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Abstract

Malaria is one of the deadliest vector-borne diseases in the world. Researchers are developing new genetic and conven-
tional vector control strategies to attempt to limit its burden. To be deployed responsibly and successfully, proposed
novel control strategies require detailed safety assessment. Anopheles gambiae sensu stricto (s.s.) and Anopheles coluzzii,
two closely related subspecies within the species complex Anopheles gambiae sensu lato (s.l.), are among the dominant
malaria vectors in sub-Saharan Africa. These two subspecies readily hybridise and compete in the wild and are also
known to have distinct niches, each with spatially and temporally varying carrying capacities driven by precipitation
and land use factors.

We model the spread and persistence of a population-modifying gene drive system in these subspecies across sub-
Saharan Africa, by simulating introductions of genetically modified mosquitoes across the African mainland as well as
on some offshore islands. We explore transmission of the gene drive between the subspecies, different hybridisation
mechanisms, the effects of both local dispersal and potential wind-aided migration to the spread, and the development
of resistance to the gene drive. We find that given best current available knowledge on the subspecies’ life histories,
an introduced gene drive system with typical characteristics can plausibly spread from even distant offshore islands to
the African mainland with the aid of wind-driven migration, with resistance taking over within a decade. Our model
demonstrates a range of realistic dynamics including the effect of prevailing wind on spread and spatio-temporally
varying carrying capacities for subspecies. We thus show both the plausibility and importance of accounting for a wide
range of mechanisms from regional to continental scales.

1 Introduction

Contemporary malaria control interventions – insec-
ticide treated bed nets, indoor residual spraying and
artemisinin based combination therapy – have dramati-
cally reduced the burden of malaria in Africa (Bhatt et al.,
2015). Since 2017, however, progress on malaria reduction
has stalled and in 2019 malaria still claimed an estimated
389,000 African lives, mainly children under 5 years of
age (World Health Organisation, 2020). At least 99% of
these cases are caused by Plasmodium falciparum, transmit-
ted by a small number of dominant malaria vectors, most
notably Anopheles arabiensis, Anopheles coluzzii, Anopheles
gambiae sensu stricto (s.s.) and Anopheles funestus (Wiebe
et al., 2017).

The on-going burden of malaria, together with in-
creasing rates of insecticide resistance in malarial vector
mosquitoes (Wiebe et al., 2017), has motivated propos-
als to develop new genetic control strategies, including:
a) self-limiting, population suppression methods that in-
duce male sterility (Windbichler et al., 2008; Klein et al.,
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2012) or male bias (Galizi et al., 2014; Facchinelli et al.,
2019); b) self-sustaining (gene drive), suppression meth-
ods that induce female sterility (Hammond et al., 2016;
Kyrou et al., 2018); and, c) self-sustaining, population re-
placement methods that make vectors refractory for the
malaria parasite (Gantz et al., 2015; Carballar-Lejarazú
et al., 2020). Any proposal to test these genetic con-
trol strategies outside of contained laboratory settings
will likely require a detailed quantitative risk assess-
ment that predicts the potential spread and persistence
of transgenic mosquito from release sites, and the possi-
ble introgression of a transgenic construct into closely re-
lated species through inter-specific mating (James et al.,
2018, 2020). Spatial models of spread and persistence
are also needed to describe the dynamics of important
gene drive processes such as the development of resis-
tance to the gene drive (Price et al., 2020). Quantita-
tive spatial models have been developed for the spread
and persistence of self-limiting, population suppress-
ing, constructs, (Dufourd and Dumont, 2013; Facchinelli
et al., 2019), together with self-sustaining, population-
modifying (Beaghton et al., 2017; Tanaka et al., 2017;
Noble et al., 2018; Wyse et al., 2018) and population-
suppressing (Eckhoff et al., 2016; North and Godfray,
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2018; North et al., 2019) constructs.
This paper models the spread and persistence of a

population-modifying gene drive system (Alphey et al.,
2020; Nolan, 2021), in Anopheles gambiae s.s. and Anopheles
coluzzii across sub-Saharan Africa. These two subspecies,
which are often modelled as single group, are together
with Anopheles arabiensis and Anopheles funestus the dom-
inant vectors of malaria in sub-Saharan Africa. An. gam-
biae s.s. and An. coluzzii are both highly anthropophilic,
efficient malaria vectors. The two subspecies are closely
related enough to interbreed but hybridisation rates vary
in space and time (Pombi et al., 2017). They also have dif-
ferent larval habitat preferences (Lehmann and Diabate,
2008), and An. coluzzii is thought to have a superior resis-
tance to dessication stress (Tene Fossog et al., 2015), hence
is more drought tolerant than An. gambiae s.s. (Sinka et al.,
2016).

In addition to general concerns for gene drives such
as the development of resistance, the following ecologi-
cal hypotheses proposed in the literature are investigated:
transmission of the gene drive between two hybridising
subspecies of Anopheles gambiae sensu lato (s.l.) by vertical
gene transfer (Pombi et al., 2017; Beeton et al., 2020; Sel-
varaj et al., 2020); possible long range dispersal or long
distance migration (North and Godfray, 2018; Huestis
et al., 2019); and both spatially and temporally varying
carrying capacities driven by precipitation and land use
factors (White et al., 2011; Tene Fossog et al., 2015; North
and Godfray, 2018). Each of these structural issues are
described in the following subsections.

1.1 Choice of Construct
Our focus is on the spread and persistence of a gene

drive system with neutral fitness through a spatially and
temporally dynamic population with reproductively iso-
lated subpopulations across sub-Saharan Africa. This
scenario thereby evaluates the behaviour of an idealised
fitness-neutral population replacement gene drive system
at the continental scale. Our analysis focusses on three
alleles: the wild–type, the genetic construct for a popu-
lation replacement gene drive and a resistant allele. To-
gether these form a minimal gene drive spatial model (see
Beaghton et al., 2017). Further, we assume that the gene
drive is activated in a single location in each parent’s ge-
netic code, or locus (Beaghton et al., 2017). However, we
avoid modelling a gene drive “payload” of a nuclease or
effector gene as done in their paper. That is, the nucle-
ase and effector gene may be considered as the same unit,
with the effector gene either absent or fitness neutral.

1.2 Taxonomic Resolution
We model an intervention where the genetic con-

struct has been introgressed into locally sourced, wild-
type An. gambiae s.s. or An. coluzzii mosquitoes, and sub-
sequently released back into this local population. De-
pending on geographic location, these subspecies of the

An. gambiae s.l. complex may introgress with each other
and potentially other subspecies such as An. arabien-
sis (Anopheles gambiae 1000 Genomes Consortium, 2017;
Pombi et al., 2017; Clarkson et al., 2020). Studies at the
scale of sub-Saharan Africa often do not discriminate be-
tween An. gambiae s.s. and An. coluzzii. For example,
Sinka et al. (2012) combined these two subspecies when
plotting species distribution maps due to lack of data;
An. arabiensis, however, was plotted separately. Similarly,
North and Godfray (2018) argued that currently there is
a lack of available data for parametrising alternative life
history strategies of An. gambiae s.s. and An. coluzzii, and
so did not discriminate between these subspecies in their
process model. Indeed, we are currently unaware of any
analysis of genetic vector control strategies at this conti-
nental scale, with explicit spatial and temporal dynam-
ics, that discriminates between these two co-dominant
malaria vectors.

We include alternative subspecies in our model be-
cause this leads to altered population dynamics via inter-
specific mating and density dependence effects (Beeton
et al., 2020). Here we explore two different approaches to
species assignment of first generation hybrids: 1) species
assignment by maternal descent, and 2) equal propor-
tions.

