
Differential geometry methods for
constructing manifold-targeted recurrent
neural networks.
Federico Claudi1*, Tiago Branco1

Abstract
Neural computations can be framed as dynamical processes, whereby the structure of the dynamics within a
neural network are a direct reflection of the computations that the network performs. A key step in generating
mechanistic interpretations within this computation through dynamics framework is to establish the link between
network connectivity, dynamics and computation. This link is only partly understood. Recent work has focused
on producing algorithms for engineering artificial recurrent neural networks (RNN) with dynamics targeted to a
specific goal manifold. Some of these algorithms only require a set of vectors tangent to the target manifold to
be computed, and thus provide a general method that can be applied to a diverse set of problems. Nevertheless,
computing such vectors for an arbitrary manifold in a high dimensional state space remains highly challenging,
which in practice limits the applicability of this approach. Here we demonstrate how topology and differential
geometry can be leveraged to simplify this task, by first computing tangent vectors on a low-dimensional
topological manifold and then embedding these in state space. The simplicity of this procedure greatly facilitates
the creation of manifold-targeted RNNs, as well as the process of designing task-solving on-manifold dynamics.
This new method should enable the application of network engineering-based approaches to a wide set of
problems in neuroscience and machine learning. Furthermore, our description of how fundamental concepts
from differential geometry can be mapped onto different aspects of neural dynamics is a further demonstration of
how the language of differential geometry can enrich the conceptual framework for describing neural dynamics
and computation.

1Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London, UK.
*Corresponding author: federico.claudi.17@ucl.ac.uk

Introduction

Networks of neurons can be viewed as dynamical systems
in which the joint activity of all units is a state that represents
the information stored in the network, and its dynamics repre-
sent computations (Vyas et al., 2020; Sussillo, 2014). Under
this computation through dynamics perspective, understand-
ing neuronal computation requires describing the dynamics
of neural networks and how these are determined by their
connectivity structure (Schaeffer et al., 2020; Finkelstein
et al., 2021). Neural dynamics are often conceptualized as
trajectories in an n-dimensional vector space - the state space
- in which the distance along each dimension represents the
firing rate of individual neurons. Recent work suggests that in
both biological and artificial neural networks, such neural tra-
jectories are often confined to a lower dimensional subspace
of state space (Gao and Ganguli, 2015; Gao et al., 2017;
Russo et al., 2018; Gallego et al., 2017; Maheswaranathan
et al., 2019), and occasionally, to a neural manifold with addi-
tional topological structure (Kim et al., 2017; Gardner et al.,
2021; Chaudhuri et al., 2019). It has been further hypothe-
sized that the geometry and topology of these low dimensional
neural manifolds is linked in a fundamental way to the compu-
tations carried out by the network (Maheswaranathan et al.,
2019; Gao et al., 2017; Jazayeri and Ostojic, 2021; Dar-

shan and Rivkind, 2021; Chung and Abbott, 2021; Pol-
lock and Jazayeri, 2020). This view therefore emphasizes
that understanding how network connectivity gives rise to
structured neural dynamics is a key goal towards explaining
neural computations.

Achieving this goal will likely require the measurement
of activity and connectivity of large number of neurons span-
ning multiple brain regions in individual animals. While
recent technological developments have enabled simultaneous
activity recordings from hundreds of neurons and detailed
reconstructions of network connectivity (Steinmetz et al.,
2021; Stringer et al., 2019; Winnubst et al., 2019; Osten
and Margrie, 2013), a complete description of a network’s
structure and activity in behaving animals remains largely
beyond the reach of experimental neuroscience. On the other
hand, artificial Recurrent Neural Networks (RNNs) can be
trained to solve a variety of tasks similar to those employed
in experimental neuroscience, and their connectivity struc-
ture and dynamics are perfectly known. This makes them an
ideal testing ground for developing theoretical and analytical
tools to investigate the links between connectivity, dynam-
ics and computation (Sussillo, 2014; Sussillo and Barak,
2013; Mastrogiuseppe and Ostojic, 2018). The majority
of work employing RNNs to address these issues uses tools
from dynamical systems theory to reverse-engineer the neu-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 2/13

Figure 1. A. Left, the topological manifold R2 with a schematic representation of tangent vectors at a point. Right, two different
embeddings of R2 in R3 with the corresponding tangent vectors. B. On manifold dynamics. Top, schematic representation of a
tangent vectors field on the topological manifold R2 . Bottom, the corresponding tangent vector field for an embedding of R2 in
R3 .

ral dynamics of networks trained to perform a task (Sussillo
and Barak, 2013; Schaeffer et al., 2020). This optimization-
based approach allows RNNs to discover how to best structure
their dynamics to carry out a certain computation. An alter-
native approach is to develop general algorithms for directly
constructing networks with dynamics that are targeted to a
pre-selected manifold, in an effort to produce a deeper un-
derstanding of how connectivity determines dynamics (Mas-
trogiuseppe and Ostojic, 2018; Beiran et al., 2020; Elia-
smith and Anderson, 2003; Pollock and Jazayeri, 2020;
Biswas and Fitzgerald, 2020; Darshan and Rivkind, 2021).
A particularly promising approach in this direction is the Em-
bedding Manifolds with Population-level Jacobians (EMPJ)
algorithm (Pollock and Jazayeri, 2020), which enables the
creation of RNNs with dynamics confined to a target man-
ifold in state space. Briefly, EMPJ uses vectors tangent to
the target manifold to build a system of equations that yields
the connectivity matrix for a network with dynamics that lay
on the target manifold. Tangent vectors play a dual role in
EMPJ: by being tangent to the target manifold they confine the
RNN dynamics to it, and their orientation and magnitude dic-
tate the on-manifold dynamics. EMPJ is therefore an elegant
and parsimonious algorithm capable of producing RNNs tar-
geted to different manifolds and displaying rich on-manifold
dynamics.

