1 [Title]

- 2 Impact of Essential Genes on the Success of Genome Editing Experiments Generating 3,313
- 3 New Genetically Engineered Mouse Lines

4 [Authors]

- 5 Hillary Elrick^{1,2}, Kevin A. Peterson³, Brandon J. Willis⁴, Denise G. Lanza⁵, Elif F. Acar^{1,2,6,7}, Edward
- 6 J. Ryder^{8,18}, Lydia Teboul⁹, Petr Kasparek^{10,19}, Marie-Christine Birling¹¹, David J. Adams⁸, Allan
- 7 Bradley^{8,20}, Robert E. Braun³, Steve D. Brown⁹, Adam Caulder⁹, Gemma F. Codner^{9,21}, Francesco
- 8 J. DeMayo^{12,22}, Mary E. Dickinson¹³, Brendan Doe^{8,23}, Graham Duddy^{8,23}, Marina Gertsenstein¹,
- 9 Leslie O. Goodwin³, Yann Hérault¹¹, Lauri G. Lintott^{1,2}, K. C. Kent Lloyd^{4,14}, Isabel Lorenzo⁵,
- 10 Matthew Mackenzie⁹, Ann-Marie Mallon¹⁵, Colin McKerlie², Helen Parkinson¹⁶, Ramiro Ramirez-
- 11 Solis^{8,24}, John R. Seavitt^{5,25}, Radislav Sedlacek¹⁰, William C. Skarnes^{8,26}, Damien Smedley¹⁷, Sara
- 12 Wells⁹, Jacqueline K. White³, Joshua A. Wood^{4,25}, International Mouse Phenotyping
- 13 Consortium[¶], Stephen A. Murray³, Jason D. Heaney⁵, Lauryl M. J. Nutter^{1,2,§}
- ¹⁴ [¶]A list of authors and their affiliations appear at the end of this paper
- 15 §corresponding author, <u>lauryl.nutter@sickkids.ca</u>
- 16

17 [Affiliations]

- ¹The Centre for Phenogenomics, Toronto, ON, Canada, M5T 3H7
- ²The Hospital for Sick Children, Toronto, ON, Canada, M5G 1X8
- ³The Jackson Laboratory, Bar Harbor, ME, USA, 04609
- ⁴Mouse Biology Program, University of California-Davis, California, USA, 95618

- ⁵Department of Molecular and Human Genetic, Baylor College of Medicine, Houston, TX, USA,
- 23 77030
- ⁶Department of Statistics, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
- ²⁵ ⁷Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada, M5G 1Z5
- ⁸Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- ⁹The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon, OX11 0RD, UK
- ¹⁰Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of
- 29 Sciences, Vestec, Czech Republic
- 30 ¹¹Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la
- 31 Souris, Illkirch-Graffenstaden, France
- 32 ¹²Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA,
- 33 77030
- ¹³Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA, 77030
- ¹⁴Department of Surgery, School of Medicine, University of California Davis, California, USA,
- 36 95618
- 37 ¹⁵MRC Harwell Institute, Harwell OX11 0RD, UK
- ¹⁶European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome
- 39 Genome Campus, Hinxton, UK
- 40 ¹⁷William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
- 41 ¹⁸Present address: LGC Assure, Fordham, CB7 5WW, UK
- 42 ¹⁹Present Address: Program in Craniofacial Biology and Department of Orofacial Sciences,
- 43 University of California, San Francisco, San Francisco, CA, USA

- 44 ²⁰Present address: Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge,
- 45 Trinity Lane, Cambridge, CB2 1TN, UK
- 46 ²¹Present address: Nuffield Department of Population Health, University of Oxford, OX3
- 47 7LF, UK
- 48 ²²Present Address: Reproductive and Developmental Biology Laboratory, NIEHS, Research
- 49 Triangle Park, NC, USA, 27709
- ²³Present Address: The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
- ²⁴Present Address: UT Health San Antonio, San Antonio, TX, USA, 78229
- 52 ²⁵Present Address: The Jackson Laboratory, Bar Harbor, ME, USA, 04609
- ²⁶Present Address: The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA, 06032

54

55 Abstract

56	The International Mouse Phenotyping Consortium (IMPC) systematically produces and
57	phenotypes mouse lines with presumptive null mutations to provide insight into gene function.
58	The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and
59	flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a
60	valuable novel and accessible research resource, the production of 3,313 knockout mouse lines
61	using comparable protocols provides a rich dataset to analyze experimental and biological
62	variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical
63	steps – generation of founders with the desired allele and germline transmission (GLT) of that
64	allele from founders to offspring. A systematic evaluation of the variables impacting success
65	rates identified gene essentiality as the primary factor influencing successful production of null
66	alleles. Collectively, our findings provide best practice recommendations for using Cas9 to
67	generate alleles in mouse essential genes, many of which are orthologs of genes linked to
68	human disease.

