon usage, the features that have different frequencies between ISGs and 

403 background human genes became more discriminating when comparing ISGs with non-ISGs. 

404 Significant differences in codon usages between ISGs and non-ISGs are widely observed except for 

405 methionine (M) and tryptophan (W). Hence, although we find a limited number of codon usage 

406 features showing significant differences between ISGs and the background human genes, the codon 

407 usage features are useful for discriminating ISGs from non-ISGs. 

408 In the last category, we calculate the occurrence frequency of 256 nucleotide 4-mers to add 

409 some positional resolution for finding and comparing interesting organisational structures [41]. Among 

410 the 256 4-mers, we find 46 of them are differentially represented between ISGs and background human 

411 genes (S2 Data). Most of these 4-mers are over-represented by ISGs except two with the pattern 

412 ‘TAAA’ and ‘CGCG’. Interestingly, the feature of ‘TAAA’ composition becomes a positive factor 

413 when comparing ISGs and non-ISGs (M1 = 4.1%, M2 = 3.7%, p = 4.1E-06), suggesting it may be a 

414 good feature to ascertain potential or incorrectly labelled ISGs. We find six nucleotide 4-mers: 

415 ‘ACCC’, ‘AGTC’, ‘AGTG’, ‘TGCT’, ‘GACC’, and ‘GTGC’ are over-represented in ISGs when 

416 compared to background human genes but are not differentially represented when comparing ISGs 

417 with non-ISGs. Thus, these six features may be inherently biased for some unknown reasons and are 

418 not powerful enough to distinguish ISGs from non-ISGs. In addition to the aforementioned 40 features 

419 that are over-represented in ISGs compared to background human genes, we find a further 39 features 

420 nucleotide 4-mers differentially represented between ISGs and non-ISGs (S2 Data). 
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421 To check the effect of these aforementioned 343 features on the level of stimulation in the IFN 

422 system (Log2(Fold Change) > 0), we calculate the PCC for the normalised features (Equation 2) and 

423 find 106 features are positively related to the increase of fold change, and 34 features are suppressed 

424 when human gene are more up-regulated (Student t-test: p < 0.05) (S3 Data). ApA composition shows 

425 the most obvious positive correlation with stimulation level (PCC = 0.464, p = 8.8E-06) while negative 

426 association between the representation of 4-mer ‘CGCG’ and IFN-induced up-regulation is the most 

427 significant (PCC = -0.593, p = 3.2E-09). Human genes with higher up-regulation in the presence of 

428 IFNs contain more codons ‘CAA’ rather than ‘CAG’ for coding amino acid ‘Q’. The depletion of GC-

429 content, especially cytosine content, promotes the suppression of many nucleotide compositions in the 

430 cDNA, e.g. CpG composition.

431

432
433 Fig 5. Differences in the representation of parametric features encoded from coding regions of 

434 the canonical transcript. Mann-Whitney U tests are applied for hypothesis testing and the results 

435 were provided in the S2 Data. Here, ISGs and non-ISGs are taken from dataset S2 while the 

436 background human genes are from dataset S1. Abbreviations: ISGs, interferon upregulated genes; non-

437 ISGs, human genes not significantly up-regulated by interferons.

438
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439 To find conserved sequence patterns related to gene regulations [59], we check the existence 

440 of 2940, 44100 and 661500 short linear nucleotide motifs (SLim_DNAs) consisting of three to five 

441 consecutive nucleobases in the group of ISGs and non-ISGs. By using a positive 5% difference in the 

442 occurrence frequency as cut-off threshold, we find 7884 SLim_DNAs with a maximum difference in 

443 representation around 15%. After using Pearson's chi-squared tests and Benjamini-Hochberg 

444 correction to avoid type I error in multiple hypotheses [52], 7025 SLim_DNAs remain with an adjusted 

445 p-value lower than 0.01 (S4 Data), hereon referred to as flagged SLim_DNAs. Here, the differentially 

446 represented 7025 SLim_DNAs are ranked according to the adjusted p-value.  As shown in Fig 6A, 

447 dinucleotide ‘TpA’ dominates in the top 10, top 100, top 1000, and all differentially represented 

448 SLim_DNAs even if TpA representation is suppressed in the cDNA of genes’ canonical transcripts 

449 compared to other dinucleotides. Dinucleotide ‘ApT’ and ‘ApA’ are also frequently observed in the 

450 flagged SLim_DNAs but their occurrences do not show significant difference in the top 100 

451 SLim_DNAs (Pearson's chi-squared test: p > 0.05). GC-related dinucleotides, e.g., ‘CpC’, ‘GpC’ and 

452 ‘GpG’ are rarely observed in the flagged SLim_DNAs especially in the top 10 or top 100. In view of 

453 these, we hypothesize that the differential representation of nucleotide compositions influences and 

454 reflects on the pattern of SLim_DNAs in ISGs. By checking the co-occurrence status of the flagged 

455 SLim_DNAs, we find these sequence patterns have a cumulative effect in distinguishing ISGs from 

456 non-ISGs especially when the number of cooccurring SLim_DNAs reaches around 5320 (Pearson's 

457 chi-squared test: p = 7.9E-13, Fig 6B). There are eight (~1.3%) ISGs in the refined set, i.e., dataset S2 

458 containing all the flagged 7025 SLim_DNAs. Their up-regulation after IFN treatment are generally 

459 low with a fold change fluctuating around 2.2. Although some genes such as desmoplakin (DSP) are 

460 clearly highly up-regulated in endothelial cells isolated from human umbilical cord veins after both 

461 IFN-α (fold change = 11.1) and IFN-β (fold change = 13.7) treatments. We also find some non-ISGs 

462 and ELGs containing the flagged SLim_DNAs, e.g., hemicentin 1 (HMCN1) and tudor domain 

463 containing 6 (TDRD6), but their frequencies are lower than that in ISGs. Although there is an obvious 

464 imbalance between the number of ISGs and non-ISGs in the human genome [9-11], the curve for the 

465 background human genes in Fig 6B is still closer to that for ISGs rather than that for non-ISGs. It 

466 suggests that some genetic patterns are widely represented in the coding region of human genes, 

467 making them potentially up-regulated in the IFN system.

468
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469
470 Fig 6. The pattern of SLim_DNAs in the coding region of the canonical transcripts. (A) Influence 

471 of dinucleotide compositions on the flagged SLim_DNAs. (B) The co-occurrence status of 

472 SLim_DNAs in different human genes. Ranks in (A) are generated based on the adjust p value given 

473 by Pearson's chi-squared tests after Benjamini-Hochberg correction procedure. Detailed results of the 

474 hypothesis tests are provided in S4 Data. Here, ISGs and non-ISGs are taken from dataset S2 while 

475 the background human genes are from dataset S1. Abbreviations: ISGs, interferon-stimulated genes; 

476 non-ISGs, human genes not significantly up-regulated by interferons; SLim_DNAs, short linear 

477 nucleotide motifs; cDNA, complementary DNA.

478

479 Differences in the protein sequence

480 We use the protein sequences generated by the canonical transcript to extract features at the proteomic 

481 level. In addition to the basic composition of 20 standard amino acids, we consider 17 additional 

482 features related to physicochemical (e.g., hydropathy and polarity) or geometric properties (e.g., 

483 volume) [60, 61]. We find several amino acids that are either enriched or depleted in ISG products 

484 compared to background human proteins, which are produced by genes in dataset S1 (Fig 7). The 

485 differences are even more marked between protein products of ISGs and non-ISGs, highlighting some 

486 differences that are not observed when comparing ISG products to the background human proteins 

487 (e.g., isoleucine composition). The differences observed in the amino acid compositions are at least in 

488 part associated with the patterns previously observed in features encoded from genetic coding regions. 

489 For example, asparagine (N) shows significant over-representation in ISG products compared to non-

490 ISG products or background human proteins (Mann-Whitney U test: p = 2.8E-12 and 1.2E-03, 

491 respectively). This is expected as there are only two codons, i.e., ‘AAT’ and ‘AAC’ coding for amino 

492 acid ‘N’, and dinucleotide ‘ApA’ shows a remarkable enrichment in the coding region of ISGs. A 

493 similar explanation can be given for the relationship between the deficiency of GpG content and amino 
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494 acid ‘G’. The translation of amino acid ‘K’ is also influenced by ApA composition but is not significant 

495 due to the mild representation of dinucleotide ‘ApG’ in the genetic coding region. Additionally, as 

496 previously mentioned, ISGs show a significant depletion in the CpG content, and consequently, the 

497 amino acid ‘A’ and ‘R’ in ISG products are significantly under-represented. Cysteine (C) is not 

498 frequently observed in human proteins but still shows a relatively significant enrichment in ISG 

499 products (M1 = 2.3%, M2 = 2.5%, p = 1.8E-03). 

500 When focusing on the composition of amino acids grouped by physicochemical or geometric 

501 properties, we also find some features differentially represented between ISG products and background 

502 human proteins. The result shows that hydroxyl (amino acid ‘S’ and ‘T’), amide (amino acid ‘N’ and 

503 ‘Q’), or sulfur amino acids (amino acid ‘C’ and ‘M’) are more abundant in ISG products compared to 

504 the background human proteins (Mann-Whitney U test: p = 0.04, 1.0E-03 and 0.02, respectively). 

505 Small amino acids (amino acid ‘N’, ‘C’, ‘T’, aspartic acid (D) and proline (P), the volume ranges from 

506 108.5 to 116.1 cubic angstroms) are more frequently observed in ISG products than in background 

507 human proteins (M1 = 22.1%, M2 = 21.7%, p = 0.02). The differences become more marked when 

508 comparing the representation of these features between ISG and non-ISG products. For example, 

509 features relating to chemical properties of the side chain (e.g., aliphatic), charge status and geometric 

510 volume show differences between proteins produced by ISGs and non-ISGs. Some features, e.g., 

511 neutral amino acids that include amino acid ‘G’, ‘P’, ‘S’, ‘T’, histidine (H) and tyrosine (Y) are not 

512 differentially represented between ISG and non-ISG products, but they show obvious association with 

513 the change of IFN-triggered stimulations (PCC = -0.556, p = 4.1E-08) (S3 Data). 

514
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515
516 Fig 7. Differences in the representation of parametric features encoded from protein sequences. 