1.3 Larval carrying capacity
To parameterise a spatial model that discriminates be-

tween An. gambiae s.s. and An. coluzzii, and their inter–
and intra–specific density dependence at the larval stage,
we require spatially explicit carrying capacity informa-
tion about each subspecies, which is anticipated to de-
pend on environmental and social covariates. As obser-
vation data is relatively sparse at the subspecies level, we
approach the problem in two parts. First, we model the
larval carrying capacity of the two subspecies taken to-
gether using a functional form. Second, we use empiri-
cal relative abundance data to spatially model the relative
carrying capacities between subspecies.

1.3.1 Total abundance
The carrying capacity of Anopheles species in Africa

is often expressed as a function of rainfall. For exam-
ple, White et al. (2011) found exponentially weighting
the past 4 days of rainfall gave the best fit when mod-
elling the abundance of An. gambiae s.s. and An. arabien-
sis in Nigeria, an approach subsequently adopted by Wu
et al. (2020); whilst Magombedze et al. (2018) used a 7 day
moving average of rainfall to model the carrying capacity
of the aquatic population of An. gambiae s.s., An. coluzzii
and An. arabiensis in Mali.

More complex functional forms invoke additional pa-
rameters such as the location (and sometimes length or
size) of perennial, intermittent, permanent or human-
associated water bodies, as in the models developed by
Eckhoff (2011) and Lunde et al. (2013). The most rele-
vant approach for our purposes, however, is that of North
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and Godfray (2018), who group our two proposed sub-
species An. gambiae s.s. and An. coluzzii in a spatially
explicit, individual-based model, across an area of West
Africa that exhibits significant environmental variation.
They predict local larval carrying capacity based on rain-
fall, as well as level of access to temporary and permanent
water courses. We adapt their results for our model of to-
tal carrying capacity for the aggregate of An. coluzzii and
An. gambiae s.s.

1.3.2 Relative abundance
An. coluzzii has only relatively recently been described

as its own subspecies (Coetzee et al., 2013) after its earlier
description as a molecular form within An. gambiae s.s.
(della Torre et al., 2001, 2002). Despite this taxonomic dif-
ficulty, several papers have examined differences in habi-
tat preference between An. gambiae s.s. and An. coluzzii:
in particular Lehmann and Diabate (2008) note that larval
predation and competition has led to selection for tem-
porary freshwater habitats in An. gambiae s.s. and con-
versely permanent habitats for An. coluzzii. They suggest
that this leads to humidity and/or rainfall clines in rela-
tive abundance. Other sources provide data suggesting
this is the case for rainfall (Touré et al., 1998; Wondji et al.,
2005; Diabaté et al., 2005, 2008), and that a particular chro-
mosomal arrangement in An. coluzzii performs well in
low-rainfall environments (Touré et al., 1994). These con-
clusions, however, tend to be based on relatively small-
scale observations or experiments. Some information on
relative abundance at larger scales is available (della Torre
et al., 2005; Caputo et al., 2008; Simard et al., 2009; Costan-
tini et al., 2009), but very little modelling has been done
to quantify these differences across sub-Saharan Africa.
So far only presence-absence information has been gen-
erally used (Sinka et al., 2010). In contrast, the relative
abundance of An. gambiae s.s. in its former definition (in-
cluding An. coluzzii) versus An. arabiensis has long since
been modelled and estimated across sub-Saharan Africa
(Lindsay et al., 1998).

A notable exception in this context is Tene Fossog
et al. (2015), who develop a logistic regression model us-
ing abundance data of each subspecies across western
sub-Saharan Africa to predict relative probability of oc-
currence of the two subspecies. They use model selec-
tion to select a subset of relevant spatial, climatic and
land cover variables in their predictions. However, de-
spite acknowledging the likelihood of nonlinear effects
of some variables (see Figure 3b in their paper), they use
only linear predictors in their spatial model. We use their
work as a starting point to develop our own nonlinear
model using neural networks to flexibly incorporate non-
linear relationships, along with additional predictors and
newly collated records of relative abundance (VectorBase:
Giraldo-Calderón et al., 2015) to extend our predictions to
include western and eastern sub-Saharan Africa.

1.4 Dispersal
Anopheline mosquitoes have historically been cate-

gorised as being unlikely to migrate long distances (with
mean dispersal distances typically less than 1km, maxi-
mum distances typically no greater than 5km); although
longer range dispersal events are possible and have been
linked to mosquito-borne disease outbreaks, short range
dispersal is supposed to predominate life history strate-
gies (Gillies, 1961; Service, 1997). A recent empirical
study (Huestis et al., 2019), however, provides evidence
for wind-driven long-range dispersal of An. gambiae
s.s. and An. coluzzii mosquitoes in large numbers.
These mosquitoes remain capable of reproduction and
pathogen transmission (Sanogo et al., 2020), and are es-
timated to regularly travel much further than even a rare
long-range dispersal event could achieve. Moreover, it
has been recently suggested that An. gambiae s.l. popu-
lations in areas of low human density may also facilitate
migration, gene flow or both (Epopa et al., 2020).

1.5 Aestivation
Another source of controversy is aestivation, in which

mosquitoes become dormant during dry conditions in
which they would not otherwise survive. While not
proven to occur widely on a population scale, it is a
popular hypothesis for wet season reemergence of An.
coluzzii in the Sahel (Dao et al., 2014; Lehmann et al.,
2017). Modelling studies that address this problem in-
clude Magombedze et al. (2018); North and Godfray
(2018). The latter simulation study notes that rare persis-
tent water sources provide a competing explanation for
persistence through the dry season, as does long distance
migration. In this model, these latter proposed processes
are accommodated by spatially and temporally varying
carrying capacities (Section 1.3) and dispersal behaviour
(Section 1.4); aestivation is not explicitly modelled.

1.6 Spatial Scope
The spatial scope for this analysis includes all coun-

tries within the African region as defined by the United
Nations geoscheme that are within the range of Anophe-
les gambiae s.l. (United Nations regions are listed here:
https://unstats.un.org/unsd/methodology/m49/
overview/. The spatial scope includes the range of
Anopheles gambiae s.l. on the African continent and also
island countries or territories of the African region where
Anopheles gambiae s.l. is present, such as Madagascar,
Mauritius, Comoros and São Tomé and Prı́ncipe. Anophe-
les gambiae s.l. is also found in Cabo Verde (DePina et al.,
2018).

2 Methods

2.1 Spatio-temporal mosquito demographic model
We represent each combination of age class (a), sex (s),

genotype (g) and subspecies of mosquito (m) as a separate
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scalar field Xa,s,g,m(t,x) in a Partial Differential Equation
(PDE) model with time t and 2D location x. Mosquitoes
are assumed to not persist in ocean regions, and we set
a zero-population Dirichlet condition in those regions.
We allow, however, for the possibility that mosquitoes
can advect across the ocean to neighbouring islands for
a maximum duration of one day.

We represent the model numerically by spatially dis-
cretising the mosquito population of sub-Saharan Africa
into 5km × 5km grid cells, and temporally discretising in
1 day timesteps. This resolution can be modelled within a
reasonable time frame, while still being suitable for mod-
elling the relevant biological processes, with a mosquito
home range being roughly one cell in size. Within a
timestep, we model demographic processes, followed by
diffusion, followed by advection. While our model is de-
terministic, we approximate stochastic effects by making
a continuous model correction: at the end of the demo-
graphic processes step in each timestep, any cell with less
than one total mosquito in a subspecies is set to zero for
all classes of that subspecies.