69

70 Introduction

The International Mouse Phenotyping Consortium (IMPC) systematically generates and
 phenotypes mouse lines harboring null mutations in protein-coding genes and prioritizes
 mouse-human orthologs^{1,2}. To produce the majority of its null alleles, the IMPC implemented a
 deletion strategy to remove a critical region (one or more exons shared by all annotated full length transcripts that when removed will introduce a frameshift and premature termination
 codon)³. Designs were intended to target protein-coding transcripts for nonsense-mediated

77 decay by introducing a premature termination codon >50-55 nt from the final splice acceptor⁴. 78 While frameshifts can be achieved using single Cas9-mediated double-strand breaks repaired 79 by non-homologous end joining to introduce small insertions or deletions (indels), exon 80 skipping during splicing can restore the reading frame and partial gene function⁵⁻⁷. The deletion 81 approach mitigates the risk of restoring frame, simplifies founder screening, genotyping, and 82 quality control (QC), and resembles the embryonic stem cell-based approaches used for 83 decades to produce null alleles, albeit without selection cassette insertion. To evaluate 84 variables affecting mutant mouse production, we analysed data from 4,874 production 85 attempts on 3,973 unique genes from eight different centres (Supplementary Table 1) 86 recorded in the IMPC's production tracking database (GenTaR, formerly iMITS; downloaded 87 2020 Oct 11, www.gentar.org/tracker/#/). Experimental parameters as well as genomic and 88 biological characteristics of targeted genes were evaluated for their effects on mouse line 89 production success.

90

91 Results

92 Experimental parameters affecting mouse line production

Four experimental parameters were assessed for their effects on success: Cas9 delivery
method, number of guide RNAs (gRNAs) used, deletion size, and number of founders selected
for breeding. We also evaluated the effect of changing parameters in repeated production
attempts. Null deletion alleles were generated using Cas9 with guides flanking a critical region
containing one or more critical exons³. Gene editing reagents were delivered by microinjection
(pronuclear or cytoplasmic)^{8,9} or electroporation¹⁰⁻¹³ to target specific genes in C57BL/6N

99	zygotes (Supplementary Fig. 1). Among unique gene production attempts (<i>i.e.,</i> each gene									
100	represented only once; Supplementary Table 2), the founder rate, measured as the ratio of									
101	founders obtained to the number of embryos treated and transferred, was significantly higher									
102	using either cytoplasmic injection or electroporation compared to pronuclear injection of									
103	zygotes (Fig. 1a ; $p < 2.22 \times 10^{-16}$, Wilcoxon rank sum test) with no difference between									
104	cytoplasmic injection and electroporation (Fig. 1a; p=0.26). When we excluded experiments									
105	from which no founders were produced, GLT rates by these three delivery methods were all									
106	greater than 95% (95.4%, 96.5% and 97.3%, respectively) with no significant difference									
107	between them (p > 0.15 in pairwise comparisons with Pearson chi-square).									
108										
109	To mitigate the potential risk of low activity or inactive Cas9-guide combinations, several									
110	experiments used four guides, two 5' and two 3' flanking the target site. There was no									
111	difference in founder rate production (Fig. 1b ; p=0.82 Wilcoxon rank sum test) or GLT rates of									
112	genes edited with two or four guides (GLT 96.8% and 95.7%, respectively, p=0.096 Pearson chi-									
113										
	square). Even with no apparent efficiency gain using additional guides, it is possible that some									
114	square). Even with no apparent efficiency gain using additional guides, it is possible that some guides may perform better than others <i>in vivo</i> and that inactive or low activity guides may									
114 115										
	guides may perform better than others <i>in vivo</i> and that inactive or low activity guides may									
115	guides may perform better than others <i>in vivo</i> and that inactive or low activity guides may contribute to experimental failure. Using two guides instead of three for four may reduce the									

deletion size defined by the maximum distance between flanking guides into six bins with

120 approximately equal numbers of deletion attempts and observed no significant difference in