517 Mann-Whitney U tests are applied for hypothesis testing and the results were provided in the S2 Data. 

518 Here, ISGs and non-ISGs are taken from dataset S2 while the background human genes are from 

519 dataset S1. Aliphatic group: amino acid ‘A’, ‘G’, ‘I’, ‘L’, ‘P’ and ‘V’; aromatic/huge group: amino 

520 acid ‘F’, ‘W’ and ‘Y’ (volume > 180 cubic angstroms); sulfur group: amino acid ‘C’ and ‘M’; hydroxyl 

521 group: amino acid ‘S’ and ‘T’; acidic/negative_charged group: amino acid ‘D’ and ‘E’; amide group: 

522 amino acid ‘N’ and ‘Q’; positive_charged group: amino acid ‘R’, ‘H’ and ‘K’; hydrophobic group: 

523 amino acid ‘A’, ‘C’, ‘I’, ‘L’, ‘M’, ‘F’, ‘V’, and ‘W’ that participates to the hydrophobic core of the 

524 structural domains [44]; neutral group: amino acid ‘G’, ‘H’, ‘P’, ‘S’, ‘T’ and ‘Y’; hydrophilic group: 

525 amino acid ‘R’, ‘N’, ‘D’, ‘Q’, ‘E’ and ‘K’; Tiny group: amino acid ‘G’, ‘A’ and ‘S’ (volume < 90 

526 cubic angstroms); small group: amino acid ‘N’, ‘D’, ‘C’, ‘P’ and ‘T’ (volume ranged from 109 to 116 

527 cubic angstroms); medium group: amino acid ‘Q’, ‘E’, ‘H’ and ‘V’ (volume ranged within 138 to 153 
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528 cubic angstroms); large group: amino acid ‘R’, ‘I’, ‘L’, ‘K’ and ‘M’ (volume ranged within 163 to 173 

529 cubic angstroms); uncharged group: the remaining 15 amino acids except electrically charged ones; 

530 polar group: amino acid ‘R’, ‘H’, ‘K’, ‘D’, ‘E’, ‘N’, ‘Q’, ‘S’, ‘T’ and ‘Y’; nonpolar group: the 

531 remaining 10 amino acids except polar ones. Abbreviations: ISG, interferon upregulated genes; non-

532 ISG, human genes not significantly up-regulated by interferons.

533

534 We then search the sequence of ISG products against that of non-ISG products to find 

535 conserved short linear amino acid motifs (SLim_AAs), which may have resulted from strong purifying 

536 selection [45]. As opposed to the analysis on the genetic sequence, we only obtain 19 enriched 

537 sequence patterns with a Pearson's chi-squared p value ranging from 1.5E-04 to 0.02 (Table 2). These 

538 SLim_AAs are greatly influenced by four polar amino acids: ‘K’, ‘N’, ‘E’ and ‘S’, and one nonpolar 

539 amino acid: ‘L’. Some of these SLim_AAs, e.g., SLim ‘NVT’ and ‘S-N-E’, are clearly over-

540 represented in ISG products compared to background human proteins and can be used as features to 

541 differentiate ISGs from background human genes. The third column in Table 2 also indicates a number 

542 of patterns, e.g., SLim ‘S-N-T’, that are lacking in non-ISG products and hence may be the reason for 

543 the lack of up-regulation in the presence of IFNs. Particularly, we noticed that SLim ‘KEN’ is a 

544 destruction motif that can be recognised or targeted by anaphase promoting complex (APC) for 

545 polyubiquitination and proteasome-mediated degradation [62, 63]. Results shown in Fig 8A illustrate 

546 that the co-occurrence of differentially represented SLim_AAs has a cumulative effect in 

547 distinguishing ISGs from non-ISGs. This cumulative effect can be achieved with only two random 

548 SLim_AAs (Pearson's chi-squared test: p = 4.6E-10). The bias in the co-occurring SLim_AAs in the 

549 background human proteins towards a pattern similar to non-ISG products further proves the 

550 importance of these 19 SLim_AAs. However, their co-occurrence is not associated with the level of 

551 IFN-triggered stimulations (PCC = 0.015, p > 0.05) (Fig 8B)

552 Regions that lacked stable structures under normal physiological conditions within proteins are 

553 termed intrinsically disordered regions (IDRs). They play an important role in cell signalling [64]. 

554 Compared with ordered regions, IDRs are usually more accessible and have multiple binding motifs, 

555 which can potentially bind to multiple partners [65]. According to the results calculated by IUPred 

556 [66], we find 6721, 10510, and 119071 IDRs (IUpred score no less than 0.5) in proteins produced by 

557 ISGs, non-ISGs and background human genes respectively. We hypothesize that enriched SLims 

558 widely detected in IDRs may be important for human protein-protein interactions or potentially virus 

559 mimicry [51]. For instance, in ISG products, 29 out of 71 SLim ‘S-N-T’ are observed in IDRs (~40.8%), 

560 14.9% higher than that in non-ISG products (Table 2). This difference reflects the importance of SLim 

561 ‘S-N-T’ for target specificity of IFN-induced protein-protein interactions [9] even if it is not 
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562 statistically significant. By contrast, the conditional frequency of SLim ‘S-N-E’ is discovered in IDRs 

563 of ISG and non-ISG products are almost the same, indicating that SLim ‘S-N-E’ may have an 

564 association with some inherent attributes of ISGs but is less likely to be involved in IFN-induced 

565 protein-protein interactions. SLim ‘KEN’ in IDRs also shows some interesting differences: in non-

566 ISG products, 41.9% of SLim ‘KEN’ are observed in IDRs, 14.6% higher than that in ISG products, 

567 which provides an effective approach to distinguish ISGs from non-ISGs. When SLim ‘KEN’ is 

568 discovered in the ordered region of a protein sequence, statistically, the protein is more likely to be 

569 produced by an ISG, but this assumption is reversed if the SLim is located in an IDR (Pearson's chi-

570 squared tests: p = 0.03). Despite the relatively low conditional frequency of SLim ‘KEN’ in the IDRs 

571 of ISG products, these SLim_AAs in the IDR are more likely to be functionally active than those 

572 falling within ordered globular regions [67]. 

573

574 Table 2. Representation of SLims in protein sequences and their IDRs.

SLimsa
Frequency in
ISG/non-ISG 

productsb

Bias based on frequency 
in human proteins P valuec

Conditional frequency in IDRs of 
ISG/non-ISG products/background 

human proteinsc,d
P valuee

S-N-E 15.2%/8.8% +47.6%/-14.2% 1.5E-04 39.4%/40.3%/33.4% 0.90

ENE 15.0%/8.8% +20.9%/-29.0% 2.1E-04 37.6%/42.9%/40.9% 0.49

S-N-T 11.5%/6.2% +21.9%/-34.2% 2.9E-04 40.8%/25.9%/27.3% 0.08

SVI 15.2%/9.2% +37.6%/-16.9% 3.6E-04 18.1%/11.3%/15.2% 0.21

L-NL 23.7%/16.4% +13.2%/-21.9% 4.0E-04 10.2%/11.9%/9.4% 0.65

L-KL 30.8%/22.8% +18.0%/-12.8% 4.9E-04 12.6%/10.1%/8.7% 0.43

NVT 13.7%/8.5% +52.1%/-6.1% 1.2E-03 18.8%/21.6%/15.4% 0.66

ISS 20.5%/14.3% +20.7%/-15.7% 1.7E-03 29.9%/25.6%/23.8% 0.44

LK-K 24.4%/17.7% +24.5%/-9.3% 1.8E-03 14.6%/20.6%/20.0% 0.16

IK-E 14.2%/9.0% +34.2%/-14.5% 1.8E-03 26.1%/16.5%/25.8% 0.13

EK-I 15.8%/10.4% +31.0%/-13.7% 2.0E-03 15.3%/20.9%/16.0% 0.32

K-E-S 16.9%/11.4% +21.9%/-17.7% 2.4E-03 36.2%/36.0%/39.2% 0.98

LNS 17.7%/12.1% +21.2%/-17.1% 2.4E-03 20.0%/25.5%/20.5% 0.34

KEN 16.0%/10.6% +33.5%/-11.0% 2.4E-03 27.3%/41.9%/34.8% 0.03

L-N-L 22.6%/17.5% +14.3%/-11.4% 1.5E-02 10.7%/11.8%/9.5% 0.78

K-E-L 25.8%/20.5% +25.7%/-0.3% 1.5E-02 18.8%/17.9%/18.7% 0.84

KLL 27.1%/21.9% +9.9%/-11.4% 1.9E-02 11.3%/8.4%/9.9% 0.35

LKE 29.8%/24.5% +18.2%/-3.0% 2.1E-02 19.5%/24.8%/20.1% 0.20

LK-L 33.2%/27.7% +15.0%/-4.2% 2.1E-02 7.8%/12.4%/10.0% 0.11

575 athe dash symbol in SLims indicates one position occupied by a standard amino acid; bhere, ISGs and non-ISGs are taken from dataset 

576 S2 while the background human genes use samples in dataset S1; cp values in this column use Pearson's chi-squared tests to measure 

577 the difference of SLim occurrences in ISG and non-ISG products; dfrequencies in this column are calculated based on a condition that 
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578 corresponding SLims are observed in the protein sequence; ep values in this column use Pearson's chi-squared tests to measure the 

579 difference of SLim occurrences in IDRs of ISG and non-ISG products.

580 Abbreviations: SLims, short linear motifs; ISGs, interferon-stimulated human genes; non-ISGs, human genes not significantly up-

581 regulated by interferons; IDRs, intrinsically disordered regions.

582

583
584 Fig 8. Representation of co-occurred SLim_AAs in our main dataset. (A) The co-occurrence status 

585 of SLim_AAs in different classes. (B) Relationship between co-occurrence of the marked SLim_AAs 

586 and Log2(Fold Change) after IFN treatments. Here, ISGs and non-ISGs are taken from dataset S2 while 

587 the background human genes are from dataset S1. Points in (B) are located based on the average feature 

588 representation of genes with similar expression performance in IFN experiments.  Abbreviations: IFN, 

589 interferon; ISGs, interferon-stimulated genes; non-ISGs, human genes not significantly up-regulated 

590 by interferons; SLim_AAs, short linear amino acid motifs.

591

592 Differences in network profiles

593 We construct a network with 332,698 experimentally verified interactions among 17603 human 

594 proteins (confidence score > 0.63) from the HIPPIE database [47]. 10169 out of 10836 human proteins 

595 from our background dataset S1 are included in it. Nodes and edges of this network can be downloaded 

596 from our webserver at http://isgpre.cvr.gla.ac.uk/. Based on this network, we calculate eight features 

597 including the average shortest path, closeness, betweenness, stress, degree, neighbourhood 

598 connectivity, clustering coefficient, and topological coefficient. As illustrated in Fig 9, ISG products 

599 tend to have higher values of betweenness and stress than background human proteins (Mann-Whitney 

600 U test: p = 0.01, and 0.03, respectively), which means they are more likely to locate at key paths 

601 connecting different nodes of the PPI network. Some ISG products with high values of betweenness 
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602 and stress, e.g., tripartite motif containing 25 (TRIM25), can be considered as the shortcut or 

603 bottleneck of the network and play important roles in many PPIs including those related to the IFN-

604 triggered immune activities [68, 69]. However, the over-representation of betweenness does not mean 

605 ISG products are more likely to be or even be close to bottlenecks in the network compared to 

606 background human proteins. Some examples shown in Table 3 indicate that ISG products are less-

607 connected by top-ranked bottlenecks and hubs in the network than non-ISGs or background human 

608 proteins. This conclusion is not influenced by hub/bottleneck protein’s performance in the IFN 

609 experiments. Comparing proteins produced by ISGs and non-ISGs, we find the former tends to have 

610 lower values of clustering coefficient and neighbourhood connectivity (Mann-Whitney U test: p = 0.04, 

611 and 7.9E-03, respectively), which means that ISG products and the majority of their interacting 

612 proteins are less likely to be targeted by lots of proteins. It also supports the finding that ISG products 

613 are involved in many shortest paths for nodes but are away from hubs or bottlenecks in the network. 