In practice, however, computing the tangent vectors may be
far from trivial, which effectively limits the range of problems

that methods like EMPJ can be applied to. For example, a
target manifold of given topology (e.g., the plane) can be em-
bedded in state space in infinite ways. This makes computing
tangent vectors a challenging task since the position and ori-
entation of tangent vectors depend on the precise geometry of
the target manifold (Figure 1A). The problem is made even
harder by the necessity to precisely orient the tangent vectors
to produce the desired on-manifold dynamics (e.g., to create
attractor states; Figure Figure 1B, bottom). Here we aim
to address this challenge by describing a general approach
that simplifies the task of computing tangent vectors on target
manifolds and specifying the required on-manifold dynamics
(Figure Figure 1B). We employ concepts from topology and
differential geometry to show how tangent vectors can be com-
puted on topological manifolds prior to their embedding in
state space (Figure Figure 1A, left), thus removing the need
for recomputing the tangent vectors for different choices of
manifold embeddings. This approach can in principle be com-
bined with local geometry-based algorithms such as EMPJ,
thus widening the class of problems that they can be readily
applied to. We believe that this work adds to the view that
ideas from differential geometry map naturally onto neural
dynamics concepts and are therefore a powerful framework
for understanding the link between connectivity, dynamics
and computation.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 3/13

Computing tangent vectors
In this section we demonstrate the application of concepts
from differential geometry to the task of computing tangent
vectors for creating manifold targeted RNNs. We leave the
precise definitions of key objects, highlighted in bold, to a
Mathematical Appendix section, and instead focus on provid-
ing an intuitive understanding of the method.

Tangent vectors on the topological manifold
A topological manifold M is a topological space locally
homeomorphic to Euclidean space Rd(e.g.: the plane and the
sphere are locally similar to R2 at every point). In neuro-
science, neural manifolds are often conceptualized as being
situated or embedded in a higher dimensional vector space Rn,
the neural state space. A topological manifold, however, does
not necessarily exist within a larger space. Indeed, computa-
tions are often more easily carried out on the manifold prior to
its embedding, like in the case of tangent vectors. For clarity,
here we will refer to a manifold embedded in state space as an
embedded manifold and as a topological manifold otherwise,
although technically both are topological manifolds. A topo-
logical manifold is simply defined by a set and a topology.
For example, the line R1 manifold can be represented by the
set M = [0, 1] endowed with the standard topology. We
leave the definition of each of the manifolds used in this work
to the Methods section.

For an m-dimensional manifold M embedded in an n-
dimensional space (with n > m), tangent vectors are n-
dimensional vectors tangent toM at a point. This view of
tangent vectors, however, depends on the manifold being
embedded in a larger vector space, and thus cannot be used
as a general definition of a tangent vector on a topological
manifold. Instead, tangent vectors at a point p ∈ M are
defined as equivalence classes of parametrized curves γ :
R ⊃ I → M such that two curves are equivalent if they
share the same directional derivative at p. This more abstract
definition of tangent vectors is equivalent to the traditional
view of tangent vectors for embedded manifolds (see below)
but it enables us to compute tangent vectors on the topological
manifold directly.

Any tangent vector vp belongs to a tangent vector space at
p : TpM and can thus be defined as a linear combination of
the basis vectors of TpM . A fundamental theorem in differ-
ential topology establishes that dim(TpM) = dim(M) such
that d-many basis vectors need to be defined. The definition of
the basis of TpM relies on the concept of chart of a topologi-
cal manifold: a chart establishes a local coordinates system
by mapping an open neighborhood U ⊂ M to a subset of
Rd, using a bijective map x (Figure 2A). For a point p it’s
then possible to determine its position x(p) in the local coor-
dinates system defined by a chart. In the same coordinates
system it is possible to define d-many parametrized functions
fi going through x(p) and parallel to one axis of the local
coordinates system. These can then be projected onto the

manifold as x−1 ◦ fi giving a set of parametrized functions
on the manifold with different directional derivatives which
can act as representative functions for basis vectors of TpM
(Figure 2A). Let ei = [x−1 ◦ fi] be a basis vector, then any
tangent vector vp can be expressed as a linear combination
of the basis vectors: vp =

∑d
i=1 αiei where the αi are scalar

factors.

Computing a tangent vector of a topological manifold thus
requires: 1) definition of the manifold itself, 2) construction
of set of charts covering the manifold, 3) definition of the
basis functions fi, 4) definition of the scalar factors αi. We
will discuss the final step in more detail below, but for now
we note that steps 1-3 need only be carried out once per topo-
logical manifold. Once this has been done for a manifold,
re-computing tangent vectors for different factors α1 simply
requires carrying out simple calculations (which can be imple-
mented in computer code) but no additional analytical work.
Indeed, tangent vectors on any embedding of the topological
manifold can also be effortlessly computed, as we will show
next.

Tangent vectors on the embedded manifold
The embedding of a topological manifold can intuitively be
conceptualized as placing the manifold within another, higher
dimensional, manifold or, like in this case, in a vector space,
such that the resulting embedded manifold is still a topological
manifold (i.e. without tears or self intersections). For a given
sufficiently large embedding space, a manifold can be embed-
ded in infinitely many ways, resulting in embedded manifolds
with very different geometries (Figure 1A). Importantly, all
embedded manifolds share the same topological structure as a
result of being an embedding of the same topological manifold
(e.g., any embedding of the plane is always a two dimensional
surface in a higher dimensional space). Nevertheless, the
widely different geometry of the embedded manifolds results
in differently oriented tangent vectors, complicating the task
of identifying tangent vectors for RNN design (Figure 1A).