121	founder rates (p=0.34, Kruskal-Wallis test for comparing medians of six groups; Fig. 1c) or GLT
122	rates (p=0.668 Kruskal-Wallis test; data not shown) for deletion sizes below 1,400 bp. The
123	relatively small number of attempts that attempted to delete segments longer than 1,400 bp
124	precludes conclusive statistical analysis of deletions above that size using this dataset, however
125	decreased efficiency with increased deletion size has been reported ¹⁸ .
126	
127	We next assessed whether the number of founders bred affected GLT rate. GLT breeding
128	founders, regardless of production methods used, resulted in efficient germline editing and
129	breeding a single founder provided a >95% chance of success. The overall high GLT rate was
130	marginally improved by breeding up to three founders, but there was no advantage to breeding
131	more than three founders (Fig. 1d).
132	
132 133	While nearly 70% of first Cas9 production attempts were successful, we wanted to understand
	While nearly 70% of first Cas9 production attempts were successful, we wanted to understand why 30% of Cas9 production attempts failed to produce GLT of the desired null allele. Many of
133	
133 134	why 30% of Cas9 production attempts failed to produce GLT of the desired null allele. Many of
133 134 135	why 30% of Cas9 production attempts failed to produce GLT of the desired null allele. Many of these experiments were repeated (with or without changing parameters) and only 26.3% of
133 134 135 136	why 30% of Cas9 production attempts failed to produce GLT of the desired null allele. Many of these experiments were repeated (with or without changing parameters) and only 26.3% of second attempts and 16.5% of third attempts were successful (Fig. 2a, Supplementary Table 3).
133 134 135 136 137	why 30% of Cas9 production attempts failed to produce GLT of the desired null allele. Many of these experiments were repeated (with or without changing parameters) and only 26.3% of second attempts and 16.5% of third attempts were successful (Fig. 2a, Supplementary Table 3). We analysed the set of repeated attempts for 401 genes to determine what, if any, changes to
133 134 135 136 137 138	why 30% of Cas9 production attempts failed to produce GLT of the desired null allele. Many of these experiments were repeated (with or without changing parameters) and only 26.3% of second attempts and 16.5% of third attempts were successful (Fig. 2a, Supplementary Table 3). We analysed the set of repeated attempts for 401 genes to determine what, if any, changes to experimental parameters improved success rates. We compared success rates of consecutive
133 134 135 136 137 138 139	why 30% of Cas9 production attempts failed to produce GLT of the desired null allele. Many of these experiments were repeated (with or without changing parameters) and only 26.3% of second attempts and 16.5% of third attempts were successful (Fig. 2a, Supplementary Table 3). We analysed the set of repeated attempts for 401 genes to determine what, if any, changes to experimental parameters improved success rates. We compared success rates of consecutive attempts for each gene with repeated attempts to test an association between GLT and each of

143 change to guide sequence cf. 68.8% with a changed guide sequence, p=0.01 chi-square; Fig. 144 **2b**). Changes to other parameters did not significantly affect success rates. A logistic regression 145 model for GLT status conditional on changes in experimental factors also revealed that only 146 changing the guide sequence improved GLT rates (p=0.048, **Table 1**). To evaluate whether these 147 experimental factors interacted to affect GLT rates, we fit an elastic net logistic regression model which performs variable selection and accounts for collinearity through penalization. 148 149 These regression models provided a 57.58% classification accuracy for GLT status which is only 150 slightly better than a random guess, thus interactions among different parameters could not 151 predict improved experimental success. Therefore, when experiments fail, a significant 152 decrease in success rates after the first attempt should be expected, but changing the guide 153 sequence may improve the likelihood of generating the desired allele compared to making no 154 changes or changing the other parameters examined. 155 156 Biological parameters affecting successful mouse line production

157 In considering biological variables that could influence founder and GLT rates, we hypothesized 158 that targeting essential genes (genes whose function are necessary for cell or animal viability¹⁹) 159 could negatively affect founder rates due to the high mutagenic efficiency of Cas9. In support of 160 this, the founder rate obtained for cellular non-essential genes was significantly higher than for 161 cellular essential genes ($p < 2 \times 10^{-16}$ Wilcoxon rank sum test; Fig. 3a). Knockout mouse lines 162 (genes for which knockout alleles were successfully produced) were assessed for homozygous viability of the targeted allele by the IMPC²⁰. Alleles identified as homozygous lethal after 163 164 production, so called lethal genes which include both cellular and developmental essential