614 To some extents, this location also increases the length of the average shortest paths through ISG 

615 products in the network. 

616 When investigating the association between IFN-induced gene stimulation and network 

617 attributes of gene products, we only find the feature of neighbourhood connectivity is under-

618 represented as the level of differential expression in the presence of IFN increases (PCC = -0.392, p = 

619 2.2E-04). This suggests that proteins produced by genes that are highly up-regulated in response to 

620 IFNs are further away from hubs in the PPI networks. 

621
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622
623 Fig 9. Differential network preferences of proteins coded by different human genes. Mann-

624 Whitney U tests are applied for hypothesis testing and the results were provided in the S2 Data. Here, 

625 ISGs and non-ISGs are taken from dataset S2 while the background human genes use samples in 

626 dataset S1. Abbreviations: ISGs, interferon-stimulated genes; non-ISGs, human genes not significantly 

627 up-regulated by interferons.

628

629 Table 3. Interaction profiles of human proteins connecting top hubs/bottlenecks of the HIPPIE 

630 network.

Human protein TRIM25 ELAVL1 ESR2 NTRK1 HNRNPL

Gene class ISG IRG Not included in S1a

Degree (hub rank) 2295 (2nd) 1787 (4th) 2500 (1st) 1976 (3rd) 1681 (5th)

Betweenness (bottleneck rank) 0.067 (1st) 0.048 (4th) 0.051 (3rd) 0.026 (5th) 0.052 (2nd)

Difference in interacting partners

(ISG products versus non-ISG)b

Depleted

P = 0.01
P > 0.05

Depleted

P = 1.1E-4

Depleted

P = 5.5E-3
P > 0.05

Difference in interacting partners

(ISG products versus background 

human proteins)b

P > 0.05 P > 0.05
Depleted

P = 8.1E-3

Depleted

P = 0.03
P > 0.05

631 aESR2 and NTRK1 are not included in dataset S1 as their expression data were not compiled in the OCISG, HNRNPL is not included 

632 in dataset S1 as its canonical isoform was uncertain when the dataset was constructed; bdifferences here are measured via Pearson's 

633 chi-squared tests on human proteins interacting with the corresponding hub/bottleneck protein.
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634 Abbreviations: HIPPIE, Human Integrated Protein-Protein Interaction rEference database; TRIM25, tripartite motif containing 25; 

635 ELAVL1, embryonic lethal, abnormal vision like RNA binding protein 1; ESR2, estrogen receptor 2; NTRK1, neurotrophic receptor 

636 tyrosine kinase 1; HNRNPL, heterogeneous nuclear ribonucleoprotein L; ISGs, interferon-stimulated human genes; non-ISGs, human 

637 genes not significantly stimulated by interferons.

638

639 Features highly associated with the level of IFN stimulations

640 In this study, we encode a total of 397 parametric and 7046 non-parametric features covering the 

641 aspects of evolutionary conservation, nucleotide composition, transcription, amino acid composition, 

642 and network profiles. In order to find out some key factors that may enhance or suppress the 

643 stimulation of human genes in the IFN system, we compare the representation of parametric features 

644 of human genes with different Log2(Fold Change) in experiments on human fibroblast cells stimulated 

645 with IFNs (Log2(Fold Change) > 0). Two features on the co-occurrence of SLims are not taken into 

646 consideration here as they are more subjective than the other parametric features and are greatly 

647 influenced by the number of focused SLims. Upon the calculation of PCC and the result of hypothesis 

648 tests, we find 168 features highly associated with the level of IFN-triggered stimulations (Student t-

649 tests: p < 0.05) (S3 Data). Among them, 118 features show a positive correlation (Fig 10) while the 

650 remaining 50 features show a negative correlation (Fig 11) with the change of up-regulation in IFN 

651 experiments. Three features including the number of ORF, alternative splicing results, and exons in 

652 the canonical transcripts are encoded from characteristics of the gene. Two features, i.e., average 

653 dN/dS and average dS within human paralogues are encoded based on the sequence alignment results 

654 from the Ensembl  [31]. 140 and 22 features are encoded from the genetic sequence and proteomic 

655 sequence respectively. The last one, i.e., neighbourhood connectivity is obtained from the network 

656 profile of a human interactome constructed based on experimentally verified data in the HIPPIE [47].

657 In the positive group, the feature of ‘large’ amino acid compositions that includes the 

658 composition of five amino acids with geometric volume ranged from 163 to 173 cubic angstroms is 

659 ranked the first for having the highest PCC at 0.593 (Student t-test: p = 2.8E-09). This feature was not 

660 highlighted previously as it did not have a strong signal for discriminating ISGs from non-ISGs (Mann-

661 Whitney U test: p > 0.05). Similar phenomena can be found on 87 features (64 positive correlations 

662 and 23 negative correlations) such as AG-content, ApG content and previously mentioned neutral 

663 amino acid composition. The strongest negative correlation between feature representation and IFN-

664 triggered stimulations is found on the feature of 4-mer ‘CGCG’ (PCC = -0.593, p = 3.2E-09). This 

665 feature also shows a differential distribution between ISGs and non-ISGs, which provides useful 

666 information to distinguish ISGs from non-ISGs. Similar phenomena can be found on 81 features (54 

667 positive correlations and 27 negative correlations) such as previously mentioned GC-content, CpG 

668 content and the usage of codon ‘GCG’ coding for amino acid ‘A’. Collectively, the biased effect on 
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669 the basic composition of nucleotides influences the correlation between the representation of sequence-

670 based features and IFN-triggered stimulations. Human genes that show over-representation in more 

671 features listed in Fig 10 are expected to be more up-regulated after type-I IFN treatments at least in 

672 human fibroblast cells. Meanwhile, the under-representation of features listed in Fig 11 will also 

673 contribute to the level of up-regulation in the IFN experiments.

674

675
676 Fig 10. 118 features positively associated with higher up-regulation after IFN treatments in 

677 human fibroblast cells (Student t-tests: p < 0.05). Detailed results about PCC and hypothesis tests 

678 are provided in S3 Data. Abbreviations: IFNs, interferons; PCC, Pearson’s correlation coefficient; dN, 

679 non-synonymous substitutions per non-synonymous site; dS synonymous substitutions per 

680 synonymous site.
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682
683 Fig 11. 50 features negatively associated with higher up-regulation after IFN treatments in 

684 human fibroblast cells (Student t-tests: p < 0.05). Detailed results about PCC and hypothesis tests 

685 are provided in S3 Data. Abbreviations: IFNs, interferons; PCC, Pearson’s correlation coefficient; dS, 

686 synonymous substitutions per synonymous site.

687

688 Difference in feature representation of interferon-repressed genes and genes with low levels of 

689 expression

690 We group human genes into two classes based on their response to the type I IFNs in human fibroblast 

691 cells. Genes significantly up-regulated in the IFN experiments are included in the ISG class, while 

692 those that do not are put into the non-ISG class. However, there is also another group of genes down-

693 regulated in the presence of IFNs, i.e., IRGs. They are labelled as non-ISGs, but contain unique 

694 patterns that constitute an important aspect of the IFN response [8]. Some of these IRGs are not up-

695 regulated in any known type I IFN systems, thus have been placed in a refined non-ISGs class for 

696 analyses and predictions. Additionally, there are a number of genes that have insufficient levels of 
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697 expression in the experiments to determine a fold change. Here, we use the previously defined features 

698 to compare ISG with IRGs and ELGs.

699 As shown in Fig 12, IRGs are differentially represented to a lower extent in the majority of 

700 nucleotide 4-mer compositions than ISGs, which indicates the deficiency of some nucleotide sequence 

701 patterns in the coding region of IRGs. Note that, many nucleotide 4-mer composition features are more 

702 suppressed in ISGs than non-ISGs although the differences are small. The biased representation of 

703 these features in IRGs suggests that IRGs have characteristics similar to ISGs rather than non-ISGs. 

704 Additionally, there are a very limited number of features relating to evolutionary conservation, 

705 nucleotide compositions or codon usages showing obvious differences between ISGs and IRGs, but 

706 many of them are differentially represented when comparing ISGs with non-ISGs. Therefore, 

707 involving IRGs in the class of non-ISGs will increase the risk for machine learning models to produce 

708 more false positives. However, there are some informative features differentiating IRGs from ISGs. 

709 For example, comparing with ISGs, IRGs are more enriched in CpGs (Mann-Whitney U test: p = 5.6E-

710 03), which is also mentioned in [70]. IRGs tend to have higher closeness centrality and neighbourhood 

711 connectivity than ISGs (Mann-Whitney U test: p = 0.04 and 6.4E-06 respectively), suggesting IRGs 

712 tend to be closer to the centre of the human PPI network and connected to key proteins with many 

713 interaction partners. Differences in some amino acid composition features between ISGs and IRGs can 

714 also be observed. Therefore, good predictability is still expected when using features extracted from 

715 proteins sequences.

716 Fig 12 illustrates 161 features showing significant differences (Mann-Whitney U tests: p < 0.05) 

717 in the representation of ISGs and ELGs. An estimated 82% of these features are also differentially 

718 represented between ISGs and non-ISGs. 79% of these significant features show similar over-

719 representation or under-representation in two comparisons, i.e., ISGs versus ELGs and ISGs versus 

720 non-ISGs. These ratios indicate that the majority of ELGs are less likely to be ISGs based on their 

721 feature profile as well as their low expression levels in cells induced with IFNs. Network analyses 

722 show that ELG products tend to have lower values of all calculated network features with the exception 

723 of topological coefficient than ISG products, suggesting that they are less connected by other human 

724 proteins in the human PPI network. Particularly, their abnormal representation on the feature of 

725 average shortest paths indicating that some ELGs may still have high connectivity in the human PPI 

726 network, e.g., vascular cell adhesion molecule 1 (VCAM1) and ubiquitin D (UBD).

727
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728
729 Fig 12. Differential expressions of parametric features between different genes and their coded 

730 proteins. Mann-Whitney U tests are applied for hypothesis testing and the results were provided in 

731 the S2 Data. Here, ISGs and non-ISGs are taken from dataset S2; IRGs and ELGs are taken from 

732 dataset S1; the background human genes are from dataset S1. Abbreviations: ISGs, interferon-

733 upregulated genes; IRGs, interferon-repressed genes; non-ISGs, human genes not significantly up-

734 regulated by interferons; ELGs, expression-limited human genes in IFN experiments.