We define Nsubspecies subspecies, such that each sub-
species is given an integer number from m = 0 to m =
Nsubspecies: in our main results, Nsubspecies is set to 2 to
represent An. gambiae s.s. and An. coluzzii as m = 0 and
1 respectively. We also discretise age into N age classes
in our model: in our main results, we use N = 2 (one
newborn and one adult class), but we describe the gen-
eral model for N ≥ 1 here, as different values of N may
be more relevant for different model applications. For
N = 2 age classes, the constant transition rate b results in
an exponential distribution of maturation times between
larval classes. Some larvae will quickly mature, poten-
tially making the population more resilient to intervals
without rainfall. Although we focus on N = 2, Figure
S3 shows that results for N = 6 closely match results for
N = 2 in Figure S2, with only slightly larger population
dips through time.

Ages vary from the “newborn” larvae age class a = 0
(into which all individuals are born) through to adults at
a = N − 1, with [1, N − 2] representing intermediate lar-
val stages where these exist (N > 2). We here describe
the PDE separately for these three stage types. Note that
in our model we only track those mosquito eggs that pro-
duce viable larvae, hence our newborn class consists of
larvae instead of eggs. Our numerical model is written
in Cython (the Python programming language with C ex-
tensions)(Behnel et al., 2011) and visualisations are per-
formed in the R programming language (R Core Team,
2020).

Variable Name Description Estimate Source
dA Adult

mortal-
ity

Daily probabil-
ity of mortality

0.1 d−1 North and God-
fray (2018) (al-
ternative sources
Lunde et al.
(2013), Eckhoff
(2011), North et al.
(2013), Wu et al.
(2020))

dJ Juvenile
(larval)
mortal-
ity

Daily probabil-
ity of mortality

0.05 d−1 North and God-
fray (2018) (al-
ternative sources
Lunde et al.
(2013), Eckhoff
(2011), North
et al. (2013),
Magombedze
et al. (2018))

b Larval
transi-
tion rate

Number of days
from an egg
being laid to
when it emerges
as a sexually
mature adult
(when N = 2)
or reaches next
larval stage
(N > 2)

0.1 d−1 North and God-
fray (2018) (al-
ternative sources
Eckhoff (2011),
North et al. (2013),
Wu et al. (2020))

D Diffusion
coeffi-
cient

Typical rate of
spread of pop-
ulation from a
point source

900 m2

d−1
Lunde et al.
(2013) (alternative
sources Ickowicz
et al. (2021))

λ Larvae
per fe-
male

Expected num-
ber of larvae
per female per
day (wild type
mosquitoes)

9 female−1

d−1
North and God-
fray (2018) (al-
ternative sources
Lunde et al.
(2013), Eckhoff
(2011), Wu et al.
(2020))

k Relative
proba-
bility of
mating
between
sub-
species

The relative
probability that
a female has
offspring with
a male of a
different sub-
species to her
own (k < 1)

0.01 Pombi et al.
(2017) (alternative
sources Lee et al.
(2013))

αij Lotka-
Volterra
compe-
tition
between
sub-
species

The relative
effect on sub-
species X of a
member of a
different sub-
species Y taking
up its resources
(and thus lar-
val carrying
capacity), as
compared to a
conspecific

α11 =
α22 =
1, α12 =
α21 =
0.4

Pombi et al. (2017)

Km(x) Larval carrying capacity Details
in text
(2.2)

X(0,x) Initial condition Details
in text
(2.3.2)

AV(t,x)Advection Details
in text
(2.1.4,2.3.1)

Huestis et al.
(2019)

t Time domain for integration 2005-
2015

Table 1: Parameter definitions and estimates for final model (N = 2)

2.1.1 Adults
The PDE governing each scalar field representing

adult populations XN−1,s,g,m(t,x) for N > 1 is given by
∂XN−1,s,g,m

∂t
= −dAXN−1,s,g,m + bXN−2,s,g,m

+∇ · (D∇XN−1,s,g,m −AV(t,x)XN−1,s,g,m)
4
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Female
Genotype wc ww wr cc cr rr

M
al

e

wc ww(w2),
wc(2wc),
wr(2wr), cc(c2),
cr(2cr), rr(r2)

* * * * *

ww ww(w), wc(c),
wr(r)

ww(1) * * * *

wr ww
(
w
2

)
,

wc
(
c
2

)
,

wr
(
w+r
2

)
,

cr
(
c
2

)
, rr

(
r
2

)
ww

(
1
2

)
,wr

(
1
2

)
ww

(
1
4

)
,

wr
(
1
2

)
, rr

(
1
4

) * * *

cc wc(w), cc(c),
cr(r)

wc(1) wc
(
1
2

)
,wr

(
1
2

)
cc(1) * *

cr wc
(
w
2

)
,

wr
(
w
2

)
, cc

(
c
2

)
,

cr
(
c+r
2

)
, rr

(
r
2

)
wc

(
1
2

)
, wr

(
1
2

)
wc

(
1
4

)
,wr

(
1
4

)
,

cr
(
1
4

)
, rr

(
1
4

) cc
(
1
2

)
, cr

(
1
2

)
cc

(
1
4

)
, cr

(
1
2

)
,

rr
(
1
4

) *

rr wr(w), cr(c),
rr(r)

wr(1) wr
(
1
2

)
, rr

(
1
2

)
cr(1) cr

(
1
2

)
, rr

(
1
2

)
rr(1)

Table 2: Possible values for each offspring g′ in inheritance table i(gM , gF , g′), with probability of occurrence given by the number in parentheses,
where allele probabilities w = 1/2 − kc/2, c = 1/2 + kc(1 − kj)(1 − kn)/2 and r = kc(kn + kj(1 − kn))/2. Table is symmetric, so cells marked
with * have the same values as their transposes.

where subscript s denotes sex (M or F ), g genotype, and
m mosquito subspecies ((1) An. gambiae s.s. and (2) An.
coluzzii). We model three alleles: w for wild–type, c for
construct (gene drive system), and r for resistant. This re-
sults in a set of six potential genotypes G = {ww, wc, wr,
cc, cr, rr}. The vector field V(t,x) represents the wind
experienced across the spatial domain at a specified time
t and place x. Note that our model makes some modifica-
tions to the advection process for biological reasons, spec-
ified below in Section 2.1.4. Other parameters are given in
Table 1.

Here N − 1 indicates the adult age bracket. If N > 1
then N − 2 is the eldest larvae age bracket; the spe-
cial case of N = 1 is considered below (Section 2.1.3).
The first term on the right-hand side (−dAXN−1,s,g,m)
describes the mortality of adults, while the second term
(bXN−2,s,g,m) describes aging from the eldest larvae. The
final term represents diffusion (∇D∇X) and advection
(−∇AV(t,x)XN−1,s,g,m), with A being the probability of
an adult mosquito being advected by wind.

2.1.2 Larvae
For a ∈ [1, N − 2], the populations are governed by

∂Xa,s,g,m

∂t
= −dJXa,s,g,m + b [Xa−1,s,g,m −Xa,s,g,m]

(2.1)
As above, the first term on the right-hand side

(−dJXa,s,g,m) describes the mortality of this age-bracket
of larvae, while the second (b [Xa−1,s,g,m −Xa,s,g,m]) de-
scribes aging to/from older and younger age brackets re-
spectively. Note that for N ≤ 2 there are no such interme-
diate larvae.