165	genes ¹⁹ , had significantly lower founder rates than alleles of non-lethal genes (p=2.2 x 10^{-11}									
166	Wilcoxon rank sum test; Fig. 3b). Similarly, the birth rates for essential and lethal genes during									
167	founder production attempts were lower than that for non-essential and non-lethal genes									
168	(Supplementary Fig. 2). Lower birth rates may reflect a loss of mutant embryos during									
169	gestation or shortly after birth due to effects of the introduced mutation. When repeated									
170	attempts were classified by gene essentiality ¹⁹ 72.2% of first attempts were successful for									
171	cellular non-essential genes compared to 52.6% for cellular essential genes (Fig. 3c). In addition,									
172	a larger percentage of cellular non-essential genes than essential genes were successful for									
173	each subsequent attempt, albeit with decreased success rates for each subsequent attempt for									
174	the same gene.									
175										
176	There was a small, but not statistically significant, difference in GLT rates between cellular non-									
176 177	There was a small, but not statistically significant, difference in GLT rates between cellular non- essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi-									
177	essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi-									
177 178	essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi-square) among experiments that generated founders. This may be a result of fewer founders									
177 178 179	essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi- square) among experiments that generated founders. This may be a result of fewer founders obtained and therefore fewer bred for cellular essential genes compared to non-essential									
177 178 179 180	essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi- square) among experiments that generated founders. This may be a result of fewer founders obtained and therefore fewer bred for cellular essential genes compared to non-essential genes. Alternatively, this may have occurred if haplo-insufficient genes were targeted and									
177 178 179 180 181	essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi- square) among experiments that generated founders. This may be a result of fewer founders obtained and therefore fewer bred for cellular essential genes compared to non-essential genes. Alternatively, this may have occurred if haplo-insufficient genes were targeted and produced mosaic founders that could not propagate mutant progeny that reached genotyping									
177 178 179 180 181 182	essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi- square) among experiments that generated founders. This may be a result of fewer founders obtained and therefore fewer bred for cellular essential genes compared to non-essential genes. Alternatively, this may have occurred if haplo-insufficient genes were targeted and produced mosaic founders that could not propagate mutant progeny that reached genotyping									
177 178 179 180 181 182 183	essential and cellular essential genes (96.8% and 95.2%, respectively; p=0.15 Pearson Chi- square) among experiments that generated founders. This may be a result of fewer founders obtained and therefore fewer bred for cellular essential genes compared to non-essential genes. Alternatively, this may have occurred if haplo-insufficient genes were targeted and produced mosaic founders that could not propagate mutant progeny that reached genotyping age.									

187	loss-of-function (pLI) score ²² , chromosome position, histone methylation and acetylation (as a
188	proxy for chromatin accessibility), cytogenic banding (a second proxy for chromatin
189	accessibility), and human ortholog disease annotation in the Online Mendelian Inheritance in
190	Man (OMIM) database ²³ (Supplementary Table 4). When gene essentiality was excluded from
191	analysis, only embryonic expression was significantly associated with low founder rates (odds
192	ratio (OR)=0.95, p=0.011). However, when essentiality was included, it was the only predictor of
193	experimental failure (OR=0.89, p=2.06 x 10^{-11} ; Fig. 3d, Table 2, Supplementary Table 5). The
194	proportion of essential genes in each experimental parameter grouping did not vary in a way
195	that may have confounded the results of those analyses (Supplementary Tables 6 and 7).
196	
197	After successful production of a founder, subsequent GLT rates were very high (Fig. 1d). Among
198	74 genes for which the reason for GLT failure was readily determined the majority failed GLT
199	because founders died before breeding, founders failed to produce progeny, or founders
200	propagated only wild-type progeny that reached genotyping age (Fig. 4). The remaining genes
201	failed primarily because the desired null allele could not be validated in N1 progeny (<i>e.g.,</i>
202	partial deletion or no frameshift recovered). Infertile founders and transmission of only wild-
203	type progeny might be due to founder mosaicism with only wild-type cells contributing to the
204	germline or mutation effects on gametogenesis with only wild-type cells able to produce
205	functional germ cells. Moreover, transmission of only wild-type alleles could indicate the
206	presence of haplo-insufficient alleles for some genes causing mutant progeny to die before
207	genotyping. These data support the hypothesis that a substantial subset of mutations may fail

- GLT due to negative effects on viability or fertility and are consistent with the significant effect 208
- 209 of gene essentiality on founder production (Table 2).
- 210

211 Discussion

212	The analysis of our large, multi-centre dataset identified several variables that affect Cas9
213	mutagenesis success and provides the basis for recommendations for genome editing in mouse
214	zygotes. For deletion alleles, Cas9 ribonucleoprotein (RNP) electroporation is the most
215	accessible and scalable method, providing equivalent performance to cytoplasmic
216	microinjection of Cas9 mRNA and gRNAs. GLT rates are high for Cas9 generated founders and
217	there is no apparent advantage to breeding more than three founders. Most attempts are
218	successful the first time, but for attempts that fail to produce founders, changing guide
219	sequences may be beneficial when repeating production for a given gene. The activity of Cas9-
220	guide RNA combinations can be assessed in vivo (e.g., by zygote treatment, in vitro culture, and
221	blastocyst genotyping ²⁴). Exploring the known biology of the gene, such as predicted effects on
222	phenotype (<i>e.g.</i> , disease association of human ortholog), viability, and/or fertility as well as
223	essentiality scores from publicly available sources (as in ¹⁹), can assist with experimental design.
224	Successful targeting of essential genes may require methods that promote founder
225	heterozygosity (e.g., lower Cas9 concentrations) or mosaicism (e.g., delivering reagents to one
226	blastomere of a 2-cell embryo by microinjection). In some cases, conditional alleles ^{25,26} may be
227	required instead of constitutive knockout alleles to generate a mouse line in which homozygous
228	loss of function may be examined in specific tissues or developmental stages.