735

736 Implementation with machine learning framework

737 In this study, we encode 397 parametric and 7046 non-parametric features for the analyses. As an 

738 excess of features will greatly increase the dimension of feature spaces and complicate the 

739 classification task for SVM [53], we limit the number of SLim_DNAs to the top 100 based on the 

740 adjusted p-value and we expect these to be sufficient to provide a picture of SLim patterns in the coding 

741 region of the canonical transcript. Accordingly, features measuring the co-occurrence status of 

742 multiple SLim_DNAs are recalculated based on the selected 100 SLim_DNAs. To reduce the impact 

743 of noisy data toward classifications, we only use the refined ISGs and non-ISGs, i.e., dataset S2 in 

744 machine learning. 
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745 Measured by SN, SP, MCC and AUC, the initial prediction results shown in Table 4 indicate 

746 that proteome-based features, including those deciphered from protein sequences and the human 

747 interactome, perform much better than genome-based features presumably due to overfitting of the 

748 model [71]. Using parametric features that take advantage of both genetic and proteomic aspects shows 

749 a good improvement in tests. The non-parametric features used in this study give a binary statement 

750 for the occurrence of SLims in genetic and proteomic sequences but seem not to perform well and 

751 disrupt the model when they are combined with parametric features. The results shown in the previous 

752 analyses also indicate that there are a considerable number of disruptive features hidden in the set (Fig. 

753 5, Fig 7, and Fig 9). The similar attributes of ISGs and IRGs (Fig. 12) lead to lots of noisy data biasing 

754 the classifiers. This situation is not ameliorated and becomes more difficult when using other machine 

755 learning algorithms such as k-nearest neighbors (KNN), decision tree (DT), random forest (RF) (Table 

756 4) [72, 73]. As some genes respond to IFNs in a cell-specific manner [2], it is hard to produce 

757 predictions unless we detect key discriminating features, which are robust to the change of biological 

758 environment.

759 Considering these drawbacks, we design an AUC-driven subtractive iteration algorithm (ASI) 

760 (Fig 2) to remove as many disruptive features as possible (Fig 13A). Pre-processing using the ASI 

761 algorithm shows that there are at least 28% of bad features disrupting the prediction model. They 

762 include 34% of features on codon usages and 50% of SLim features, thus, explaining the poor 

763 performance of the model trained with non-parametric features (Table 4). However, the loss of some 

764 of the individual nucleotide 4-mer feature seems not to influence the performance of the classifier at 

765 this stage, but the similarities between IRGs and ISGs (Fig 12) particularly in these 4-mer features is 

766 a cause for concern when the model is used to predict new data especially unknown IRGs. When using 

767 the ASI algorithm, the number of disrupting features does not stabilise and until the algorithm reaches 

768 the 11-th iterations when the number of disrupting features becomes zero. The remaining 74 features 

769 constitute our optimum feature set for the prediction of ISGs (Table 5). Among them, 14 and 9 features 

770 have positive and negative correlations with the level of up-regulation in IFN experiments. During the 

771 procedure, the AUC keeps increasing and reaches 0.7479 after 11 iterations. The MCC also shows an 

772 overall improvement although it fluctuates slightly during the last few iterations. By degressively 

773 ranking the probability calculated by the prediction model, we found 68.1% of the 496 genes (equal to 

774 the number of ISGs in the training dataset) are successfully predicted as ISGs. Fig 13B illustrates the 

775 distribution of probability scores generated by the ASI-optimised model for human genes with 

776 different expressions in IFN experiments. Human genes with higher up-regulation in IFN experiments 

777 tend to obtain higher probability score from our optimised machine learning model (PCC = 0.243, p = 

778 4.2E-10). However, there are also some ISGs incorrectly predicted by our model even though they are 
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779 highly up-regulated, e.g., basic leucine zipper ATF-like transcription factor 2 (BATF2, probability 

780 score = 0.34). The model produces 33 ISGs with a probability score higher than 0.8 but such figure 

781 for non-ISGs reduces to six, including one IRG, i.e., tripartite motif containing 59 (TRIM59). The 

782 highest probability score within non-ISGs was found on ubiquitin conjugating enzyme E2 R2 

783 (UBE2R2, probability score = 0.88). It contains many features similar to ISGs but is not differentially 

784 expressed in the presence of IFN in fibroblast cells [8]. The lowest probability score within ISGs is 

785 found on cap methyltransferase 1 (CMTR1, probability score = 0.12) due to the weak signal from its 

786 features. For example, CMTR1 protein does not contain any ISG-favoured SLim_AA listed in Table 

787 2. The influence of IRGs on the prediction is reflected in the training dataset but is not significant. 

788 Compared with human genes not differentially expressed in the IFN experiments, i.e., non-ISGs but 

789 not IRGs, there are slightly more IRGs unsuccessfully classified when using a threshold of 0.549 

790 (Pearson's chi-squared tests: M1 = 27%, M2 = 24%, p > 0.05).

791

792 Table 4. The performance of different feature combinations on the training dataset S2’ via five-

793 fold cross validation.
Threshold-dependent Threshold-independent

Method Features Number
Score range Thresholda SN SP MCC SN_496b AUC

SVM Genetic 452 0.359~0.623 0.402 0.769 0.355 0.169 0.579 0.6058

SVM Proteomic 66 0.261~0.730 0.560 0.425 0.778 0.218 0.605 0.6360

SVM Parametric 397 0.305~0.760 0.529 0.595 0.665 0.261 0.621 0.6573

SVM Non-parametric 121 0.368~0.605 0.487 0.653 0.504 0.159 0.573 0.5736

SVM All 518 0.328~0.743 0.542 0.567 0.681 0.250 0.615 0.6509

KNNc All 518 0.100~0.900 0.500~0.550 0.593 0.621 0.214 0.607±0.014 0.6305

DT Partial 182d 0 or 1 N/A 0.546 0.548 0.095 0.546 N/A

RFe Random Random 0.080~0.900 0.380~0.579 0.590±0.168 0.617±0.183 0.219±0.019 0.600±0.007 0.6413±0.0082

SVM Optimum 74 0.098~0.918 0.549 0.623 0.750 0.376 0.681 0.7479

794 athis threshold is  provided by maximum the value of MCC; bthis sensitivity is measured among tested genes with the top 496 prediction 

795 probabilities; ck-value here is set as the square root of the size of the training samples in five-fold cross validation, i.e., k = 20 [74]; 

796 d182 out of the 518 features (S5 Data) are used for decisions during this modelling procedure as the rest ones are not helpful to better 

797 split the dataset for lower system entropy [75]; ethis random forest algorithm uses 50 random grown trees and the modelling and 

798 validation procedures are repeated for 10 times.

799 Abbreviations: SVM, support vector machine; KNN, k-nearest neighbors; DT, decision tree; RF, random forest; SN, sensitivity; SP, 

800 specificity; MCC, Matthews correlation coefficient; AUC, area under the receiver operating characteristic curve.

801
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802
803 Fig 13. The optimisation on the machine learning model with the ASI algorithm. (A) shows the 

804 change of the prediction models based on the one generated with all 518 features (disruptive feature 

805 vector = 144, best MCC = 0.250, SN_496 = 0.615, and AUC = 0.6509). (B) shows the distribution of 

806 probability scores generated by the ASI-optimised model for human genes with different expression 

807 levels in the IFN system. ISGs and non-ISGs shown in (B) are randomly selected with an 

808 undersampling strategy on dataset S2. The list of gene names can be found in S1 Data. Abbreviations: 

809 SN, sensitivity; SN_496, sensitivity of predicted genes with the top 496 probability scores, MCC, 

810 Matthews correlation coefficient; AUC, area under the receiver operating characteristic curve; ASI, 

811 AUC-driven subtractive iteration algorithm; IFN, interferon, ISGs, interferons-stimulated genes; IRGs, 

812 interferon-repressed genes; non-ISGs, interferons-non-up-regulated genes; UBE2R2, ubiquitin 

813 conjugating enzyme E2 R2; TRIM59, tripartite motif containing 59; CMTR1, cap methyltransferase 

814 1; BATF2, basic leucine zipper ATF-like transcription factor 2.

815

816 Table 5. The optimum 74 features contributing to the prediction of ISGs.

Evolutionary features (2)

Number of human paraloguesP, average dS within human paraloguesP-.

Codon usage features (10)

Codon usage: CTA (L)P+ Codon usage: ATT (I)P Codon usage: TAT (Y)P

Codon usage: GCG (A)P- Codon usage: CAC (H)P- Codon usage: TGC (C)P

Codon usage: CGT (R)P Codon usage: CGA (R)P Codon usage: CGG (R)P-

Codon usage: AGA (R)P+

Genetic composition features (40)

DNA AC contentP Dinucleotide CpT compositionP DNA 4-mer CGCG compositionP-

DNA 4-mer AATC compositionP+ DNA 4-mer TCGT compositionP DNA 4-mer GATG compositionP+

DNA 4-mer AACA compositionP DNA 4-mer TGAG compositionP+ DNA 4-mer GACC compositionP

DNA 4-mer ATAT compositionP DNA 4-mer TGTA compositionP DNA 4-mer GACG compositionP
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DNA 4-mer ATGT compositionP+ DNA 4-mer CACG compositionP DNA 4-mer GAGT compositionP+

DNA 4-mer ACAC compositionP DNA 4-mer CTCC compositionP DNA 4-mer GTAC compositionP

DNA 4-mer ACTA compositionP DNA 4-mer CCAC compositionP DNA 4-mer GTGT compositionP

DNA 4-mer ACTC compositionP DNA 4-mer CCTA compositionP DNA 4-mer GTGC compositionP

DNA 4-mer ACCG compositionP DNA 4-mer CCTC compositionP+ DNA 4-mer GTGG compositionP

DNA 4-mer TATG compositionP DNA 4-mer CCGT compositionP DNA 4-mer GCAA compositionP+

DNA 4-mer TTCT compositionP DNA 4-mer CGAG compositionP DNA 4-mer GCTC compositionP

DNA 4-mer TTCG compositionP DNA 4-mer CGTG compositionP DNA 4-mer GCCT compositionP

DNA 4-mer TTGA compositionP DNA 4-mer CGCA compositionP DNA 4-mer GGGG compositionP

DNA 4-mer TCAT compositionP

Proteomic composition features (9)

Arginine compositionP, cysteine compositionP+, methionine compositionP;

Basic amino acid composition (R/H/K)P+ Sulfur amino acid composition (C&M)P+

Hydroxyl amino acid composition (S&T)P- Small amino acid composition (N/D/C/P/T)P-

Large amino acid composition (R/I/L/K/M)P+

Uncharged amino acid composition (A/N/C/Q/G/I/L/M/F/P/S/T/W/Y/V)P-

Features about human interactome network (3)

Shortest pathsP+, betweennessP, neighborhood connectivityP-.