This difficulty can be avoided simply by noting that given
tangent vectors defined on a topological manifold and an
embedding function φ, φ can be used to easily compute
the corresponding tangent vectors on the embedded mani-
fold. It is in fact possible to define a pushforward map
φ∗ : TpM → Tφ(p)φ(M) assigning to each element vp of the
tangent vector space at a point onM an element v∗p of the
corresponding tangent vector space on the embedded mani-
fold. An alternative approach, however, is to project the basis
vectors of TpM , ei = [x−1 ◦ fi] onto the embedded manifold
as e∗i = [φ ◦ x−1 ◦ fi] (Figure 2B). Then, v∗p =

∑d
i=1 αie

∗
i

where the αi are the same scalar factors as above.
The e∗i are valid tangent vectors according to the definition

of tangent vectors as equivalence classes above. Creating
manifold targeted RNNs, however, requires tangent vectors
in the familiar form of n-dimensional vectors at a point to
build a system of equations that can be solved to obtain the

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 4/13

Figure 2. A. Graphic representation of a two dimensional topological manifoldM and a chart (x, U) containing a point p. The
basis functions fi in the chart’s local coordinates system are also shown. B. Graphic representation of an embedding ofM with
the basis functions φ ◦ x−1 ◦ fi shown. C. Tangent vectors (black) at selected points (blue dots) on one and two dimensional
manifolds (light blue lines and surfaces). D. Tangent vector fields on the sphere. The tangent vectors produced by three different
tangent vector fields for the sphere manifold are shown. For panels C and D, the manifolds were embedded in R64 and visualized
in three dimensions using the first three principal components of a PCA model, see Methods for details.

network’s connectivity matrix. These can be obtained by
taking the derivative of the map φ ◦ x−1 ◦ fi and evaluate
it at φ(p) which can be done numerically since φ ◦ x−1 ◦ fi
is a parametrized curve in Rn(it is a map R toRn). The n-
dimensional basis vectors e∗i obtained through the derivative
operation can be combined to give the n-dimensional vector
form of v∗p used for RNN fitting as described above.

Most manifolds of interest in neuroscience are low dimen-
sional, and for these embedding maps onto R3 are easy to
define. For example, for the two dimensional manifold S2 (the
sphere), φ(p) = sin(p0)∗cos(p1), sin(p0)∗sin(p1), cos(p0))
is an embedding (given an appropriate definition of the man-
ifold’s set, see Methods) as it gives the familiar unit sphere
centered at the origin. In general, however, embedding func-
tions for arbitrarily large embedding spaces, like the ones of
interest in neuroscience, are harder to define. To overcome
this limitation, we note that an orthonormal (n × k) matrix
N acts as an embedding of Rk in Rn, for k < n. Thus, if an
embedding φ ofM into Rk exists, it is possible to embedM

in Rnas Nφ(M). This procedure can therefore be used to
embed manifolds onto arbitrarily large state spaces, with the
limitation that only embeddings that are possible in a lower
dimensional space can be used, therefore reducing the range
of geometries of the embedded manifold. Nevertheless, this
procedure can produce rich and interesting embeddings of
target manifolds in state space (see Figure 2C for embed-
dings in R64). Importantly, the method for computing tangent
vectors described here is agnostic to the way that embedding
functions are obtained and can thus be used with embedding
functions obtained through other methods.

Tangent vector fields
In the preceding sections we demonstrated how a tangent vec-
tor can be defined as a linear combination of basis vectors
of TpM or Tφ(p)φ(M), which requires that d-many scalar
coefficients αi are specified. The choice of coefficients de-
termines the orientation and magnitude of the tangent vector
and thus the on-manifold dynamics of the RNN at that point.
To obtain the desired dynamics then it is necessary to specify

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 5/13

Figure 3. A. RNN dynamics (salmon traces) for RNNs targeted to one dimensional manifolds embedded in R64 visualized in
PCA space (see Methods). Different traces show the RNN dynamics when the RNN was initialized to a different initial condition
(blue dots). Insets show the connectivity matrix of RNNs producing the dynamics shown in figure. B. Quantification of dynamics
drift for the cylinder (left) and sphere (right) manifolds in R64. RNNs were created with dynamics as shown on the left of each
panel such that the distance from the origin of state space would remain constant over time (see inset). The plots on the right
on each panel show the change in distance from the origin over one complete revolution across different starting points. C.
Quantification of dynamics accuracy for different vector fields on the plane manifold in R64. Three different vector fields were
defined for the same manifold, producing different RNN dynamics (shown in the background of each panel). The angle between
the RNN dynamics and the tangent vector at the point in which the RNN was initialize was quantified (see inset) and shown as
kernel density estimate distributions. D. Dynamics fixed points. Visualization of the dynamics of an RNN fitted using a vector
field which specified a single attractor point (see inset). The plot shows the dynamics evolving in the plane spanned by the first
two principal components (see Methods) over time. E. Connectivity matrix rank. The rank of the connectivity matrix W of
networks of different dimensions fitted to three different embeddings of the line manifold in Rn. F. Task solving dynamics. Left,
vector field and RNN dynamics on R2 . Arrows indicate the two inputs vectors u1 and u2. Right, example trial. Purple lines
show the two inputs, dotted lines the expected network outputs. Solid orange lines show the actual network outputs.