229	The effect of cell essentiality or lethality can apply to generating lines with disease-associated
230	variants such as single nucleotide variants. Given the high proportion of essential genes among
231	human disease genes ^{19,27} , generating mouse models of human disease may require preserving
232	one copy of the wild-type allele, that is producing heterozygous founders or conditional variant
233	alleles, to establish a new mouse line. Overall, the use of Cas9 is a robust and flexible method to
234	generate gene-edited mouse lines. Improving model production success rates by applying our
235	recommendations can reduce the number of animals used to generate new models, consistent
236	with the ethical principles of the 3R's ²⁸ .

237 [Materials & Methods]

238 Mouse strains: All null allele mouse lines were produced in the C57BL/6N strain background 239 available from Charles River or the Jackson Laboratory (Supplementary Methods Table 1). All 240 live animal protocols conformed to the applicable standards for the ethical use of animals in 241 research at the respective facilities with detailed ethics statements found in **Supplementary** 242 Methods Table 1 for each production centre. Animal welfare was regularly monitored. 243 Allele design: Null alleles were designed such that the mutations resulting from Cas9 244 endonuclease activity and double-strand break (DSB) repair caused a reading frameshift in 245 protein-coding transcripts and introduced a premature stop codon. This required the 246 identification of a critical region for each targeted gene. A critical region was defined as one or 247 more exons that when frameshifted or deleted resulted in a frameshift in the open reading 248 frames of all known full-length protein-coding transcripts (per Ensembl build 38)³. For the 249 majority of designs, the premature stop codon was predicted to be in the first half of the 250 protein-coding open reading frame and to target transcripts for nonsense-mediated decav^{4,29}. 251 Such alleles are considered presumptive nulls. Three major categories of alleles were evaluated 252 in this study. Exon deletion (exdel) alleles resulting from NHEJ-mediated repair of Cas9-induced 253 DSBs flanking the exon(s) within a gene's critical region. Intra-exon deletion (intra-exdel) alleles 254 resulting from repair of Cas9-induced paired DSBs within a single exon in the target gene's 255 critical region, used for example, when all exons of a gene are in the same frame precluding an 256 exon deletion strategy or for single exon genes. Inter-exon deletion (inter-exdel) alleles 257 resulting from repair of Cas9-induced paired DSBs in two or more different (often sequential) exons in a gene's critical region, used for example, to delete a functional domain that spans 258

259 multiple exons or when specific gRNAs in appropriate intron locations could not be identified. 260 Alleles that did not result in a frameshift failed quality control (QC) metrics and were not 261 maintained. Exceptions were made when the deletion was still in frame, but either removed 262 critical protein domains (e.g., zinc fingers from a zinc-finger protein) or a substantial fraction of 263 the protein-coding sequence; these alleles were also deemed to be presumptive null allele. 264 sgRNA selection: Guide RNA (gRNA) spacer sequences were selected using either the CRISPR design tool³⁰, the Wellcome Sanger Genome Editing (WGE) Tool³¹, CRISPOR³², CRISPRTools³³, 265 CHOPCHOP³⁴, or FORCAST³⁵. Suitable gRNA spacer sequences were selected to minimize 266 267 predicted off-target mutagenesis using specificity scores >65 when available and/or sequences 268 with at least 3 mismatches for all predicted off-target sites. Multiple guides were used to 269 generate deletion alleles, with either two, three, or four guides (2G, 3G, or 4G, respectively) 270 with two or more guides flanking the target critical region. In the 3G approach, the middle 271 guide could be within an exon and result in the deletion in conjunction with either the 272 upstream or downstream guide, removing either the splice acceptor or donor from the critical 273 region, resulting in mis-splicing and the introduction of a frameshift. sgRNA synthesis: sgRNAs were synthesized by either subcloning sgRNA spacer sequences and in 274 275 vitro transcription (plasmid-IVT), PCR and in vitro transcription (PCR-IVT)³⁶, gBlock synthesis and *in vitro* transcription (gBlock-IVT), or by primer extension and *in vitro* transcription (PE-IVT)³⁶. 276 277 Alternatively, sgRNAs were purchased from commercial suppliers. See **Supplementary Methods** 278 Table 1 for centre-specific reagent details. 279 PCR-IVT: DNA templates for PCR-IVT were produced using overlapping oligonucleotides in a high-fidelity PCR reaction³⁷ or using a plasmid template (Addgene #42230³⁸) and appropriate 280