Motif features (8)

SLim_DNA ATA[AG][TG]N SLim_DNA TAT[AT]TN SLim_DNA T[AT]AAAN

SLim_DNA [ATG]TGTAN SLim_AA S[A-Z]N[A-Z]EN SLim_AA ENEN

SLim_AA SVIN Co-occurence of SLim_AAsP

817 Pparametric features; Nnon-parametric features; +means features are positively associated with the level of up-regulation in IFN 

818 experiments (p < 0.05); -means features are negatively associated with the level of up-regulation in IFN experiments (p < 0.05).

819 Abbreviations: dS, synonymous substitutions per synonymous site; SLim_DNAs, short linear nucleotide motifs; SLim_AAs, short 

820 linear amino acid motifs.

821

822 Review of different testing datasets

823 In this study, we train and optimise a SVM model from our training dataset, i.e., S2’, and prepare seven 

824 testing datasets to assess the generalisation capability of our model under different conditions. The 

825 S2’’ testing dataset is a subset of dataset S2. The prediction performance on this testing dataset is close 

826 to that in the training stage with an AUC of 0.7455 (Fig. 14). The best MCC value is achieved when 

827 setting the judgement threshold to 0.438, which means that the prediction model is sensitive to signals 

828 related to ISGs. In this case, it produces predictions with high sensitivity but inevitably produces many 

829 false positives, especially within the IRG class. 

830 In the S3 testing dataset, we use 695 ISGs with low confidence. The overall accuracy only 

831 reaches 44.0% when using a judgement threshold of 0.549, about 18% lower than SN under the same 

832 threshold in the training dataset S2’ (Table 4). This is expected as they have some inherent attributes 
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833 that make them slightly up-regulated, silent or even repressed (e.g., become non-ISGs in other IFN 

834 systems) in response to some IFN-triggered signalling. On the other hand, on the S3 testing dataset, 

835 our machine learning model produces 38 (5.5%) ISGs with a probability score higher than 0.8. This 

836 number is also lower than on the training dataset S2’, which further indicates the relatively low 

837 confidence for ISGs included in testing dataset S3.

838 The S4 testing dataset is constructed to illustrate our hypothesis that there are some patterns 

839 shared among ISGs and IRGs at least in the type I IFN system in human fibroblast cells. On this testing 

840 dataset, the prediction accuracy is 60.2% under the judgement threshold of 0.549, about 15% lower 

841 than the SP under the same threshold in the training dataset S2’ (Table 4). Leucine rich repeat 

842 containing 2 (LRRC2), carbohydrate sulfotransferase 10 (CHST10) and eukaryotic translation 

843 elongation factor 1 epsilon 1 (EEF1E1) show strong signals of being ISGs (probability score > 0.9). 

844 In total, there are 56 (5.6%) IRGs being incorrectly predicted as ISGs with probability scores higher 

845 than 0.8. This high score is found in an estimated 8.1% of ISGs but is only observed in 1.2% of human 

846 genes not differentially expressed in the IFN experiments (Fig 13B). This result indicates that there is 

847 a considerable number of IRGs incorrectly predicted as ISGs in S4 testing dataset due to close distance 

848 to the ISGs in the high-dimensional feature space and this may be the case for any of the datasets. It 

849 also supports our hypothesis about the shared patterns from the machine learning aspect and is 

850 consistent with the results shown in Fig 12.

851 The next three testing datasets, i.e., S5, S6, and S7 are collected from the Interferome database 

852 [21] to test the applicability of the machine learning model across different IFN types. The ISGs in 

853 these testing datasets are all highly up-regulated (Log2(Fold Change) > 1.0) in the corresponding IFN 

854 systems while all the non-ISGs are not up-regulated after corresponding IFN treatments (Log2(Fold 

855 Change) < 0). The results shown in Fig 14 reveals that ISGs triggered by type I or III IFN signalling 

856 can still be predicted by our machine learning model, but the performance is limited (AUC = 0.6677 

857 and 0.6754 respectively). However, it is almost impossible to make normal predictions with the current 

858 feature space for human genes up-regulated by type II IFNs (AUC = 0.5532).

859 The S8 testing dataset consists of 2217 human genes that are insufficiently expressed in the 

860 experiments in human fibroblast cells [8]. The results show that there are around 41.2% ELGs being 

861 predicted as ISGs when using a judgement threshold of 0.549. This is approximately 21% lower than 

862 the SN under the same threshold in the training dataset S2’ (Table 4). This suggests that there are more 

863 non-ISGs than ISGs in this dataset, which is consistent with the results of Fig 12. We find 10 ELGs 

864 with probability scores higher than 0.900: CD48 molecule, CD53 molecule, lipocalin 2 (LCN2), 

865 uncoupling protein 1 (UCP1), coiled-coil domain containing 68 (CCDC68), potassium calcium-

866 activated channel subfamily M regulatory beta subunit 2 (KCNMB2), potassium voltage-gated channel 
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867 interacting protein 4 (KCNIP4), zinc finger HIT-type containing 3 (ZNHIT3), serpin family B member 

868 4 (SERPINB4), and fibrinogen silencer binding protein (FSBP). By retrieving data from the Genotype-

869 Tissue Expression project [76], we find the expression of these ELGs are generally limited with the 

870 exception of CD53 and ZNHIT3 (Fig 15). The expression data of CD53 is not included in the OCISG 

871 database [8] and are also limited in the Interferome database [21]. It only shows slight up-regulation 

872 after type I treatments in blood, liver, and brain but there is currently no record of its expression level 

873 in the presence of type I IFNs in human fibroblast cells. ZNHIT3 is another well-expressed gene 

874 lacking information in the OCISG. In the Interferome databases, we find that ZNHIT3 can be up-

875 regulated after IFN treatments in some fibroblast cells on skin. As for the remaining eight ELGs, 

876 despite their limited expression in human fibroblast cells, their features suggest that they are very likely 

877 to be IFN-stimulated in a currently untested cell type.

878

879
880 Fig 14. The performance of our optimised model on different datasets. S2’ is the training dataset 

881 used in this study. It randomly includes 496 ISGs and an equal number of non-ISGs from dataset S2 

882 that contains ISGs/non-ISGs with high confidence (Table 1). Evaluation on this dataset in (A) is 

883 processed via five-fold cross validation. S2’’ is the testing dataset constructed with the remaining 

884 human genes in dataset S2. S5, S6, and S7 are collected from the Interferome database [21], including 

885 human genes with different responses to the type I, II and III IFNs, respectively. The label and usage 

886 of these human genes are provided in S1 Data. Abbreviations: AUC, area under the receiver operating 
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887 characteristic curve; ISGs, interferon-stimulated genes; non-ISGs, human genes not significantly up-

888 regulated by interferons.

889

890
891 Fig 15. Expression of ELGs in different tissues. Expression data for ten ELGs are collected from 

892 the Genotype-Tissue Expression project (https://gtexportal.org/) [76]. The tissues in red are not 

893 included in the Interferome database [21]. White boxes in the heatmap indicate that there is no data 

894 available for genes in the corresponding tissues. The overall expression level of these ten ELGs are 

895 reflected via human perspective photo retrieved from Expression Atlas (https://www.ebi.ac.uk/gxa) 

896 [77]. Abbreviations: ELGs, human genes with limited expression in interferon experiments; TPM, 
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897 transcripts per million; BA, Brodmann area; EBV, Epstein-Barr virus; UCP1, uncoupling protein 1; 

898 LCN2, lipocalin 2; CCDC68, coiled-coil domain containing 68; KCNIP4, potassium voltage-gated 

899 channel interacting protein 4; KCNMB2, potassium calcium-activated channel subfamily M regulatory 

900 beta subunit 2; ZNHIT3, zinc finger HIT-type containing 3; SERPINB4, serpin family B member 4; 

901 FSBP, fibrinogen silencer binding protein.

902

903

904 Discussion
905 In this study, we investigate the characteristics that influence the expression of human genes in type I 

906 IFN experiments. We compare ISGs and non-ISGs through multiple procedures to guarantee strong 

907 signals for ISGs and to avoid cell-specific influences that result in the lack of ISGs expression in 

908 certain cell types [2]. Even some highly up-regulated ISGs can become down-regulated when the 

909 biological conditions change, exemplified by the performance of C-X-C motif chemokine ligand 10 

910 (CXCL10) on liver biopsies after IFN-α treatment. This refinement is necessary as the representation 

911 of features between ISGs and the background human genes show that many non-ISGs especially IRGs 

912 have similar feature patterns to ISGs (Fig 4-7, Fig 12). 

913 Generally, ISGs are less evolutionarily conserved with more human paralogues than non-ISGs. 

914 They have specific nucleotide patterns exemplified by the depletion of GC-content and have a unique 

915 codon usage preference in coding proteins. There are a number of SLim_DNAs widely observed in 

916 the cDNA of ISGs which are relatively rare in non-ISGs (S4 Data). Likewise, there are also many 

917 SLim_AAs highlighted in the sequences of ISG products that are absent or rare in non-ISGs (Table 

918 2). In the human PPI network, ISG products tend to have higher betweenness than background human 

919 protein, indicating their more frequent interruption of the shortest path (geodesic distance) between 

920 different nodes. Abnormal expression or knockout of these proteins will increase the diameter of the 

921 network and may lead to some lethal consequences that are not tolerated in signalling pathways [78-

922 80]. These ISG specific patterns may be the result of the evolution of the innate immune system in 

923 vertebrates and could be adaptations to the cellular environment induced by interferon following a 

924 pathogenic infection [81]. It is also possible that some of the particular SLim_DNAs and SLim_AAs 

925 may be important functionally as the cell changes from non-infected to infected. Experimental 

926 evidence will be necessary to investigate this.

927 Some inherent properties of ISGs facilitate or elevate their expression after IFN treatments but 

928 may also be used by viruses to escape from IFN-mediated antiviral response [19]. For instance, the 

929 representation of dN shows a more significant difference than that of dS within human paralogues 
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930 Higher dN/dS ratio positively correlated with gene up-regulation following IFN treatments, but this 

931 means the gene is less conserved with more non-synonymous or nonsense mutations, which can often 

932 be associated to inherited diseases and cancer [82]. It will also facilitate the virus to interfere with IFN 

933 signalling through the JAK-STAT pathway and inactivate downstream cellular factors involved in IFN 

934 signal transductions [19]. Arginine is under-represented in ISG products compared to non-ISG 

935 products As arginine is essential for the normal proliferation and maturation of human T cells [83], 

936 such depletion in ISG products may leave a risk of inhibiting T‐cell function and potentially increased 

937 susceptibility to infections [84]. On the other hand, the special pattern of ISGs also promotes the 

938 representation of some features even if they are not well represented in nature, exemplified by the 

939 higher cysteine composition in ISGs. We hypothesize that it may be helpful to activate T-cell to 

940 regulate protein synthesis, proliferation and secretion of immunoregulatory cytokines [85, 86]. For 

941 example, there are also some features, e.g., methionine composition, not differentially represented 

942 between ISGs and non-ISGs that play important roles in IFN-mediated immune responses. There is 

943 evidence for the methionine content playing a role in the biosynthesis of S-Adenosylmethionine 

944 (SAM), which can improve interferon signalling in cell culture [87, 88].