different coefficients for each point on the manifold. This
can be achieved by defining a map ψ :M→ Rd assigning a
d-dimensional vector to each point on the manifold whose ele-
ments are the αi coefficients. Thus ψ effectively assigns a tan-
gent vector to each p ∈M, making it a tangent vector field
and different choices of ψ define different vector fields on the

same manifold (Figure 2D). Importantly, ψ is defined on the
topological manifold such that the same vector field map can
be used to generate RNNs with the same on-manifold dynam-
ics but different embedded manifold geometry. On-manifold
dynamics can therefore be defined on a d-dimensional space
independently of the number of units in the network and how

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 6/13

the n-dimensional dynamics unfold in state space (which
depends, in part, on the choice of embedding function). Con-
ceptually, ψ captures the latent variables dynamics solving a
given task, which depends uniquely on the logical structure of
the task itself (e.g., on number of latent variables and their dy-
namics; Pollock and Jazayeri (2020); Jazayeri and Ostojic
(2021); Maheswaranathan et al. (2019)).

Constructing targeted RNN

In this section we demonstrate that tangent vectors computed
with the above procedure produce manifold targeted RNNs
with the desired on-manifold dynamics. While Pollock and
Jazayeri (2020) described a method for obtaining an RNNs
connectivity matrix from a set of tangent vectors, here we
describe a similar alternative procedure for achieving the same
goal. Next, we use these procedure to create RNNs fitted to
different manifolds and with different choices of embedding
and vector field maps.

The RNNs used here are simple autonomous dynamical
systems of n identical units whose dynamics are defined as:

ḣ = Wσ(h) (1)

where ḣ represents the first derivative of the network’s state h
with respect to time,W is an n×nmatrix whose entries define
the strength of the connection between two units and σ is a
non linear function (here tanh). Since the RNN dynamics are
entirely specified by W once an initial condition is selected,
the task of creating manifold targeted RNNs can be reduced to
finding aW yielding the desired dynamics when the network’s
state is initialized on the target manifold.

The network state corresponds to a point in the n-dimensional
state space. For an RNN whose dynamics are confined to a
target (embedded) manifold, this implies h = φ(p). Similarly,
ḣ represents a velocity vector indicating how fast and in which
direction the network state will evolve and must therefore be
tangent to the target manifold at all times. Thus, ḣ is a tangent
vector of the embedded manifold (ḣ = v∗p). We can then
re-write equation 1 as:

v∗p = Wσ(φ(p)) (2)

to reflect the notation described in the previous section.

Given a point on the topological manifold (and a vector
field maps ψ) we can compute φ(p) and v∗p such that equation
2 can be used to compute W . However, equation 2 has n
knowns and n2 unknowns. Thus, in practice, we sample k-
many points on the topological manifold and build a system

of equations:

∣∣∣∣∣∣∣∣∣
v∗p1
v∗p2

...
v∗pk

∣∣∣∣∣∣∣∣∣ = W

∣∣∣∣∣∣∣∣∣
σ(φ(p1))
σ(φ(p2))

...
σ(φ(pk))

∣∣∣∣∣∣∣∣∣ (3)

which can be used to solve for W using least squares.

This simple method can be used to construct RNNs whose
dynamics lay on target manifolds in arbitrarily large state
spaces(Figure 3). The manifold targeted RNNs thus obtained
have low-rank connectivity matrices (with the rank matching
the embedded manifold’s extrinsic dimensionality; Figure
3E), yet they show minimal off-manifold deviations over time
(Figure 3B) and can display rich and accurate on-manifold dy-
namics (Figure 3C,D). Indeed the approach outlined here can
be used to easily construct RNNs with task-solving dynamics
Figure 3F. The appropriate choice of on-manifold dynamics
allows the network to solve a 2-bit memory task by using
four fixed points attractors to store its internal representation
of the inputs. New inputs can update this representation by
moving the network state between different attractors. Fur-
thermore, the dynamics are stable with respect to repeated,
redundant, inputs which do not push the state beyond the
current attractor’s basin of attraction. While gradient-descent
algorithms are used to train networks to perform this kind
of task (Sussillo and Barak, 2013), here careful choice of
the dynamics manifold and on-manifold dynamics yields a
task-solving network directly.

Discussion
In this manuscript we have leveraged topology and differential
geometry to simplify the task of computing vectors tangent
to a manifold in state space. These vectors can be used with
local-geometry based RNN engineering algorithms (Pollock
and Jazayeri, 2020) to create RNNs with dynamics that un-
fold along the target manifold and have rich, task-solving,
on-manifold dynamics. Our approach facilitates the compu-
tation of tangent vectors by carrying it out on a topological
manifold prior to embedding it in state space. This has the
advantage that once a tangent vector is defined on the topo-
logical manifold, the corresponding vector can be computed
on any embedding of the manifold in state space.

By using the language of differential geometry we can sep-
arately define the geometry of the embedded manifold (which
depends on the embedding function) and the on-manifold
dynamics (defined by a vector field over the topological man-
ifold), as well as the manifold topology itself. Conceptu-
ally, the topology of a network’s activity manifold and its
on-manifold dynamics are determined by the logical structure
of the task being performed, and are shared across networks
with different architectures (Maheswaranathan et al., 2019).
On the other hand, the geometry of the embedded manifolds

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 7/13

is constrained by the properties of the individual network (i.e.,
choice of hyperparameters) and largely independent of the
computation being performed. For example, networks with
different non-linear activation functions (e.g.: tahn vs ReLu)
might require that the embedded manifold is confined to differ-
ent sub-regions of state space. Differential geometry provides
a language for describing manifold topology and geometry
independently, thus mirroring the independent nature of these
phenomena.