2.1.3 Newborns and N = 1 model
The PDE governing X0,s,g,m(t,x) is given by

∂X0,s,g,m

∂t
= −dJX0,s,g,m−bX0,s,g,m+B(s, g,m) . (2.2)

Where N = 1, there is no age structure and the full PDE
takes the form

∂Xs,g,m

∂t
= −dAXs,g,m +B(s, g,m)

+∇ · (D∇Xs,g,m −AV(t,x)Xs,g,m)
(2.3)

Note that for readability, we only use subscripts when
referring to mosquito population classes (i.e. Xa,s,g,m)
and refer to parameters which differ by population class
as functions.

In Equation 2.2, the first term (−dJX0,s,g,m) describes
mortality of newborns, while the second (−bX0,s,g,m) de-
scribes aging into the youngest age-bracket of larvae (or
adults for N = 2). The final term describes the birth of
newborn larvae of a given sex s, genotype g and sub-
species m, given all possibilities of the mother’s and fa-
ther’s genotype and subspecies (gM , gF , mM and mF ; de-
scribed in more detail later). For brevity, we describe it as
the product of functions describing the relevant biological
mechanisms:

B(s, g,m) = λ max

(
0, 1− C(m)

Km(x)

)
×∑

gM ,gF ,
mM ,mF

J(m)O(s, g)R(gF , gM ) XN−1,F,gF ,mF

(2.4)

where the baseline fecundity rate is λ, the expected num-
ber of larvae per clutch of eggs per female per day, as-
sumed produced by a mating of wildtype mosquitoes.
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The J and O terms represent subspecies inheritance and
genotype inheritance (including sex) respectively, and are
described below. In our main results, we keep the relative
fecundity function R(gM , gF ) constant at R = 1, but this
can readily be varied to represent reduced fecundity due
to inviability of a gene drive construct — see Supplemen-
tary Materials Figure S3 for an example.

The max
(
0, 1− C(m)

Km(x)

)
term models the effect of

Km(x), the (spatially varying) larval carrying capacity
for subspecies m, on the fecundity of that subspecies
using a logistic function. The inclusion of a max term
is to keep the model biologically plausible: without it,
C(m) > Km(x) would mean that negative newborns are
produced. Here C(m) is the competition that a newborn
of subspecies m experiences from all larval populations:

C(m) =

Nsubspecies−1∑
m′=0

αm,m′

max(0,N−2)∑
a=0

∑
s∈{M,F}

∑
g∈G

Xa,s,g,m′

(2.5)
where αm,m′ represents the effect of competition of sub-
species m on subspecies m′, and the max term is here used
to ensure that where N = 1, the larval carrying capacity
instead applies to the adult population.

J(m) is the probability that a male adult of genotype
gM and subspecies mM successfully mates with a female
adult of genotype gF and subspecies mF to produce new-
borns of subspecies m:

J(m) =
H(mM ,mF ,m)W (gM ,mM ,mF )∑
g′∈G

Nsubspecies−1∑
m′=0

W (g′,m′,mF )

(2.6)

where the number of available males of a subspecies and
genotype is

W (gM ,mM ,mF ) = S(mM ,mF )G(gM )XN−1,M,gM ,mM
.

The numerator is the relative number of expected mat-
ings between a male of subspecies mM (through S) and
genotype gM (through G) and the given female, while the
denominator normalises the probability.

The relative probability of mating based on subspecies
S(mM ,mF ) = 1 if mM = mF and k otherwise. The rela-
tive fitness based on genotype is:

G(g) =


1 g ∈ {ww,wr, rr}
(1− hese)(1− hnsn) g ∈ {wc, cr}
(1− se)(1− sn) g = cc

(2.7)

where he = hn = 0.5, se = 0.1 and sn = 0.05, adapted
from the Beaghton et al. (2017) model.

We compare two different scenarios for subspecies
inheritance H(mM ,mF ,m); maternal inheritance and
equal inheritance. For maternal inheritance, the propor-
tion of offspring born of a mating between subspecies

H(mM ,mF ,m) = 1 if mF = m and 0 if mF ̸= m (mother
is always the same subspecies as her offspring). For equal
inheritance, the proportion of offspring born of a mating
between subspecies H(mM ,mF ,m) = 1/Nsubspecies = 0.5
if mM ̸= mF (parents are different subspecies, i.e. cross-
species offspring are equally split between subspecies). In
both scenarios, H(mM ,mF ,m) = 1 if mM = mF = m
(both parents and offspring same subspecies) and 0 if
mM ̸= m and mF ̸= m (both parents different subspecies
to offspring). Where there are more than two subspecies,
we also need to specify that H = 0 when mM ̸= mF ,
mF ̸= m and m ̸= mM (i.e. parents and offspring are all
of different subspecies).

O(s, g) gives the probability of sex s and genotype g
for the offspring. This probability depends on the geno-
types of the parents such that

O(s, g) = i(gM , gF , g) p(gM , gF , s) . (2.8)

The first term i describes the probability of an offspring
inheriting genotype g given parents of genotypes gM and
gF . We again adapt the Beaghton et al. (2017) model
to our target genotypes, including the effect of the gene
drive construct, and using their parameter values kc =
0.995, kj = 0.02 and kn = 10−4. However, instead of as-
suming full random mixing of alleles as in their model,
we directly model genotypes of each parent (see Table 2).

The second term p describes the proportion of male
offspring (and thus sex bias mechanisms). In the re-
sults presented in the main paper, we keep p constant
at p = 0.5, though this can be readily varied to model
constructs that induce sex bias in viable offspring (see
Supplementary Materials Figure S4 for an example). The
sex ratio is kept constant between subspecies (Paaijmans
et al., 2009).

2.1.4 Wind advection
Wind advection is expected to occur over very short

time periods (overnight, as mosquitoes are not believed
to travel during daylight; see Huestis et al., 2019) and
potentially very large distances (hundreds of kilome-
tres, passively carried by the wind with negligible re-
sistance; see Huestis et al., 2019). As such, we explic-
itly trace the trajectories of mosquitoes from each cell
during each timestep (1 day), as advected by the wind
vector field V(t,x). We use the Cross-Calibrated Multi-
Platform (CCMP) Ocean Surface Wind Vector Analyses
dataset (Atlas et al., 2011) to define this vector field; the
data is available at the required daily timesteps over the
time period required. We interpolate their vector field,
given at 0.25 degree intervals (approximately 28 km at
the equator), to fit our grid. Huestis et al. (2019) set up
two different scenarios in their own modelling, where
mosquitoes mosquitoes travel either 2 hours or 9 hours
a night. We explore both scenarios here, and also a third
scenario with no wind advection.
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2.2 Larval carrying capacity
2.2.1 Total abundance

We apply the method of North and Godfray (2018)
to estimate larval carrying capacity for both species com-
bined. Specifically, we use Equation 1 from their paper:

K(x, t) = α0(x) + α1

(
1− e−ϕr(x,t)

)
+ α2

(
1− e−κ[Wp(x)+Wn(x)(1−e−δr(x,t))]

)
.