945 As previously mentioned, there are similar patterns between the feature representation of ISGs 

946 and IRGs, which leads to the unclear boundary for ISGs and non-ISGs in the feature space. We find 

947 significant differences on the representation of features on evolutionary conservation (Fig 4) between 

948 ISGs and non-ISGs, but these become non-significant when comparing ISGs with IRGs. Similar 

949 phenomena are observed on many features deciphered from the canonical transcript, e.g., dinucleotide 

950 composition and codon usage features. We suggest that IRGs can be viewed as additional ISGs as they 

951 also regulate the activity of human genes in response to IFNs, only negatively. On the other hand, 

952 despite so many similarities between ISGs and IRGs, the separate classification of these genes is still 

953 possible. 4-mer compositions can be considered as the key features as most of them are differentially 

954 represented between ISGs and IRGs (Fig 12). Using proteomic features can also help to differentiate 

955 ISGs from IRGs but is not as good as using 4-mer features.

956 In the machine learning framework, we develop the ASI algorithm to remove disruptive 

957 features but keep features not influencing the prediction performance when being removed 

958 individually during iterations. Features may have synergistic effects thus the elimination of each 

959 feature leaves a different impact on the remaining ones even if these are individually useless for the 

960 improvement of the classifier. In this case, keeping as many useful features as possible seems to be a 

961 good option but will greatly increase the dimension of the feature space and the risk of overfitting [71]. 

962 By contrast, our ASI algorithm avoids such a risk and keeps the synergistic effect of different features 

963 through iterations. 
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964 In the prediction task, we find some previously labelled non-ISGs with very high probability 

965 scores, suggesting that they have many inherent properties enabling them to be stimulated after IFN 

966 treatments. Some of them, for example UBE2R2 has been shown to be significantly up-regulated after 

967 IFN-α treatment [89]. The non-ISG label was assigned because the relevant expression data in the 

968 presence of IFNs are not included in the OCISG [8] and the Interferome databases [21]. We also find 

969 ten ELGs with very high probability scores (> 0.9). Literature searches on these genes indicate that 

970 they are likely to be involved in the innate immune response and that their responses may be limited 

971 to certain tissues or cell types for which there is limited expression data in the Interferome database 

972 [21]. For example, LCN2 has been shown to mediate an innate immune response to bacterial infections 

973 by sequestering iron [90] and is induced in the central nervous system of mice infected with West Nile 

974 virus encephalitis [91]. CD48 was shown to increase in levels as a result of human IFN-α/β and human 

975 IFN-γ and these upregulate the expression of CD48 proteins at the surface of various cultured human 

976 cell lines [92]. Interestingly, CD48 is also the target of immune evasion by viruses [93] and has been 

977 captured in the genome of cytomegalovirus and undergone duplication [94]. Evidence for other ELGs 

978 is harder to assess, particularly those for which expression is absent in a range of tissues (e.g., UCP1 

979 in Fig 15). UCP1 is a mitochondrial carrier protein expressed in brown adipose tissue (BAT) 

980 responsible for non-shivering thermogenesis [95]. It is possible that UCP1 is stimulated directly or 

981 indirectly by IFN in BAT resulting in the defended elevation of body temperature in response to 

982 infection.  In this in silico study, we provide predictions for genes that show no basal expression in 

983 human fibroblasts but their stimulation by IFN and their role in immune defense requires testing 

984 experimentally. 

985 The model developed in this study based on experimental data from human fibroblast cells 

986 stimulated by IFN can be generalised to type III systems, presumably because activations of type I and 

987 III ISGs are both controlled by ISRE [9] and aim to regulate host immune response [4-6]. However, 

988 our model cannot be applied to the prediction of type II ISGs (AUC = 0.5532), not only because of 

989 their different control elements, but because of their different roles in human immune activities (Fig 

990 1) [10].

991 In summary, our analyses highlight some key sequence-based features that are helpful to 

992 distinguish ISGs from non-ISGs or IRGs. Our machine learning model is able to produce a list of 

993 putative ISGs to support IFN-related research. As knowledge of ISG functions continue to be 

994 elucidated by experimentalists, the in-silico approach applied here could in future be extended to 

995 classify the different functions of ISGs.

996

997

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


40

998 Supporting information
999 S1 Data. Basic information about human genes used in this study.

1000 (TXT)

1001 S2 Data. The result of Mann-Whitney U tests for parametric features.

1002 (TXT)

1003 S3 Data. Association between feature representations and IFN stimulations.

1004 (TXT)

1005 S4 Data. The result of Pearson's chi-squared tests for sequence motifs.

1006 (TXT)

1007 S5 Data. Decision trees generated during five-cross validation on the training dataset S2'.

1008 (TXT)

1009

1010

1011 Acknowledgments
1012 The authors wish to thank Prof Andrew Davison, Drs Suzannah Rihn and Sam Wilson for helpful 

1013 discussions and recommendations, and Scott Arkison for help setting up the website.

1014

1015

1016 Author contributions
1017 Conceptualization: David L. Robertson, Joseph Hughes, Quan Gu, Haiting Chai.

1018 Data curation: Haiting Chai.

1019 Formal analysis: Haiting Chai.

1020 Funding acquisition: Haiting Chai, David L. Robertson.

1021 Webserver: Haiting Chai.

1022 Supervision:  David L. Robertson, Joseph Hughes, Quan Gu.

1023 Writing-original draft: Haiting Chai.

1024 Writing-review & editing: David L. Robertson, Joseph Hughes, Quan Gu, Haiting Chai.

1025

1026

1027 Data availability statement
1028 The implemented web server and data were freely accessible at http://isgpre.cvr.gla.ac.uk/.

1029

1030

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


41

1031 Funding
1032 HC: China Scholarship Council under Grant 201706620069. JH, QG and DLR: Medical Research 

1033 Council (MC_UU_1201412). The funders had no role in study design, data collection and analysis, 

1034 decision to publish, or preparation of the manuscript.

1035

1036 Competing interests
1037 The authors have declared that no competing interests exist.

1038

1039

1040 References
1041 1. Rönnblom L. The type I interferon system in the etiopathogenesis of autoimmune diseases. 

1042 Ups J Med Sci. 2011; 116(4): 227-237. https://doi.org/10.3109/03009734.2011.624649 PMID: 

1043 22066971

1044 2. Mostafavi S, Yoshida H, Moodley D, LeBoité H, Rothamel K, Raj T, et al. Parsing the 

1045 interferon transcriptional network and its disease associations. Cell. 2016; 164(3): 564-578. 

1046 https://doi.org/10.1016/j.cell.2015.12.032 PMID: 26824662

1047 3. De Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and 

1048 biological functions. J Biol Chem. 2007; 282(28): 20053-20057. 

1049 https://doi.org/10.1074/jbc.R700006200 PMID: 17502368

1050 4. Kotenko SV, Durbin JE. Contribution of type III interferons to antiviral immunity: location, 

1051 location, location. J Biol Chem. 2017; 292(18): 7295-7303. 

1052 https://doi.org/10.1074/jbc.R117.777102 PMID: 28289095

1053 5. Fensterl V, Sen GC. Interferons and viral infections. Biofactors. 2009; 35(1): 14-20. 

1054 https://doi.org/10.1002/biof.6 PMID: 19319841

1055 6. Lazear HM, Schoggins JW, Diamond MS. Shared and distinct functions of type I and type III 

1056 interferons. Immunity. 2019; 50(4): 907-923. https://doi.org/10.1016/j.immuni.2019.03.025 

1057 PMID: 30995506

1058 7. Takaoka A, Yanai H. Interferon signalling network in innate defence. Cell Microbiol. 2006; 

1059 8(6): 907-922. https://doi.org/10.1111/j.1462-5822.2006.00716.x PMID: 16681834

1060 8. Shaw AE, Hughes J, Gu Q, Behdenna A, Singer JB, Dennis T, et al. Fundamental properties 

1061 of the mammalian innate immune system revealed by multispecies comparison of type I 

1062 interferon responses. PLoS Biol. 2017; 15(12): e2004086. 

1063 https://doi.org/10.1371/journal.pbio.2004086 PMID: 29253856

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


42

1064 9. Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host 

1065 defenses. Annu Rev Immunol. 2014; 32: 513-545. https://doi.org/10.1146/annurev-immunol-

1066 032713-120231 PMID: 24555472

1067 10. Stark GR, Darnell Jr JE. The JAK-STAT pathway at twenty. Immunity. 2012; 36(4): 503-514. 

1068 https://doi.org/10.1016/j.immuni.2012.03.013 PMID: 22520844

1069 11. Schoggins JW. Interferon-stimulated genes: what do they all do? Annu Rev Virol. 2019; 6: 

1070 567-584. https://doi.org/10.1146/annurev-virology-092818-015756 PMID: 31283436

1071 12. Aso H, Ito J, Koyanagi Y, Sato K. Comparative description of the expression profile of 

1072 interferon-stimulated genes in multiple cell lineages targeted by HIV-1 infection. Front 

1073 Microbiol. 2019; 10: 429. https://doi.org/10.3389/fmicb.2019.00429 PMID: 30915053

1074 13. Dang W, Xu L, Yin Y, Chen S, Wang W, Hakim MS, et al. IRF-1, RIG-I and MDA5 display 

1075 potent antiviral activities against norovirus coordinately induced by different types of 

1076 interferons. Antiviral Res. 2018; 155: 48-59. https://doi.org/10.1016/j.antiviral.2018.05.004 

1077 PMID: 29753657

1078 14. Masola V, Bellin G, Gambaro G, Onisto M. Heparanase: A multitasking protein involved in 

1079 extracellular matrix (ECM) remodeling and intracellular events. Cells. 2018; 7(12): 236. 

1080 https://doi.org/10.3390/cells7120236 PMID: 30487472

1081 15. Schoggins JW. Recent advances in antiviral interferon-stimulated gene biology. 

1082 F1000Research. 2018; 7. https://doi.org/10.12688/f1000research.12450.1 PMID: 29568506

1083 16. Spence JS, He R, Hoffmann H-H, Das T, Thinon E, Rice CM, et al. IFITM3 directly engages 

1084 and shuttles incoming virus particles to lysosomes. Nat Chem Biol. 2019; 15(3): 259-268. 

1085 https://doi.org/10.1038/s41589-018-0213-2 PMID: 30643282

1086 17. Haller O, Staeheli P, Schwemmle M, Kochs G. Mx GTPases: dynamin-like antiviral machines 

1087 of innate immunity. Trends Microbiol. 2015; 23(3): 154-163. 