281	primers ³⁶ . PCR amplicons were purified using the Monarch PCR & DNA cleanup kit (New								
282	England BioLabs T1030) or the QIAQuick PCR purification kit (Qiagen 28104) and used as a								
283	template for <i>in vitro</i> transcription of the sgRNA with the T7 MEGAshortscript™ Kit								
284	(ThermoFisher AM1354).								
285	Plasmid-IVT: Overlapping oligonucleotides with Bsal appendages to facilitate standard sticky								
286	ended cloning into a T7 expression plasmid (a kind gift from Sebastian Gerety, based upon ³⁹)								
287	were purchased annealed. Alternatively, annealed oligonucleotides were cloned into plasmid								
288	DR274 (Addgene #42250 ⁴⁰). Plasmid DNA was extracted using the QIAGEN Plasmid Plus 96 Kit								
289	(Qiagen 16181) and guide cloning confirmed by Sanger sequencing. The DNA was then								
290	linearized and used as a template for T7 RNA in vitro transcription using the T7								
291	MEGAshortscript™ Kit (ThermoFisher AM1354) or Thermo T7 RNA polymerase (TOYOBO, TRL-								
292	201).								
292 293	201). <i>gBlock-IVT</i> : sgRNAs were synthesized directly from gBlock [®] DNA (Integrated DNA Technologies)								
293	gBlock-IVT: sgRNAs were synthesized directly from gBlock [®] DNA (Integrated DNA Technologies)								
293 294	<i>gBlock-IVT</i> : sgRNAs were synthesized directly from gBlock [®] DNA (Integrated DNA Technologies) templates containing the T7 promoter using the HiScribe [™] T7 High Yield RNA Synthesis Kit (New								
293 294 295	<i>gBlock-IVT</i> : sgRNAs were synthesized directly from gBlock [®] DNA (Integrated DNA Technologies) templates containing the T7 promoter using the HiScribe [™] T7 High Yield RNA Synthesis Kit (New England BioLabs E2050) following manufacturer's instructions for sgRNA synthesis.								
293 294 295 296	<i>gBlock-IVT</i> : sgRNAs were synthesized directly from gBlock® DNA (Integrated DNA Technologies) templates containing the T7 promoter using the HiScribe™ T7 High Yield RNA Synthesis Kit (New England BioLabs E2050) following manufacturer's instructions for sgRNA synthesis. <i>PE-IVT</i> : The EnGen sgRNA Synthesis Kit (New England BioLabs E3322) was used for PE-IVT per								
293 294 295 296 297	<i>gBlock-IVT</i> : sgRNAs were synthesized directly from gBlock® DNA (Integrated DNA Technologies) templates containing the T7 promoter using the HiScribe™ T7 High Yield RNA Synthesis Kit (New England BioLabs E2050) following manufacturer's instructions for sgRNA synthesis. <i>PE-IVT</i> : The EnGen sgRNA Synthesis Kit (New England BioLabs E3322) was used for PE-IVT per the kit protocol, but with incubation at 37°C for 60-90 minutes prior to DNAse treatment.								
293 294 295 296 297 298	<i>gBlock-IVT</i> : sgRNAs were synthesized directly from gBlock® DNA (Integrated DNA Technologies) templates containing the T7 promoter using the HiScribe™ T7 High Yield RNA Synthesis Kit (New England BioLabs E2050) following manufacturer's instructions for sgRNA synthesis. <i>PE-IVT</i> : The EnGen sgRNA Synthesis Kit (New England BioLabs E3322) was used for PE-IVT per the kit protocol, but with incubation at 37°C for 60-90 minutes prior to DNAse treatment. For some 3G and 4G designs, up to two primers (<i>e.g.</i> both upstream gRNAs or both								
293 294 295 296 297 298 299	<i>gBlock-IVT</i> : sgRNAs were synthesized directly from gBlock® DNA (Integrated DNA Technologies) templates containing the T7 promoter using the HiScribe™ T7 High Yield RNA Synthesis Kit (New England BioLabs E2050) following manufacturer's instructions for sgRNA synthesis. <i>PE-IVT</i> : The EnGen sgRNA Synthesis Kit (New England BioLabs E3322) was used for PE-IVT per the kit protocol, but with incubation at 37°C for 60-90 minutes prior to DNAse treatment. For some 3G and 4G designs, up to two primers (<i>e.g.</i> both upstream gRNAs or both downstream gRNAs) were pooled at appropriate final concentrations before PCR or PE-IVT.								