The intrinsic topology of neural manifold and on-manifold
dynamics are increasingly regarded as crucial for understand-
ing neural computations (Jazayeri and Ostojic, 2021; Dar-
shan and Rivkind, 2021; Chung and Abbott, 2021). Hav-
ing a conceptual framework for exploring these ideas is thus
crucial for gaining further insights into the link between net-
work connectivity, dynamics and computation. Given the in-
trinsically geometric nature of network dynamics, we believe
that differential geometry should be a fundamental element of
such framework. It allows for deep and precise understand-
ing of several key concepts in neural dynamics (e.g. mani-
fold topology vs embedded geometry), thereby providing a
promising venue for the abstraction of fundamental mechanis-
tic explanations of computation across neural networks with
different properties. The approach presented here is a step in
applying topology and differential geometry based approaches
to investigate the link between connectivity, dynamics and
computation, as well as to enable the application of methods
such as EMPJ (Pollock and Jazayeri, 2020) to a wider class
of problems in neuroscience and machine learning.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 8/13

Methods
Code availability
All work presented in this manuscript was carried out using
custom python code. The code, included scripts to replicate
all figures, is available at the GitHub repository: https://
github.com/FedeClaudi/manyfolds. The python
code makes use of open source science software python pack-
ages including numpy, scikit and matplotlib (Harris et al.,
2020; Pedregosa et al., 2011; Hunter, 2007).

Manifolds
manifolds definitions
Topological manifolds are defined by a choice of set M and
topology. Here we assume the standard topology throughout,
the following sets were used to define each manifold:

• line R1: M = [0, 1]

• circle S1: M = [0, 2π]

• plane R2 : M = [0, 1]× [0, 1]

• cylinder C: M = [0, 2π]× [0, 1]

• sphere S2: M = [0, π]× [0, 2π]

where × denotes the Cartesian product.

manifold embeddings
All manifolds were embedded in R64except for Figure 3E.
The embedding was achieved in two steps as described in
the text: a function φ : M → R3 was used to embed the
manifolds in R3 and a random orthonormal 3 × 64 matrix
acted as an embedding map R3 → R64.

The following embedding functions φ were used:

• R1 as helix.
φ(p) = (cos(4∗π∗p)2 , sin(4∗π∗p)2 , p+ 0.25)

• R1 as line.
φ(p) = (sin(2p)− 0.5, 2sin(p)− 1,−4cos(p) + 3)

• S1 as curved circle.
φ(p) = (sin(p), 0.8cos(p), cos(2p)

2

2 + 0.5)

• S1 as bent circle.
φ(p) = (sin(p), 0.8cos(p), cos(p)

2

2 + 0.5)

• C as cone.
φ(p) = (ksin(p0)2 , kcos(p0)2 , p1 + 0.1).
k = p1

2 + 0.4

• C as cylinder.
φ(p) = (sin(p0)2 , cos(p0)2 , p1 + 0.1)

• R2 as curved plane.
φ(p) = 2(p0, sin(p1), 0.4(p1 − p0)2)

• R2 as flat plane.
φ(p) = (p0 + 0.2, p1 + 0.2, (p0+p1)2)

• S2 as unit sphere.
φ(p) = (sin(p0)cos(p1), sin(p0)sin(p1), cos(p0))

visualizing embedded manifolds
Three dimensional visualizations of embedded manifolds and
RNN dynamics were realized with the python package vedo
(Musy et al., 2021). A set of m (25-1000) points were sam-
pled from the topological manifold and the coordinates in
embedding space were computed. Then a PCA model model
was fitted using the scikit package (Pedregosa et al., 2011)
and the first three principal components was used to reduce
the dimensionality of the point cloud to three dimensions.
The manifold’s surface was reconstructed in PCA space using
algorithms implemented in vedo. For Figure 3D, the first
two principal components were used and the third dimension
represented time.

Manifold charts ad basis functions
To define a set of charts covering the topological manifold one
or two charts per manifold were used. When two charts were
used, the chart set Ui and map xi were carefully selected such
that xi(Ui) was homeomorphic to the same set in Rdfor each
chart, simplifying the definition of basis functions. The basis
functions were simply defined as maps fi : [0, 1] → xi(Ui)
parallel to one axis of the local coordinate space. For instance
for a two dimensional manifold with xi(Ui) ∼= [0, 1]× [0, 1],
the first basis function for a point p ∈ M is defined as
f1(λ) = (λ, x(p)).

The following charts and basis functions were used:

• For R1 a single chart (x, U) was defined with U = M
and x := x(p)→ 2p.

• for S1, two charts were used with U1 = [0, π], U2 =
[π, 2π] and x1 = id, x2 := x(p) = p− π.

• for R2 a single chart was used with U = M and x = id.

• for S1 two charts were used with U1 = [0, π]× [0, π],
U2 = [0, π] × [π, 2π] and x1 := x1(p) = (p0π ,

p1
π),

x2 := x2(p) = (p0π ,
p1−π
π).

• for C two charts were used with U1 = [0, π] × [0, 1],
U2 = [π, 2π]× [0, 1] and x1 := x1(p) = (p0π , p1) and
x2 := x2(p) = (p0−ππ , p1).