1088 https://doi.org/10.1016/j.tim.2014.12.003 PMID: 25572883

1089 18. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014; 

1090 14(1): 36-49. https://doi.org/10.1038/nri3581 PMID: 24362405

1091 19. García-Sastre A. Ten strategies of interferon evasion by viruses. Cell Host Microbe. 2017; 

1092 22(2): 176-184. https://doi.org/10.1016/j.chom.2017.07.012 PMID: 28799903

1093 20. Giotis ES, Robey RC, Skinner NG, Tomlinson CD, Goodbourn S, Skinner MA. Chicken 

1094 interferome: avian interferon-stimulated genes identified by microarray and RNA-seq of 

1095 primary chick embryo fibroblasts treated with a chicken type I interferon (IFN-α). Vet Res. 

1096 2016; 47(1): 1-12. https://doi.org/10.1186/s13567-016-0363-8 PMID: 27494935

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


43

1097 21. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al. Interferome v2. 0: an 

1098 updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2012; 41(D1): 

1099 D1040-D1046. https://doi.org/10.1093/nar/gks1215 PMID: 23203888

1100 22. OhAinle M, Helms L, Vermeire J, Roesch F, Humes D, Basom R, et al. A virus-packageable 

1101 CRISPR screen identifies host factors mediating interferon inhibition of HIV. Elife. 2018; 7: 

1102 e39823. https://doi.org/10.7554/eLife.39823 PMID: 30520725

1103 23. Zhang Y, Burke CW, Ryman KD, Klimstra WB. Identification and characterization of 

1104 interferon-induced proteins that inhibit alphavirus replication. J Virol. 2007; 81(20): 11246-

1105 11255. https://doi.org/10.1128/JVI.01282-07 PMID: 17686841

1106 24. Pamela C, Kanchwala M, Liang H, Kumar A, Wang L-F, Xing C, et al. The IFN response in 

1107 bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL 

1108 induction. The Journal of Immunology. 2018; 200(1): 209-217. 

1109 https://doi.org/10.4049/jimmunol.1701214 PMID: 29180486

1110 25. Feld JJ, Nanda S, Huang Y, Chen W, Cam M, Pusek SN, et al. Hepatic gene expression during 

1111 treatment with peginterferon and ribavirin: Identifying molecular pathways for treatment 

1112 response. Hepatology. 2007; 46(5): 1548-1563. https://doi.org/10.1002/hep.21853 PMID: 

1113 17929300

1114 26. Trilling M, Bellora N, Rutkowski AJ, de Graaf M, Dickinson P, Robertson K, et al. 

1115 Deciphering the modulation of gene expression by type I and II interferons combining 4sU-

1116 tagging, translational arrest and in silico promoter analysis. Nucleic Acids Res. 2013; 41(17): 

1117 8107-8125. https://doi.org/10.1093/nar/gkt589 PMID: 23832230

1118 27. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference 

1119 sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional 

1120 annotation. Nucleic Acids Res. 2016; 44(D1): D733-D745. 

1121 https://doi.org/10.1093/nar/gkv1189 PMID: 26553804

1122 28. Yu X, Liu H, Hamel KA, Morvan MG, Yu S, Leff J, et al. Dorsal root ganglion macrophages 

1123 contribute to both the initiation and persistence of neuropathic pain. Nat Commun. 2020; 11(1): 

1124 1-12. https://doi.org/10.1038/s41467-019-13839-2 PMID: 31937758

1125 29. Chen Y, Lun AT, Smyth GK. From reads to genes to pathways: differential expression analysis 

1126 of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. 

1127 F1000Research. 2016; 5. https://doi.org/10.12688/f1000research.8987.2 PMID: 27508061

1128 30. Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, et al. Ensembl 

1129 comparative genomics resources. Database. 2016; 2016: bav096. 

1130 https://doi.org/10.1093/database/bav096 PMID: 26896847

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


44

1131 31. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. 

1132 Nucleic Acids Res. 2020; 48(D1): D682-D688. https://doi.org/10.1093/nar/gkz966 PMID: 

1133 31691826

1134 32. Li HD, Menon R, Omenn GS, Guan Y. Revisiting the identification of canonical splice 

1135 isoforms through integration of functional genomics and proteomics evidence. Proteomics. 

1136 2014; 14(23-24): 2709-2718. https://doi.org/10.1002/pmic.201400170 PMID: 25265570

1137 33. Sieber P, Platzer M, Schuster S. The definition of open reading frame revisited. Trends Genet. 

1138 2018; 34(3): 167-170. https://doi.org/10.1016/j.tig.2017.12.009 PMID: 29366605

1139 34. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform 

1140 regulation in human tissue transcriptomes. Nature. 2008; 456(7221): 470-476. 

1141 https://doi.org/10.1038/nature07509 PMID: 18978772

1142 35. Bragg JG, Potter S, Bi K, Moritz C. Exon capture phylogenomics: efficacy across scales of 

1143 divergence. Mol Ecol Resour. 2016; 16(5): 1059-1068. https://doi.org/10.1111/1755-

1144 0998.12449 PMID: 26215687

1145 36. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing 

1146 complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008; 

1147 40(12): 1413-1415. https://doi.org/10.1038/ng.259 PMID: 18978789

1148 37. Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV. Selection in the evolution of gene 

1149 duplications. Genome Biol. 2002; 3(2): 1-9. https://doi.org/10.1186/gb-2002-3-2-research0008 

1150 PMID: 11864370

1151 38. Esposito M, Moreno-Hagelsieb G. Non-synonymous to synonymous substitutions suggest that 

1152 orthologs tend to keep their functions, while paralogs are a source of functional novelty. 

1153 bioRxiv. 2018: 354704. https://doi.org/10.1101/354704 

1154 39. Guéguen L, Duret L. Unbiased estimate of synonymous and nonsynonymous substitution rates 

1155 with nonstationary base composition. Mol Biol Evol. 2018; 35(3): 734-742. 

1156 https://doi.org/10.1093/molbev/msx308 PMID: 29220511

1157 40. Takata MA, Gonçalves-Carneiro D, Zang TM, Soll SJ, York A, Blanco-Melo D, et al. CG 

1158 dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature. 2017; 

1159 550(7674): 124-127. https://doi.org/10.1038/nature24039 PMID: 28953888

1160 41. Sievers A, Bosiek K, Bisch M, Dreessen C, Riedel J, Froß P, et al. K-mer content, correlation, 

1161 and position analysis of genome DNA sequences for the identification of function and 

1162 evolutionary features. Genes. 2017; 8(4): 122. https://doi.org/10.3390/genes8040122 PMID: 

1163 28422050

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


45

1164 42. Yu C-H, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon usage influences the local 

1165 rate of translation elongation to regulate co-translational protein folding. Mol Cell. 2015; 59(5): 

1166 744-754. https://doi.org/10.1016/j.molcel.2015.07.018 PMID: 26321254

1167 43. Zhou Z, Dang Y, Zhou M, Li L, Yu C-h, Fu J, et al. Codon usage is an important determinant 

1168 of gene expression levels largely through its effects on transcription. Proceedings of the 

1169 National Academy of Sciences. 2016; 113(41): E6117-E6125. 

1170 https://doi.org/10.1073/pnas.1606724113 PMID: 27671647

1171 44. Pommié C, Levadoux S, Sabatier R, Lefranc G, Lefranc MP. IMGT standardized criteria for 

1172 statistical analysis of immunoglobulin V‐REGION amino acid properties. J Mol Recognit. 

1173 2004; 17(1): 17-32. https://doi.org/10.1002/jmr.647 PMID: 14872534

1174 45. Kumar M, Gouw M, Michael S, Sámano-Sánchez H, Pancsa R, Glavina J, et al. ELM—the 

1175 eukaryotic linear motif resource in 2020. Nucleic Acids Res. 2020; 48(D1): D296-D306. 

1176 https://doi.org/10.1093/nar/gkz1030 PMID: 31680160

1177 46. Tufarelli C, Ahmad A, Strohbuecker S, Scotti C, Sottile V. In Silico Identification of SOX1 

1178 Post-Translational Modifications Highlights a Shared Protein Motif. 2020. 

1179 https://doi.org/10.3390/cells9112471 PMID: 33202879

1180 47. Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE v2.0: enhancing 

1181 meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res. 

1182 2016: gkw985. https://doi.org/10.1093/nar/gkw985 PMID: 27794551

1183 48. Yoon J, Blumer A, Lee K. An algorithm for modularity analysis of directed and weighted 

1184 biological networks based on edge-betweenness centrality. Bioinformatics. 2006; 22(24): 

1185 3106-3108. https://doi.org/10.1093/bioinformatics/btl533 PMID: 17060356

1186 49. Friedel CC, Zimmer R. Influence of degree correlations on network structure and stability in 

1187 protein-protein interaction networks. BMC Bioinformatics. 2007; 8(1): 1-10. 

1188 https://doi.org/10.1186/1471-2105-8-297 PMID: 17688687

1189 50. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L. Hierarchical organization of 

1190 modularity in metabolic networks. Science. 2002; 297(5586): 1551-1555. 

1191 https://doi.org/10.1126/science.1073374 PMID: 12202830

1192 51. Hagai T, Azia A, Babu MM, Andino R. Use of host-like peptide motifs in viral proteins is a 

1193 prevalent strategy in host-virus interactions. Cell Rep. 2014; 7(5): 1729-1739. 

1194 https://doi.org/10.1016/j.celrep.2014.04.052 PMID: 24882001

1195 52. Noble WS. How does multiple testing correction work? Nat Biotechnol. 2009; 27(12): 1135-

1196 1137. https://doi.org/10.1038/nbt1209-1135 PMID: 20010596

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


46

1197 53. Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM Trans Intell Syst 

1198 Technol. 2011; 2(3): 1-27. https://doi.org/10.1145/1961189.1961199 

1199 54. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 

1200 score and accuracy in binary classification evaluation. BMC Genomics. 2020; 21(1): 1-13. 

1201 https://doi.org/10.1186/s12864-019-6413-7 PMID: 31898477

1202 55. MacFarland TW, Yates JM. Mann–whitney u test.  Introduction to nonparametric statistics for 

1203 the biological sciences using R: Springer; 2016. p. 103-132.

1204 56. Van den Eynden J, Larsson E. Mutational signatures are critical for proper estimation of 

1205 purifying selection pressures in cancer somatic mutation data when using the dN/dS metric. 

1206 Front Genet. 2017; 8: 74. https://doi.org/10.3389/fgene.2017.00074 PMID: 28642787

1207 57. Song H, Bremer BJ, Hinds EC, Raskutti G, Romero PA. Inferring protein sequence-function 

1208 relationships with large-scale positive-unlabeled learning. Cell Syst. 2020. 