303 quality control). The integrity and size of sgRNA was assessed by agarose gel electrophoresis,

- Agilent Bioanalyzer, Agilent RNA Tape or the Qiaxcel Advanced System (RNA QC V2.0).
- 305 Synthesized sgRNAs were stored at -80°C in elution buffer or stored as ammonium acetate
- 306 precipitates in ethanol at -20°C. Before use, sgRNAs were either thawed on ice or pelleted, air
- 307 dried, and resuspended in RNAse-free MI buffer.
- 308 **Cas9:** Cas9 mRNA was purchased (**Supplementary Methods Table 1**) or transcribed in-house⁴¹.
- 309 Cas9 protein was purchased from commercial suppliers. See **Supplementary Methods Table 1**
- 310 for centre-specific reagent details.
- 311 **Injection mix preparation:** Injection mixes were prepared essentially as previously reported³⁶
- 312 with or without filtration prior to injection. For mRNA microinjection, injection mixes consisted
- of Cas9 mRNA and sgRNA in microinjection buffer (**Supplementary Methods Table 1**).
- 314 Concentrations for each production attempt are shown in **Supplementary Table S8**. For Cas9
- 315 protein microinjection, Cas9 ribnucleoprotein (RNP) complexes were produced by mixing the
- 316 Cas9 protein with sgRNA at 5X the concentration shown in **Supplementary Methods Table S1** in
- 317 RNP injection buffer and incubating at 37°C or room temperature for 10 minutes. The RNP mix
- 318 was then diluted with 4 volumes of RNP injection buffer prior to injection. See **Supplementary**
- 319 Methods Table 1 for centre-specific reagent details.
- 320 Electroporation mix preparation: Electroporation mixes were prepared essentially as
- 321 previously reported^{11-13,36}. Electroporation mixes consisted of Cas9 protein and sgRNA in RNP
- 322 electroporation buffer (Supplementary Methods Table 1) at 2X the concentrations shown in
- 323 Supplementary Table S8, incubated at 37°C or room temperature for 5-15 minutes, and placed
- on ice until electroporation. Immediately before electroporation, RNP was diluted with an equal

325 volume of Opti-MEM (ThermoFisher 31985062). See **Supplementary Methods Table 1** for

326 centre-specific reagent details.

327	Generation of embryos by mating: C57BL/6N female mice, 3-6 weeks old, were injected with 5								
328	IU/mouse of pregnant mare serum, followed 46-48 hr later with 5 IU/mouse of human								
329	chorionic gonadotropin. The females were then mated overnight with C57BL/6N males.								
330	Fertilized oocytes were collected from females with copulatory plugs the following morning at								
331	0.5 days post-coitum (dpc). Oviducts were dissected and cumulus masses from these were								
332	released and treated with hyaluronidase. Fertilized 1-cell embryos were selected and								
333	maintained at 37°C in media prior to microinjection or electroporation.								
334	Microinjection of Cas9 reagents: The number of embryos injected and the injection route								
335	(pronuclear or cytoplasmic) for each experiment is in Supplementary Table S8 . Pronuclear								
336	microinjections were performed following standard protocols ^{8,42} . Cytoplasmic injections were								
337	performed essentially as in ⁹ . Visible movement of the cytoplasm indicated successful injection.								
338	Injected zygotes were transferred into pseudopregnant females (see Supplementary Methods								
339	Table 1) on the afternoon of the injection or after overnight culture (recorded for each								
340	production attempt in Supplementary Table S8), with 12-15 or 20-28 zygotes per unilateral or								
341	bilateral transfer into pseudopregnant females, respectively.								
342	Electroporation of Cas9 reagents: Electroporation was performed essentially as described ¹¹⁻								
343	^{13,36} . At some centres, zygotes were briefly treated with Acid Tyrode's solution (Sigma-Aldrich								
344	T1788). After acid treatment, embryos were rinsed at least 3 times with the final rinse in Opti-								
345	MEM. For electroporation, embryos were transferred into a 1:1 mixture of Cas9 RNP and Opti-								
346	MEM or Opti-MEM when RNP were formed in Opti-MEM. For each production attempt,								