(2.9)

with α0(x) set to 0 (equivalent to assuming no aestivation
occurs) and parameters α1 = α2 = 200, 000, ϕ = 0.03,
κ = 0.8 and δ = 0.03, as estimated in their paper us-
ing Markov Chain Monte Carlo simulation with popu-
lation data. The model also incorporates rainfall (r(x, t)
in mm per week), as well as the availability of nearby
rivers and lakes; these may be either permanent or in-
termittent (Wp(x) and Wn(x) respectively; details in their
paper). Whereas North and Godfray (2018) uses settle-
ments as their sites for mosquito populations, we are cal-
culating populations across a square grid, so we assume
that each cell contains a settlement as modelled in their
paper if and only if there is a human population present
in the cell. To calculate K(x, t) at each cell at each required
timestep using Equation 2.9, we estimate human presence
or absence by using data produced by the Facebook Con-
nectivity Lab and Center for International Earth Science
Information Network - CIESIN - Columbia University
(2016) and publicly available from the Humanitarian Data
Exchange (HDX; https://data.humdata.org/), ex-
cept in Sudan, South Sudan and Somalia where these data
are not available. There we assume human presence in all
cells, which as an extreme case would facilitate the spa-
tial spread of populations by local dispersal or advection.
The other extreme, assuming human absence, is explored
in Supplementary Materials Figure S6: it was found to
have minimal effect outside of these countries, which take
up a relatively small area near the edges of the species
range.

We use inland water data from the Digital Chart of the
World (DCW) as in their paper, and obtain monthly rain-
fall data from NASA’s Land Data Assimilation System
(https://ldas.gsfc.nasa.gov/fldas). We also set
the mosquito population and carrying capacity to zero for
each subspecies in locations outside their range as esti-
mated by the Malaria Atlas Project (see Wiebe et al., 2017,
updated by the Malaria Atlas Project, accessed 25 May
2021 from https://malariaatlas.org/ and avail-
able for use under a Creative Commons Attribution 3.0
Unported License, https://creativecommons.org/
licenses/by/3.0/legalcode).

2.2.2 Relative abundance
We first attempt to replicate the results of the Tene Fos-

sog et al. (2015) logistic regression model by indepen-

dently sourcing the predictors that they used in their fi-
nal model, and applying a logistic regression model to
the (slightly different) predictors. As well as providing
an independent verification of the results in their paper,
sourcing the predictors ourselves allows us to use more
data sources across sub-Saharan Africa and test different
modelling approaches.

Using our version of the predictors, we then apply a
dense feed-forward neural network with inputs obtained
by normalising each predictor by its mean and standard
deviation; hidden layers of size 40, 20 and 10 (arrived at
by experimentation; these sizes gave near-optimal vali-
dated errors: see Table 3); a rectified linear (ReLu) ac-
tivation function for the hidden layers, and a sigmoid
activation function for the output neuron to produce a
probability of the predictors producing a mosquito of
An. gambiae s.s. as opposed to An. coluzzii. We use a
cross-entropy loss function, such that the neural network
effectively finds the maximum likelihood of the neuron
weights given the observed subspecies at each site. The
neural network is implemented using the Keras package
(Chollet et al., 2017) in the R programming language (R
Core Team, 2020). We use a 75:25 training-testing split
on the data, using the DUPLEX algorithm (Snee, 1977) to
ensure a spread of geographic locations for both training
and testing sets. We then run the neural network for 200
epochs, and use the minimum validated loss to determine
the number of epochs to subsequently run the model for.

We perform leave-one-out cross-validation (jackknif-
ing) on each of these models, comparing the replicated
logistic regression model and the original Tene Fossog
et al. (2015) model with the neural network model, to test
whether there is an increase in performance by incorpo-
rating nonlinear effects on the same set of variables.

The Tene Fossog et al. (2015) model uses only al-
lopatric sites (those where only one subspecies was de-
tected) to train their models, as did our replication model
and initial neural network model. As we are interested
specifically in subspecies overlap, we include sympatric
sites (where both subspecies were detected), including
three new sites (Antonio-Nkondjio et al., 2012, 2013) pub-
licly available from VectorBase (Giraldo-Calderón et al.,
2015). We also add further predictors of potential inter-
est to the described neural network model: mean annual
precipitation (BIO12) and precipitation of wettest quar-
ter (BIO16), which were also of interest to their model
but excluded by their model selection process, along with
salinity (Pombi et al., 2017) which was discussed in detail
by Tene Fossog et al. (2015) but not included as a model
predictor. We then apply forward selection to select the
model variables in the final model. To ensure conver-
gence in the larger range of scenarios, we here use a 50:50
training-testing split on the data, but otherwise keep the
same network topology and approach.

For each tested set of predictors in the forward selec-
tion process, we train the neural network 500 times, run-
ning for 200 epochs each time. We calculate the validation
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loss after each epoch, take the minimum as our measure
of goodness-of-fit for that trained network, and take the
mean of the 500 validation losses obtained in this way.
This is to account for variations in neural network effec-
tiveness caused by the stochastic gradient descent pro-
cess. Starting with an empty set of predictors, the predic-
tor whose inclusion gives the best mean validation loss
is accepted, until accepting new predictors no longer reli-
ably decreases the validation loss.

We then train a neural network on the final selected
set of predictors 100 times, taking the pointwise mean of
the 100 runs as our final estimate of relative abundance
at each location. This model averaging is performed in
order to ensure that our final ensemble estimate is rep-
resentative of the neural network modelling process as a
whole: as the optimisation process is stochastic, a single
network may differ substantially from another, especially
where little data is available.

2.3 Parameters
Where possible and reasonable, we take parameter es-

timates from literature for our model (see Table 1), while
checking that multiple sources give similar results.

2.3.1 Wind advection
We use estimates from Huestis et al. (2019) to indi-

rectly estimate the probability of adult mosquitoes be-
ing advected by wind. They estimate that 6 million An.
coluzzii mosquitoes cross a 100 km line perpendicular to
the prevailing wind direction every year. Over the course
of a 2 or 9 hour flight (the two night-time flight times
tested in their Methods) their calculated trajectories give
displacements of 3–69 km and 47–270 km respectively
(means 38.6 and 154.1; 95% mean CIs 37–41 and 140–
168). If we assume that each migrating individual com-
pletes just one 2 or 9 hour overnight flight each way and
are only counted once, the mosquitoes that will cross the
imaginary 100 km line will largely come from a rectangle
bounded by this line on one side, and another 100 km line
positioned either 38.6 or 154.1 km upwind on the other
side. So the area over which mosquitoes will cross this
line will be roughly 100 km × 38.6 km = 3, 860km2 or
100 km × 154.1 km = 15, 410km2, within which 6 mil-
lion An. coluzzii migrating mosquitoes are estimated to
cross. This gives us a density of 1.55×10−3 or 3.89×10−4

migrating mosquitoes per square metre per year: convert-
ing to relevant units gives us 106.39 and 26.65 mosquitoes
per 5 km × 5 km cell per daily timestep. If we can then
estimate the overall density of mosquitoes at their cap-
ture sites, we can then estimate the daily migration rate.
Using the total abundance model from North and God-
fray (2018), the average carrying capacity for larvae at co-
ordinates 14◦N, 6.7◦W (located in between the capture
sites in Mali) across the simulation period (2005–2015)
is 41, 526. Given the other parameters dJ = 0.05 d−1,
dA = 0.1 d−1 and b = 0.1 d−1, at equilibrium we would

expect approximately the same number of adults as lar-
vae at carrying capacity. This gives a daily migration rate
of 106.39/41, 526 ≈ 2.6× 10−3 (or 1 in 390) for 2 hour mi-
gration; and 26.65/41, 526 ≈ 6.4 × 10−4 (or 1 in 1558) for
9 hour migration.