Vector fields
Tangent vector fields maps (ψ) were used to specify the mag-
nitude and orientation of tangent vectors. For Figure 2D, the
following vector field maps were used:

• ψ(p) = (− sign(cos(p0))3 , 0)

• ψ(p) = (−λ cos(p0)2 , λ4) with λ = 1.5− abs(cos(p0))

• ψ(p) = (1
4 ,

1
4)

For Figure 3A, the vector field was ψ(p) = 1 while in
panel B the vector field used was ψ(p) = (0, 1) for the sphere
and ψ(p) = (1, 0) for the cylinder. In panel C the three vector
fields were:

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://github.com/FedeClaudi/manyfolds
https://github.com/FedeClaudi/manyfolds
https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 9/13

• ψ(p) = 1
3 (sin(p0p1), 1)

• ψ(p) = 1
3 (sin(π(p0 − 1

2))cos(π(p1 − 1
2)))

• ψ(p) = 1
3 (sin(2πp1), sin(2πp0))

For panel D: ψ(p) = 3(1
2 − p0,

1
2 − p1). The vector field for

panel F is described in the section Task solving dynamics of
the methods.

Tangent vectors computation
To compute the tangent vector at a point φ(p) on the em-
bedded manifold, the position xi(p) of the point in the chart
representation was computed (given a chart (xi, Ui) such that
p ∈ Ui). Next, the basis functions were defined as described
above to obtain a one dimensional curve in xi(Ui) ⊂ Rd for
each basis. Next, the projection of the basis functions onto the
embedded manifold was computed as φ◦x−1◦fi yielding one
dimensional curves in Rn. The derivative of these curves with
respect to the parameter λ of fi was computed and evaluated
at the point φ(p), to obtain the basis tangent vector. Finally,
the tangent vector field map ψ was evaluated at p to obtain
the coefficients for the linear combination of basis vectors and
thus compute the tangent vector.

RNN creation
The procedure for generating manifold targeted RNNs is de-
scribed in the main text. Here we note that for each manifold
a set of k = 3− 100 equally spaced points was used to build
the system of equations whose solution, obtained via least
squares using numpy, gave the RNN connectivity matrix W ,

Dynamics drift
To estimate how much the RNN dynamics drifted off the sur-
face of the target embedded manifolds over time, 10 RNNs
were fitted to the cylinder and sphere manifolds each using the
embedding and vector field maps as described above. Each
RNN was initialized at 25 different locations on the embedded
manifold and allowed to evolve until it completed an entire
revolution around the manifold and returned to its original
position. The average and standard deviation of the normal-
ized distance from the origin of state space for all RNNs and
all starting positions on a given manifold was computed and
shown in figure.

Dynamics accuracy
To estimate how accurately RNN dynamics matched the direc-
tion prescribed by tangent vector fields, three different vector
fields on the flat plane embedded manifold were used, as
described above. For each, 10 RNNs were fitted to it and ini-
tialized at 81 different locations on the manifold from where
they were allowed to evolve for the simulation time equivalent
of five seconds. The angle between the vector from the initial
location and the final RNN state and the tangent vector at the
initial location was computed for each initialization.

RNN matrix rank
To estimate the rank of manifold targeted RNNs’ connectivity
matrices (Figure 3W), RNNs with different number of units
(n=32, 64, 128 and 256) were fitted to the line manifold R1 in
Rnwith one of the following embedding maps:

• φ1(p) = (p, 0, 0), a straight line.

• φ1(p) = (p, sin(p), 0), a planar curve.

• φ1(p) = (p, sin(p), cos(p)), a three dimensional curve.

to produce embedded manifolds with different extrinsic di-
mensionalities. The rank of the connectivity matrix W of
each RNN was then estimated in python, using the numpy
library.

Task solving dynamics
2-bit memory task design
The 2-bit memory task was created by adapting the 3-bit
memory task used in other works (Sussillo and Barak, 2013;
Maheswaranathan et al., 2019). In brief, two independent
and time-varying inputs were produced. At each time step
the inputs could assume values of 1, -1 or 0. The task’s goal
consists in keeping track the last non-zero value received from
each input. Given two inputs and two possible values for each,
four possible combinations are possible. The network must
keep an internal representation of the current combination and
updated it correctly in response to new non-zero inputs. This
include ignoring redundant inputs (e.g., two consecutive 1s)
which should not change the network’s internal representation.

RNN design
As the starting point for designign the task-solving RNN dy-
namic, we used the solution discovered by training networks
on the 3-bit memory task (Sussillo and Barak, 2013; Ma-
heswaranathan et al., 2019). The presence of two latent
variables (the ’state’ of each input) naturally suggests the use
of a two dimensional manifold, the absence of a periodic struc-
ture in the inputs suggests that a plane would be ideal. For
simplicity, we embedded R2 in Rn(n=64) as a flat plane by: 1)
selecting a random n-dimensional vector (v0), 2) selecting a
second random vector orthogonal to the first (v1) and 3) using
the embedding function φ(p) = 1

5 (p0v0 + p1v1)− 0.4.

The requirement that the network be able to maintain four
stable states in the absence of stimuli suggests that four fixed
point attractors should be included in the on-manifold dy-
namics. Stimuli should push the dynamics from one attractor
state to another to change the network’s internal memory,
but repeated stimuli should not push the network state out-
side the current attractor’s basin of attraction. To achieve
this the following tangent vector field was used: ψ(p) =
0.6(−sin(2.5π(p0 − 0.1)),−sin(2.5π(p1 − 0.1)))

The RNN dynamics equation 1 does not include external
inputs. To create a task-solving RNN we modified equation
1 to:

ḣ = Wσ(h) = Bu

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 10/13

where u is the two-dimensional inputs vector and B is the
(n× 2) input matrix describing how each input affects each
unit in the network. We defined

B :=

 | |
v0 v1
| |

such that each input moved the network along one of the
’sides’ of the plane manifold.