1209 https://doi.org/10.1016/j.cels.2020.10.007 PMID: 33212013

1210 58. Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GA. Evidence for widespread GC-

1211 biased gene conversion in eukaryotes. Genome Biol Evol. 2012; 4(7): 675-682. 

1212 https://doi.org/10.1093/gbe/evs052 PMID: 22628461

1213 59. Lee NK, Li X, Wang D. A comprehensive survey on genetic algorithms for DNA motif 

1214 prediction. Inf Sci. 2018; 466: 25-43. https://doi.org/10.1016/j.ins.2018.07.004 

1215 60. Di Rienzo L, Miotto M, Bò L, Ruocco G, Raimondo D, Milanetti E. Characterizing hydropathy 

1216 of amino acid side chain in a protein environment by investigating the structural changes of 

1217 water molecules network. Front Mol Biosci. 2021; 8. 

1218 https://doi.org/10.3389/fmolb.2021.626837 PMID: 33718433

1219 61. Bhadra P, Yan J, Li J, Fong S, Siu SW. AmPEP: Sequence-based prediction of antimicrobial 

1220 peptides using distribution patterns of amino acid properties and random forest. Sci Rep. 2018; 

1221 8(1): 1-10. https://doi.org/10.1038/s41598-018-19752-w PMID: 29374199

1222 62. Pfleger CM, Kirschner MW. The KEN box: an APC recognition signal distinct from the D box 

1223 targeted by Cdh1. Genes Dev. 2000; 14(6): 655-665.  PMID: 10733526

1224 63. Fehr AR, Yu D. Control the host cell cycle: viral regulation of the anaphase-promoting 

1225 complex. J Virol. 2013; 87(16): 8818-8825. https://doi.org/10.1128/JVI.00088-13 PMID: 

1226 23760246

1227 64. Bösl K, Ianevski A, Than TT, Andersen PI, Kuivanen S, Teppor M, et al. Common nodes of 

1228 virus–host interaction revealed through an integrated network analysis. Front Immunol. 2019; 

1229 10: 2186. https://doi.org/10.3389/fimmu.2019.02186 PMID: 31636628

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


47

1230 65. Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. 

1231 Nat Rev Mol Cell Biol. 2015; 16(1): 18-29. https://doi.org/10.1038/nrm3920 PMID: 25531225

1232 66. Mészáros B, Erdős G, Dosztányi Z. IUPred2A: context-dependent prediction of protein 

1233 disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018; 46(W1): 

1234 W329-W337. https://doi.org/10.1093/nar/gky384 PMID: 29860432

1235 67. Michael S, Travé G, Ramu C, Chica C, Gibson TJ. Discovery of candidate KEN-box motifs 

1236 using cell cycle keyword enrichment combined with native disorder prediction and motif 

1237 conservation. Bioinformatics. 2008; 24(4): 453-457. 

1238 https://doi.org/10.1093/bioinformatics/btm624 PMID: 18184688

1239 68. Abedi M, Gheisari Y. Nodes with high centrality in protein interaction networks are 

1240 responsible for driving signaling pathways in diabetic nephropathy. PeerJ. 2015; 3: e1284. 

1241 https://doi.org/10.7717/peerj.1284 PMID: 26557424

1242 69. Ozato K, Shin D-M, Chang T-H, Morse HC. TRIM family proteins and their emerging roles 

1243 in innate immunity. Nat Rev Immunol. 2008; 8(11): 849-860. https://doi.org/10.1038/nri2413 

1244 70. Shaw AE, Rihn SJ, Mollentze N, Wickenhagen A, Stewart DG, Orton RJ, et al. The antiviral 

1245 state has shaped the CpG composition of the vertebrate interferome to avoid self-targeting. 

1246 PLoS Biol. 2021; 19(9): e3001352. https://doi.org/10.1371/journal.pbio.3001352 PMID: 

1247 34491982

1248 71. Yeom S, Giacomelli I, Fredrikson M, Jha S, editors. Privacy risk in machine learning: 

1249 Analyzing the connection to overfitting. 2018 IEEE 31st Computer Security Foundations 

1250 Symposium (CSF); 2018: IEEE.

1251 72. Ali J, Khan R, Ahmad N, Maqsood I. Random forests and decision trees. International Journal 

1252 of Computer Science Issues (IJCSI). 2012; 9(5): 272.  

1253 73. Zhang M-L, Zhou Z-H. ML-KNN: A lazy learning approach to multi-label learning. Pattern 

1254 recognition. 2007; 40(7): 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019 

1255 74. Cheng D, Zhang S, Deng Z, Zhu Y, Zong M, editors. kNN algorithm with data-driven k value. 

1256 International Conference on Advanced Data Mining and Applications; 2014: Springer.

1257 75. Zhang J, Chai H, Gao B, Yang G, Ma Z. HEMEsPred: Structure-based ligand-specific heme 

1258 binding residues prediction by using fast-adaptive ensemble learning scheme. IEEE/ACM 

1259 Trans Comput Biol Bioinform. 2016; 15(1): 147-156. 

1260 https://doi.org/10.1109/TCBB.2016.2615010 PMID: 28029626

1261 76. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue 

1262 expression (GTEx) project. Nat Genet. 2013; 45(6): 580-585. https://doi.org/10.1038/ng.2653 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


48

1263 77. Papatheodorou I, Moreno P, Manning J, Fuentes AM-P, George N, Fexova S, et al. Expression 

1264 Atlas update: from tissues to single cells. Nucleic Acids Res. 2020; 48(D1): D77-D83. 

1265 https://doi.org/10.1093/nar/gkz947 PMID: 31665515

1266 78. Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. 

1267 Nature. 2001; 411(6833): 41-42. https://doi.org/10.1038/35075138 PMID: 11333967

1268 79. Hahn MW, Kern AD. Comparative genomics of centrality and essentiality in three eukaryotic 

1269 protein-interaction networks. Mol Biol Evol. 2005; 22(4): 803-806. 

1270 https://doi.org/10.1093/molbev/msi072 PMID: 15616139

1271 80. Batada NN, Hurst LD, Tyers M. Evolutionary and physiological importance of hub proteins. 

1272 PLoS Comput Biol. 2006; 2(7): e88. https://doi.org/10.1371/journal.pcbi.0020088 PMID: 

1273 16839197

1274 81. Pérez-Martínez D. Innate immunity in vertebrates: an overview. Immunology. 2016; 148(2): 

1275 125-139. https://doi.org/10.1111/imm.12597 PMID: 26878338

1276 82. Jopling CL. Mutations: Stop that nonsense! Elife. 2014; 3: e04300. 

1277 https://doi.org/10.7554/eLife.04300 

1278 83. Zhu X, Pribis JP, Rodriguez PC, Morris Jr SM, Vodovotz Y, Billiar TR, et al. The central role 

1279 of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after 

1280 physical injury. Ann Surg. 2014; 259(1): 171-178. 

1281 https://doi.org/10.1097/SLA.0b013e31828611f8 PMID: 23470573

1282 84. Morris CR, Hamilton‐Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired amino 

1283 acid deficiencies: a focus on arginine and glutamine. Nutr Clin Pract. 2017; 32: 30S-47S. 

1284 https://doi.org/10.1177/0884533617691250 PMID: 28388380

1285 85. Levring TB, Hansen AK, Nielsen BL, Kongsbak M, Von Essen MR, Woetmann A, et al. 

1286 Activated human CD4+ T cells express transporters for both cysteine and cystine. Sci Rep. 

1287 2012; 2(1): 1-6. https://doi.org/10.1038/srep00266 PMID: 22355778

1288 86. Sikalidis AK. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, 

1289 tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res. 2015; 21(1): 9-17. 

1290 https://doi.org/10.1007/s12253-014-9860-0 PMID: 25351939

1291 87. Yin C, Zheng T, Chang X. Biosynthesis of S-Adenosylmethionine by magnetically 

1292 immobilized Escherichia coli cells highly expressing a methionine adenosyltransferase variant. 

1293 Molecules. 2017; 22(8): 1365. https://doi.org/10.3390/molecules22081365 PMID: 28820476

1294 88. Feld JJ, Modi AA, El–Diwany R, Rotman Y, Thomas E, Ahlenstiel G, et al. S-adenosyl 

1295 methionine improves early viral responses and interferon-stimulated gene induction in hepatitis 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


49

1296 C nonresponders. Gastroenterology. 2011; 140(3): 830-839. 

1297 https://doi.org/10.1053/j.gastro.2010.09.010 PMID: 20854821

1298 89. Li S-W, Lai C-C, Ping J-F, Tsai F-J, Wan L, Lin Y-J, et al. Severe acute respiratory syndrome 

1299 coronavirus papain-like protease suppressed alpha interferon-induced responses through 

1300 downregulation of extracellular signal-regulated kinase 1-mediated signalling pathways. J Gen 

1301 Virol. 2011; 92(5): 1127-1140. https://doi.org/10.1099/vir.0.028936-0 PMID: 21270289

1302 90. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. Lipocalin 2 mediates 

1303 an innate immune response to bacterial infection by sequestrating iron. Nature. 2004; 

1304 432(7019): 917-921. https://doi.org/10.1038/nature03104 PMID: 15531878

1305 91. Noçon AL, Ip JP, Terry R, Lim SL, Getts DR, Müller M, et al. The bacteriostatic protein 

1306 lipocalin 2 is induced in the central nervous system of mice with West Nile virus encephalitis. 

1307 J Virol. 2014; 88(1): 679-689. https://doi.org/10.1128/JVI.02094-13 PMID: 24173226

1308 92. Tissot C, Rebouissou C, Klein B, Mechti N. Both human α/β and γ interferons upregulate the 

1309 expression of CD48 cell surface molecules. J Interferon Cytokine Res. 1997; 17(1): 17-26. 

1310 https://doi.org/10.1089/jir.1997.17.17 PMID: 9041467

1311 93. Zarama A, Perez-Carmona N, Farre D, Tomic A, Borst EM, Messerle M, et al. 

1312 Cytomegalovirus m154 hinders CD48 cell-surface expression and promotes viral escape from 

1313 host natural killer cell control. PLoS Pathog. 2014; 10(3): e1004000. 

1314 https://doi.org/10.1371/journal.ppat.1004000 PMID: 24626474

1315 94. Martínez-Vicente P, Farré D, Engel P, Angulo A. Divergent Traits and Ligand-Binding 

1316 Properties of the Cytomegalovirus CD48 Gene Family. Viruses. 2020; 12(8): 813. 

1317 https://doi.org/10.3390/v12080813 PMID: 32731344

1318 95. Ricquier D. UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal 

1319 contribution and a historical perspective. Biochimie. 2017; 134: 3-8. 

1320 https://doi.org/10.1016/j.biochi.2016.10.018 PMID: 27916641

1321

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 9, 2021. ; https://doi.org/10.1101/2021.10.08.463622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.08.463622
http://creativecommons.org/licenses/by/4.0/