2.3.2 Initial conditions
As we expect similar numbers of larvae and adults,

we set the initial conditions of the model for each age a,
sex s, genotype g and mosquito subspecies m to

Xa,s,g,m(0,x) =

{
1
2Km(x) for g = ww
0 for g ̸= ww

In cells where both subspecies exist, there will initially
be competitive effects reducing numbers of one or both
subspecies. In addition, advection and diffusion will af-
fect the equilibrium. For these reasons, we run the model
once from the initial condition described for the 11-year
time period from 1 January 2005 to 31 December 2015 as
a “burn-in” period, in order for the population to approx-
imately reach a dynamic equilibrium that might be en-
countered in the wild.

Once the burn-in period is complete, we simulta-
neously introduce 10,000 male mosquitoes of each sub-
species (An. gambiae s.s. and An. coluzzii that are het-
erozygous with the construct (genotype wc) in 15 sepa-
rate locations (see Figure 4 in the Results), and run the
model for another 11-year period. We choose heterozy-
gous mosquitoes to introduce as these have less fitness
cost than homozygous mosquitoes (see Equation 2.7), in-
creasing the chance of spread. The first five of these are
placed on islands off the African mainland at the nearest
suitable location (see below) to assess the potential for in-
cursion of the genetic construct onto the mainland. The
island sites chosen as illustrative examples are:

1. the Bijagós islands (off Guinea-Bissau),
2. Bioko (off Cameroon),
3. Zanzibar (off Tanzania),
4. Comoros (off Mozambique), and
5. Madagascar.

The other ten sites (numbered 6–15) were chosen to be as
evenly spaced as possible across the range of An. gambiae
s.s. where at least 10,000 mosquitoes of either subspecies
is available year-round (the algorithm is described in Sup-
plementary Materials Appendix S1).

2.4 Scenario tests
As mentioned in Section 2.1.4, we use the two scenar-

ios from Huestis et al. (2019) that mosquitoes are pas-
sively advected with the wind for either 2 hours or 9
hours a night. We also add a third scenario of no wind
advection at all, to fully explore the effect of wind on
mosquito movement. These three scenarios are then com-
bined with the two scenarios of subspecies inheritance
(maternal and fifty-fifty) described in Equation 2.6 to
make six total scenarios modelled.
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3 Results

Original Replication NN
Error rate 0.1051 0.1018 0.1051
Cross-entropy 170.06 172.43 158.30
Expected error rate 0.1595 0.1610 0.1513
RMS error 0.2839 0.2839 0.2728

Table 3: Comparison of modelling approaches using four different mea-
sures of accuracy. The “Original” model is that of Tene Fossog et al.
(2015), the “Replication” is our attempt to replicate their model with
available data for predictors, and “NN” is our neural network model
as described in this paper, but using their predictors. The models
are compared with the dataset described in their paper (Tene Fossog
et al., 2015) and from VectorBase (Antonio-Nkondjio et al., 2012, 2013;
Giraldo-Calderón et al., 2015))

3.1 Larval carrying capacity
3.1.1 Relative abundance

To compare the effectiveness of the modelling ap-
proaches on the jackknifed mosquito data from Tene Fos-
sog et al. (2015) and VectorBase (Antonio-Nkondjio et al.,
2012, 2013; Giraldo-Calderón et al., 2015), where the
model probability of the subspecies being An. coluzzii at
site i of N sites is pi, and the true probability is si (either 0
or 1 depending on subspecies present), we use four mea-
sures:

• the actual misclassification rate or “error rate”,
where the subspecies at site i is predicted to be An.
coluzzii if pi > 0.5, otherwise An. gambiae s.s.;

• the cross-entropy, calculated as
−
∑

i [si log(pi) + (1− si) log(1− pi)]

• the expected number of misclassifications or errors,∑
i abs(pi − si)/N

• and the root mean square (RMS) error,√∑
i(pi − si)2/N

Table 3 shows that our neural network model per-
forms as well (error rate), slightly better (expected er-
ror rate and RMS error) or much better (cross-entropy)
on all of the measures. Its much better performance on
cross-entropy is likely due to the fact that it is trained
specifically to minimise cross-entropy, which may not di-
rectly correlate with lower error rates — for example,
compared to the other measures, cross-entropy will much
more harshly penalise a model for assigning a very low
probability to an event which then occurs in the testing
data.

Figure 1 illustrates the forward selection process. The
chosen variables are Mean Annual Temperature, Lati-
tude, Elevation and Distance to Coast — after this point,
even the best chosen variable added to the model only
increases the mean validation loss.
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Figure 1: The forward selection process for the neural network model.
For each round of selection, the validation loss for each variable is
shown, both for the 500 individual neural network runs (small dots)
and the mean (large labelled dot), with a different colour. After a given
round, the variable with the lowest mean validation loss is selected then
the process is repeated with a model including that variable, testing all
remaining variables. 95% bootstrap confidence intervals for the mean
are displayed for each variable in each round.

Note that the Normalized Difference Vegetation In-
dex (NDVI) Coefficient of Variation (CV) actually had the
lowest mean validation loss in the second round, but Lat-
itude was instead selected for four reasons:

• The two had mean validation losses that were statis-
tically indistinguishable even after 500 model runs,
based on the bootstrap 95% confidence intervals,

• Comparing the results of the forward selection pro-
cess where either the NDVI CV or Latitude is cho-
sen in the second round, the latter gives much better
mean validation loss results in subsequent rounds,
demonstrating that the forward selection process is
sub-optimally choosing the NDVI CV,

• Data for the NDVI CV is much harder to source, and
the variable is a less directly biologically relevant
predictor than Latitude, and

• The NDVI CV becomes a much less desirable pre-
dictor after Latitude is selected, suggesting that it
has little to contribute to the model that is unique to
it, and not already contributed by Latitude.

Figure 2 shows the final estimated relative abundance
as a mean of 100 neural network model runs using the
chosen variables, alongside the standard deviation of
these runs. The relative abundance follows a similar pat-
tern to that of Tene Fossog et al. (2015), with An. gam-
biae s.s. mostly dominant except in some coastal areas
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Figure 2: Summary statistics of relative abundance based on 100 neu-
ral network model runs. Mean relative abundance (a) is given as the
proportion of An. gambiae s.s. (as opposed to An. coluzzii) in the
local mosquito population, with low proportions given as white and
high proportions as green. Circles represent data points on which the
model is trained, filled with colour representing the proportion mea-
sured at the given site. The standard deviation of relative abundance
(b) is shown in greyscale, with white as low and black as high variance
between model estimates at a given site.

and towards the Sahel. As expected, the variance be-
tween model runs is mostly low around the data points in
western sub-Saharan Africa upon which the model was
trained, with much higher variance around central and
southern Africa. Interestingly the model runs also yield
low variance around Ethiopia in particular, where they
predict An. gambiae s.s. to be dominant.

3.1.2 Total abundance
Figure 3 demonstrates the resulting estimated lar-

val carrying capacity for each subspecies across the first
year of modelling given the relative abundance model
above and the North and Godfray (2018) total abundance
model, combined with information on human presence
and the known distributions of each subspecies.

3.2 Scenario tests
The choice of subspecies inheritance made no notice-

able difference to the results for any of the three wind
scenarios. As such, we choose the more commonly seen
mode, maternal inheritance, for the results.
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Figure 3: Estimated larval carrying capacity of An. gambiae s.s. (left)
and An. coluzzii (right), for 2005 (the first year of modelling) in January
(Southern Hemisphere summer), April (autumn), July (winter) and Oc-
tober (spring) from top to bottom.