The network output was a two dimensional vecotr defined
as y = B

−1
h thus translating the position along each ’side’ if

the embedded plane into a scalar output.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 11/13

Mathematical Appendix

Topological manifold and topology
A topological manifoldM is an Hausdorff connected topo-
logical space locally homeomorphic to Rd. Thus, for every
point p ∈M, there exists a neighborhood U with p ∈ U such
that U is homeomorphic to Rdwith d constant for every point
in the manifold. Then d also specifies the dimensionality of
the manifold.

A topological space is defined by a set of points M and
a topology O. The set is generally an interval I ⊂ R or the
Cartesian product of d-many such intervals. Different sets
can be used to define the same manifold, for instance the
line R1 can have M = [0, 1] or M ′ = [1, 2] as underlying
sets. The topology O is defined as a subset of the powerset of
M : (P)(M) such that: 1) Ø,M ∈ O, 2) unions of elements
of O are also in O and 3) intersections of elements of O are
also in O.

The standard topology is intuitively conceptualized as
the topology of Euclidean space Rd. More precisely, for every
x ∈M , and rinR+, define the open ball of radius r centered

at x as the set Br(x) := y ∈M |
√∑d

i (y
i − xi) < r. Then,

an open subset U is in the standard topology of Rdif there’s a
ball of some, possibly small, radius contained in U .

Tangent vector
Given a parametrized curve γ : R ⊃ I → M and a point
p ∈ M, then two equivalent definitions of tangent vectors
can be given. A tangent vector can be defined as the direc-
tional derivative operator at p along γ or, alternatively, as the
equivalence class of parametrized curves through p sharing
the same directional derivative. The two definitions are equiv-
alent, there’s a one-to-one relationship between the directional
derivative operators and the equivalence classes, in this work
we used the latter definition.

Tangent vector space
The tangent vectors at a point p ∈ M define a (tangent)
vector space TpM with well-defined operations of vector
addition and scalar multiplication (technically TpM is an
algebra since an operation of vector multiplication is also de-
fined). A fundamental result in differential geometry proves
that dim(M) = dim(TpM), that is TpM and Rd are isomor-
phic as vector spaces. Given a chart (x, U) with p ∈ U , the
basis of TpM can be constructed by defining a set of d-many
curves fi in the chart representation of U , and projecting them
onto the manifold using (

−1
x). These curves then act as repre-

sentative for the equivalence classes that are the basis vectors.
The basis functions are maps fi : R ⊃ I → x(U) defined
to be parallel to the ith axis of the local coordinates frame
determined by the char.

Chart
A chart of a d-dimensional manifoldM with set M is a pair
(x, U) with U ∈ P(M) and x : U → x(U) ⊂ Rd a bijective

homemorphism of U onto a subset of Rd. The existence
of x is ensured by the definition of a topological manifold
as locally homeomorphic to Rd. The component functions
xi : U → R are called the coordinates of p with respect to
the chart (x, U) and the chart establishes a local coordinates
system around p. One or more, potentially overlapping, charts
can be defined such that the union of the charts’ set covers M .

Embedding
An embedding is a map between topological manifolds φ :
M → N that is an immersion and such that the mapped
manifold φ(M) is a submanifold of the target manifold (i.e.,
it’s a manifold L whose set L is a subset of the set N of N).
An immersion is a smooth map φ between manifolds such
that its derivative (the pushforward map φ∗) is injective at
every point p ∈ M. In this work, the target manifold is the
vector space Rnwhich is a topological manifold with addi-
tional operations of vector addition and scalar multiplication
defined.

Pushforward
Given an map between manifolds φ : M → N , then the
pushforward (or derivative) of φ, φ∗ is a map between tan-
gent vector spaces of the source manifolds to tangent vector
spaces on the target manifold: φ∗ : TpM → TφN . Given the
definition of tangent vectors as equivalence classes of curves,
the pushfoward of the vector [γ], φ∗γ] is [φ ◦ γ]φ(p).

Tangent vector field
Given a manifoldM, the manifold together with all the vector
spaces TpM at each point inM form a bundle of topological
manifolds: TM :=

⋃
p∈M TpM . A vector field, or tangent

vector field, is a section ψ of the topological bundle. That is
φ is a map ψ :M→ TpM assigning to each point p on the
manifold a tangent vector (an element of the tangent vector
space TpM).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 12/13

References
Beiran, M., Dubreuil, A., Valente, A., Mastrogiuseppe, F.,

and Ostojic, S. (2020). Shaping dynamics with multiple
populations in low-rank recurrent networks.

Biswas, T. and Fitzgerald, J. E. (2020). A geometric frame-
work to predict structure from function in neural networks.

Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., and
Fiete, I. (2019). The intrinsic attractor manifold and pop-
ulation dynamics of a canonical cognitive circuit across
waking and sleep. Nat. Neurosci., 22(9):1512–1520.

Chung, S. and Abbott, L. F. (2021). Neural population geome-
try: An approach for understanding biological and artificial
neural networks.

Darshan, R. and Rivkind, A. (2021). Learning to represent
continuous variables in heterogeneous neural networks.

Eliasmith, C. and Anderson, C. H. (2003). Neural Engi-
neering: Computation, Representation, and Dynamics in
Neurobiological Systems. MIT Press.

Finkelstein, A., Fontolan, L., Economo, M. N., Li, N., Ro-
mani, S., and Svoboda, K. (2021). Attractor dynamics
gate cortical information flow during decision-making. Nat.
Neurosci., pages 1–8.

Gallego, J. A., Perich, M. G., Miller, L. E., and Solla, S. A.
(2017). Neural manifolds for the control of movement.
Neuron, 94(5):978–984.