Within the three wind scenarios, the zero-advection
scenario experiences no noticeable mosquito transport on
a continental scale, demonstrating that with the current
selected parameters, advection is far more important than
diffusion. We thus show figures for the 9-hour case be-
low, contrast the 2-hour results in text, and present the
full 2-hour and zero-advection results in Supplementary
Materials.

Figure 4 shows the location and spread of the con-
struct from the 15 introduction sites of the genetic con-
struct (labelled 1–15) for the highest wind advection sce-
nario (9 hours).

All of the islands were able to maintain a population
with the genetic construct (Figure 5), with all except for
Madagascar (Site 5) then invading the African mainland
in subsequent years. There appears to be a barrier to dis-
persal in central Africa, with most introductions either re-
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Figure 4: The invasion front of the construct (defined as having at least two alleles, e.g. one cc or two wc mosquitoes, in a cell) from a selection
of starting points, with a separate colour given for each year. The island introductions are (1) the Bijagós islands (off Guinea-Bissau), (2) Bioko (off
Cameroon), (3) Zanzibar (off Tanzania), (4) Comoros (off Mozambique) and (5) Madagascar.

maining in western Africa (sites 1, 2, 7, 9, 14 and 15) or
eastern Africa (sites 3, 4, 6, 8, 10–13). When advection
was reduced to 2 hours, only the Zanzibar (Site 3) intro-
duction was able to reach the mainland (see Supplemen-
tary Materials Figure S5).

Figure 5 shows more detail about the introductions
at each site. At all sites, the construct allele completely
takes over from the original wildtype allele in a matter of

months. Once the construct is established in the popu-
lation, resistance builds slowly but surely: the heterozy-
gous resistant genotype cr becomes noticeable after a cou-
ple of years, and the homozygous resistant genotype (rr)
takes over completely by the end of the 11-year simula-
tion period. All sites show a similar pattern, despite dif-
ferences in scale, subspecies composition and seasonality.
Only An. gambiae s.s. persists in Sites 3, 4, 5, 7, 8, 11 and
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Figure 5: The time series abundance of male mosquitoes at each introduction point (the sub-figure number corresponds to the release site; see
Figure 4), separated by species, genotype and age (female mosquitoes occur in identical numbers to males in this model). The colours correspond to
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12, and conversely only An. coluzzii persists in Sites 9 and
14. The two coexist in the remaining sites (1, 2, 6, 10, 13
and 15). All sites show a regular seasonal pattern to abun-
dance based on rainfall (the only seasonal driver in the
model, other than wind), with the possible exceptions of
Sites 4, 6 and 8, which show slightly more variable sea-
sonality patterns. Why this might be is unclear, though
these sites are all in central to eastern Africa.

Full colour animations of all process model outputs

are available in Supplementary Materials.

4 Discussion

This study is the first continental scale model of pop-
ulation dynamics for two of the dominant malaria vector
species in the Anopheles gambiae sensu lato species com-
plex. The transient spread and persistence of a popula-
tion replacement gene drive was predicted for the two
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hybridising subspecies An. gambiae sensu stricto and An.
coluzzii. The two major factors that determine the spread
of the gene drive at the continental scale were 1) poten-
tial wind-driven dispersal and 2) spatially and temporally
varying carrying capacities for the two subspecies with
both intraspecific and interspecific density dependence
ocurring at the larval stage. The spatially explicit pro-
cess model supports scenario-based assessments of both
genetic and conventional vector control strategies.

Vertical gene transfer among the investigated sub-
species is complicated by the spatially heterogeneous
population structure, where introgression rates between
An. gambiae s.s. and An. coluzzii vary with geographic
location (Anopheles gambiae 1000 Genomes Consortium,
2017; Pombi et al., 2017; Clarkson et al., 2020), and per-
haps also over time (Lee et al., 2013). Pombi et al. (2017)
suggests that the rate of hybridisation between these sub-
species depends on their relative frequency in the pop-
ulation. The model therefore tracks the relative num-
ber of available males by subspecies, and two alternative
choices for species assignment of the first generation hy-
brids was investigated. The model results were found
to be robust to species assignment via maternal descent
when compared to equal proportions of species among
the first generation hybrids.

The home range of An. gambiae s.l. is typically be-
lieved to be less than 5 square kilometres, although there
is evidence for long-range dispersal (Huestis et al., 2019).
More generally, wind-driven dispersal events have been
observed for mosquitoes including over ocean, although
it is not understood whether or not wind-driven disper-
sal is a deliberate life history strategy for some species
(Service, 1997). For genetic vector control strategies, the
possibility of long range dispersal events are an impor-
tant consideration that should be incorporated into the
selection of field sites (James et al., 2018; Lanzaro et al.,
2021).

Spatial dispersal was modelled through two different
mechanisms: a local diffusive process, which may be me-
diated by the presence of An. gambiae s.l. between human
settlements (Epopa et al., 2020), versus wind-driven ad-
vection. Unsurprisingly our results indicate that passive
wind-driven advection, if present, can greatly increase
the speed and spatial footprint of the invasion front for a
neutral population replacement gene drive (Figure 4, Sec-
tion 3.2).

The importance of wind-driven advection as a disper-
sal strategy for An. gambiae s.l. will likely be a key uncer-
tainty in future risk assessments for genetic control strate-
gies. The large difference in the dispersal between the 9
hour (Figure 4) and 2 hour results (Supplementary Mate-
rials Figure S5) have important implications for regional
(trans-national) governance arrangements, the scope of
stakeholder engagement activities and the degree of ge-
ographic containment that islands might provide during
a staged-release strategy. In our simulated releases of the
gene drive on islands, only Madagascar was sufficiently

distant to prevent spread to the mainland under the 9
hour wind-assisted dispersal. Even when reducing wind-
assisted dispersal to 2 hours, two of the five island re-
leases resulted in spread to the mainland. Simulated in-
troductions onto islands such as Bioko (32 km from the
mainland) readily spread to the mainland in both cases, a
result consistent with recent genomic analysis that shows
mosquito populations on this island are not isolated from
the mainland (Campos et al., 2021). While our results
make the potential scale of wind-mediated spread of gene
drive clear, exactly how and where this spread occurs in
the relevant mosquito taxa, and the mosquito behaviour
that helps drive it, is still being studied (Huestis et al.,
2019; Florio et al., 2020). In addition, while data on previ-
ous wind patterns is readily available, predicting future
wind patterns can only be done in very general terms, es-
pecially given the added complications and uncertainties
caused by anthropogenic climate change. These issues to-
gether mean that future predictions of gene drive spread
will likely involve high levels of uncertainty.

Environmental carrying capacity is another key factor
that determines the spread and persistence of the simu-
lated gene drive releases, as well as the wild-type pop-
ulation abundance. The introgression of the gene drive
tended to initially follow seasonal patterns of carrying
capacity driven by precipitation (Figure 5). Later, how-
ever, the importance of resistance gradually overcame the
drive within 11 years despite the spatio-temporal vari-
ability of the population abundances and a relatively mild
genetic load imposed by the construct. Resistance is a
recognised challenge for gene drive systems (e.g., Ham-
mond et al., 2017; Price et al., 2020; James et al., 2020)
for which various counter-strategies have been proposed
(Beaghton et al., 2017; Nash et al., 2019; Nolan, 2021;
Wang et al., 2021). Our simulations assume resistance
alleles arise with frequency r (Table 2) determined by
the probability of cleavage (kc), the probability of non-
homologous repair (kj) and the probability that the nucle-
ase gene becomes non-functional due to mutation of the
target site during homologous repair (kn) (Beaghton et al.,
2017). Our model, however, does not account for pre-
existing resistance in wild type populations caused by se-
quence variation in the target locus. Hence the (nonethe-
less rapid) progression of resistance in hybridising and
spatially heterogeneous populations shown here could be
underestimated, further emphasising the importance of
managing drive resistance.

Our characterisation of environmental carrying capac-
ities and abundance for the wild-type populations can ac-
commodate alternative functional forms and parametri-
sation. Moreover, the functional forms and parametri-
sation of carrying capacity may be expected to change
with time as climate (Kelly-Hope et al., 2009; Afrane
et al., 2012) and land use (Keating et al., 2004; Munga
et al., 2009) changes. The current lack of quantitative,
species-specific, data on mortality and dispersal within
the An. gambiae s.l. complex, however, limits our abil-
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ity to parametrise relationships such as the larval carry-
ing capacity (Equation 2.9) in a species-specific fashion
(North and Godfray, 2018), beyond a few, spatially lim-
ited, empirical studies (e.g. Magombedze et al., 2018). We
anticipate that as data from entomological surveys, cou-
pled with species differentiation through genetic meth-
ods (e.g., Anopheles gambiae 1000 Genomes Consortium,
2017; Clarkson et al., 2020; Giraldo-Calderón et al., 2015)
is increasingly centralised, then more detailed parametri-
sations will become possible at the subspecies level.

A lack of data also constrains our ability to compare
alternative hypotheses of how An. gambiae s.l. popula-
tions persist in marginal habitat zones such as the Sahel,
where observed patterns seasonal abundance can be ex-
plained by either aestivation, permanence of larval mi-
crohabitats (i.e., non-zero carrying capacities during the
dry season) or long range dispersal (North and Godfray,
2018). Although persistence in the Sahel can be explained
without an explicit aestivation model (see Figures 3, 5),
aestivation may nevertheless be an important life history
strategy for some species within the An. gambiae s.l. com-
plex in the Sahel (Lehmann et al., 2017). As for wind-
driven dispersal, the relative importance of aestivation
suffers from limited data.

The process model allows for the scenario-based test-
ing of genetic and conventional vector control strategies.
For genetic vector control, the sex-differentiated compart-
ment model allows for both population replacement and
population suppression gene drives. For the latter, the
relative frequency of males and females may be an im-
portant component of the gene drive system (Kyrou et al.,
2018) and also for sex-biased, self-limiting forms of ge-
netic vector control strategies (Windbichler et al., 2008;
Klein et al., 2012; Galizi et al., 2014); the model has the
flexibility to accommodate sex bias from either maternal
or paternal descent (Section 2.1.3). Conventional con-
trol strategies that target adult females or larval stage
mosquitoes can be accommodated by increasing mortal-
ity rates in locations and times dependent on the inter-
vention scenario (sensu Magombedze et al., 2018), or by
reducing carrying capacity for interventions where larval
habitat is removed.

Vector control is a key component in strategies devel-
oped to combat mosquito-borne and vector borne dis-
eases (Wilson et al., 2020). The deployment of vector
control strategies, whether genetic or conventional, into
hybridising spatially heterogeneous populations will re-
quire the development of spatially explicit models. These
models should be constructed at a commensurate spa-
tial and temporal scale of the intervention and include
the possibility of resistance, which is not only a feature
of genetic methods such as gene drive systems but is
also an expected development for conventional strategies
such as insecticide applications (Achee et al., 2019; Nolan,
2021). Numerical simulation based scenario assessments
can be used to investigate alternative ecological hypothe-
ses in concert with proposed vector control intervention

strategies. The spatio-temporal model developed here
shows the importance of resistance, vertical gene trans-
fer among hybridising subspecies, long range dispersal,
spatio-temporal variability in larval mosquito habitats
and deployment strategies at the continental scale.
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Touré, Y. T., Petrarca, V., Traoré, S. F., Coulibaly, A., Maı̈ga, H. M.,
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Supplementary Materials

S1: Algorithm for placing introduction sites
As mentioned in the main text, we first select the cells in which at least 10,000 of either subspecies are available year-

round on the African mainland. We then randomly select a set Y consisting of 5,000 of those cells as site candidates for
ease of computation, discarding the others from consideration. We adapt an algorithm that maximises the probability
of animals being captured by a set of traps spread across a domain using gradient descent.

We define a goodness of fit G(X) of a candidate set of 10 release sites X by:

• defining a kernel function f(d) = exp(−d/1000) where d is distance in km (analogous to probability of detection),
then

• for each candidate site y ∈ Y , calculate p = 1−
∏

d(X,y)

(1− f(d)) where d(X, y) is the set of distances between each

point in X and the candidate y (analogous to the probability of detection by at least one site in X),

• taking G(X) as the sum of p over all the candidate sites (analogous to the expected number of candidate cells in
Y detected by the sites in X).

For 20 iterations, we:

• initially select X to be 10 sites selected at random from Y , and

• calculate G(X) for this initial X .

• For each of the currently selected release sites x ∈ X :

– pick the 20 spatially closest candidates to x and recalculate G(X) for each, temporarily replacing x with the
nearby candidate in the set X ; and

– permanently replace x with the candidate that gives the highest G(X) in the set X , if higher than the current
value.

• If the set X has changed after going through all of the release sites, then repeat the process.

• Otherwise, stop, outputting the final set X and final goodness of fit G(X).

Of the 20 output sets X , we then use the set that gave the highest value for G(X).

S2: Illustrative animations
GIF animations of the simultaneous introduction of the construct at all sites are available in Supplementary Files:

wind9hF.ag.1.gif, wind9hF.ac.1.gif, wind2hF.ag.1.gif, wind2hF.ac.1.gif show the animations for 9
hour wind advection for Anopheles gambiae s.s. and Anopheles coluzzii, and the 2 hour equivalents for both subspecies,
respectively. The release points are marked as pink squares. Cells are colour coded: the amount of red in a cell rep-
resents the relative number of mosquitoes of the given subspecies with a wildtype w allele. Green and blue similarly
represent construct c and resistance r respectively.
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Figure S1: Time series plot of Site 6 (as in Figure 5) but with a closed population, i.e. no diffusion or advection. The colours correspond to genotype
and the line thickness to age class.
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Figure S2: Time series plot of Site 6 as in Figure S1 but with 6 age classes, keeping overall larval emergence period and mortality constant. This result
is more closely analogous to a fixed larval emergence time than to the exponentially-distributed version in the main model. Note that only the first
larval class is plotted here under “larvae” hence the smaller population size. The colours correspond to genotype and the line thickness to age class.
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Figure S3: Time series plot of Site 6 as in Figure S1 but with R(gM , gF ) = 0.05 where gM ̸= ww or gF ̸= ww. The colours correspond to genotype
and the line thickness to age class.
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Figure S4: Time series plot of Site 6 as in Figure S1 but with p(gM , gF , s) modified so that any modified genotype in the father results in a 95% male
sex bias in offspring. Dashed lines represent males, solid lines females. The colours correspond to genotype and the line thickness to age class.
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Figure S5: The time series abundance of male mosquitoes at each introduction point as in Figure 5, but using 2 hours instead of 9 hours advection,
separated by species, genotype and age (female mosquitoes occur in identical numbers to males in this model). The colours correspond to genotype
and the line thickness to age class.
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Figure S6: The invasion front of the construct as in Figure 4 for Site 6, but assuming human (and thus mosquito) absence in Sudan, South Sudan and
Somalia (national boundaries given in red, as defined by the UN Office for the Coordination of Humanitarian Affairs).
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