Gao, P. and Ganguli, S. (2015). On simplicity and complexity
in the brave new world of large-scale neuroscience. Curr.
Opin. Neurobiol., 32:148–155.

Gao, P., Trautmann, E., Yu, B., Santhanam, G., Ryu, S., and
others (2017). A theory of multineuronal dimensionality,
dynamics and measurement. BioRxiv.

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas,
N. A., Dunn, B. J., Moser, M.-B., and Moser, E. I. (2021).
Toroidal topology of population activity in grid cells.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., Del Rı́o, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and
Oliphant, T. E. (2020). Array programming with NumPy.
Nature, 585(7825):357–362.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment.
Computing in Science Engineering, 9(3):90–95.

Jazayeri, M. and Ostojic, S. (2021). Interpreting neural com-
putations by examining intrinsic and embedding dimension-
ality of neural activity.

Kim, S. S., Rouault, H., Druckmann, S., and Jayaraman, V.
(2017). Ring attractor dynamics in the drosophila central
brain. Science, 356(6340):849–853.

Maheswaranathan, N., Williams, A. H., Golub, M. D., Gan-
guli, S., and Sussillo, D. (2019). Universality and individu-
ality in neural dynamics across large populations of recur-
rent networks. Adv. Neural Inf. Process. Syst., 2019:15629–
15641.

Mastrogiuseppe, F. and Ostojic, S. (2018). Linking connec-
tivity, dynamics, and computations in Low-Rank recurrent
neural networks. Neuron, 99(3):609–623.e29.

Musy, M., Jacquenot, G., Dalmasso, G., neoglez, de Bruin,
R., Pollack, A., Claudi, F., Badger, C., icemtel, Sullivan, B.,
Hrisca, D., Volpatto, D., Schlömer, N., Zhou, Z.-Q., and
ilorevilo (2021). marcomusy/vedo: 2021.0.2.

Osten, P. and Margrie, T. W. (2013). Mapping brain circuitry
with a light microscope. Nat. Methods, 10(6):515–523.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,
R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, É. (2011).
Scikit-learn: Machine learning in python. J. Mach. Learn.
Res., 12(85):2825–2830.

Pollock, E. and Jazayeri, M. (2020). Engineering recurrent
neural networks from task-relevant manifolds and dynam-
ics. PLoS Comput. Biol., 16(8):e1008128.

Russo, A. A., Bittner, S. R., Perkins, S. M., Seely, J. S.,
London, B. M., Lara, A. H., Miri, A., Marshall, N. J.,
Kohn, A., Jessell, T. M., Abbott, L. F., Cunningham, J. P.,
and Churchland, M. M. (2018). Motor cortex embeds
muscle-like commands in an untangled population response.
Neuron, 97(4):953–966.e8.

Schaeffer, R., Khona, M., Meshulam, L., International Brain
Laboratory, and Fiete, I. R. (2020). Reverse-engineering re-
current neural network solutions to a hierarchical inference
task for mice.

Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pa-
chitariu, M., Bauza, M., Beau, M., Bhagat, J., Böhm, C.,
Broux, M., Chen, S., Colonell, J., Gardner, R. J., Karsh,
B., Kloosterman, F., Kostadinov, D., Mora-Lopez, C.,
O’Callaghan, J., Park, J., Putzeys, J., Sauerbrei, B., van
Daal, R. J. J., Vollan, A. Z., Wang, S., Welkenhuysen, M.,
Ye, Z., Dudman, J. T., Dutta, B., Hantman, A. W., Har-
ris, K. D., Lee, A. K., Moser, E. I., O’Keefe, J., Renart,
A., Svoboda, K., Häusser, M., Haesler, S., Carandini, M.,
and Harris, T. D. (2021). Neuropixels 2.0: A miniaturized
high-density probe for stable, long-term brain recordings.
Science, 372(6539).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

Differential geometry methods for constructing manifold-targeted recurrent neural networks. — 13/13

Stringer, C., Pachitariu, M., Steinmetz, N., Reddy, C. B.,
Carandini, M., and Harris, K. D. (2019). Spontaneous be-
haviors drive multidimensional, brainwide activity. Science,
364(6437):255.

Sussillo, D. (2014). Neural circuits as computational dynami-
cal systems. Curr. Opin. Neurobiol., 25:156–163.

Sussillo, D. and Barak, O. (2013). Opening the black box:
low-dimensional dynamics in high-dimensional recurrent
neural networks. Neural Comput., 25(3):626–649.

Vyas, S., Golub, M. D., Sussillo, D., and Shenoy, K. V. (2020).
Computation through neural population dynamics. Annu.
Rev. Neurosci., 43:249–275.

Winnubst, J., Bas, E., Ferreira, T. A., Wu, Z., Economo, M. N.,
Edson, P., Arthur, B. J., Bruns, C., Rokicki, K., Schauder,
D., Olbris, D. J., Murphy, S. D., Ackerman, D. G., Arshadi,
C., Baldwin, P., Blake, R., Elsayed, A., Hasan, M., Ramirez,
D., Dos Santos, B., Weldon, M., Zafar, A., Dudman, J. T.,
Gerfen, C. R., Hantman, A. W., Korff, W., Sternson, S. M.,
Spruston, N., Svoboda, K., and Chandrashekar, J. (2019).
Reconstruction of 1,000 projection neurons reveals new
cell types and organization of Long-Range connectivity in
the mouse brain. Cell, 179(1):268–281.e13.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 7, 2021. ; https://doi.org/10.1101/2021.10.07.463479doi: bioRxiv preprint

https://doi.org/10.1101/2021.10.07.463479
http://creativecommons.org/licenses/by/4.0/