347 electroporation pulses are in **Supplementary Table S8**. After electroporation the embryos were 348 rinsed and transferred into pseudopregnant recipients the same day or after overnight culture 349 (as recorded for each production attempt in **Supplementary Table S8**). Centre-specific details 350 for buffers used are in Supplementary Methods Table 1. 351 Genotyping: Genomic DNA was prepared from ear punch or tail biopsies of two- to three-week-352 old pups (see **Supplementary Methods Table 1** for reagents) using commercial kits or previously described protocols^{43,44}. DNA was amplified by standard end-point PCR or 353 354 quantitative PCR (qPCR). End-point PCR assays were designed to produce differently sized 355 amplicons. To detect wild-type alleles, one primer was designed outside of the deletion target 356 sequence and the second primer designed within the deletion target sequence such that 357 amplicons are only produced from wild-type alleles. To detect deletion alleles, primers were 358 designed to flank the predicted deletion junction. Amplification can result in two amplicons – a 359 shorter amplicon representing the deletion allele and a larger amplicon representing the wild-360 type allele, if PCR conditions allow the amplification of the larger amplicon. Three-primer 361 designs use a common primer outside of the deletion for both amplicons. PCR products were 362 visualized using the Caliper LabChip GX system, QIAxcel Advanced, or agarose gel 363 electrophoresis. Sequences are available upon request from the relevant production centre. 364 In some cases, gene-specific 'loss of WT allele' (LoA) qPCR assays were designed to the region of 365 the genome predicted to be deleted^{45,46}. Deletion alleles will not amplify a product at the target 366 site such that homozygous or hemizygous X-linked male deletions would have a copy number of 367 0, heterozygous a copy number of 1 and mosaic animals a copy number between 1 and 2 for autosomal alleles or between 0 and 1 in hemizygous X-linked alleles in males. These assays 368

369 allowed estimation of the level of mosacism in founder animals. Mice showing the greatest loss 370 of allele were selected for breeding to confirm germline transmission. Sequences for loss-of-371 allele assays are available upon request from the relevant production centres. 372 Once germline transmission was confirmed, mice were genotyped with either end-point PCR or 373 probe-based LoA assays. Seep **Supplementary Methods Table 1** for centre-specific genotyping 374 methods. 375 Germline Transmission Test Breeding: Founders born from microinjection or electroporation 376 experiments that carried the desired allele based on genotyping results were pair-mated to 377 C57BL/6N mice. N1 pups were screened with the same genotyping assay used to identify 378 founders. Deletion amplicons from deletion-positive N1 mice were subjected to Sanger 379 sequencing (with or without subcloning) and other occasionally other quality control measures. 380 **Copy number assessment:** When warranted, to assess whether the excised genomic fragment 381 from deletion alleles re-inserted into the genome, DNA from N1 mice was purified using the 382 NucleoSpin Tissue Kit (Machery-Nagel 740453) and subjected to digital droplet PCR (ddPCR) at 383 The Centre for Applied Genomics (Toronto, Canada), the Mary Lyon Centre (Didcot, UK), or the 384 Mouse Biology Program (University of California, Davis). The ddPCR assays were designed such 385 that the amplification primers and probes were entirely contained within the target deletion 386 fragment. For heterozygous N1 mice, a copy number equal to 1 (+/-0.2) was considered a pass; 387 for hemizygous X-linked male mice, a copy number of 0 to 0.2 was considered a pass. 388 Data download and filtering: A complete data set of Cas9-mediated mouse production 389 attempts was downloaded on October 11, 2020 from the International Mouse Phenotyping 390 Consortium production tracking database (formerly iMITS and now GenTaR; 'Cas9 Micro391 Injection Excel download'). This data included all Cas9-based production attempts as of that 392 date. A production attempt was defined as the treatment of embryos to introduce Cas9 and 393 guide RNAs to direct genome editing, subsequent embryo transfer, birth and screening of pups 394 born from the embryo transfer, and subsequent breeding of mutant founders to obtain 395 germline transmission of the desired edited allele. The data was filtered to remove attempts 396 labeled as "private", as "experimental", or producing an allele other than a null allele, those 397 with a status "Microinjection in Progress", embryo transfer day of "Next Day", none or >1000 398 embryos injected, incomplete information (e.g. number of founders not set, incomplete quality 399 control information), and/or attempts that targeted non-protein coding genes. These data were 400 further limited to attempts from production centres that had reported germline transmission 401 for at least 50 unique genes for each of one or more of the analyzed methods (Cas9 mRNA 402 pronuclear microinjection, Cas9 mRNA cytoplasmic injection, Cas9 RNP electroporation). This 403 comprised the complete data set for analysis (Supplementary Table 8). 404 To define the set of unique gene experiments (i.e., each gene represented only once in the data 405 set), the earliest attempt with germline transmission of the desired allele (Status = Genotype 406 confirmed) for successful genes or the latest unsuccessful attempt (Status = Micro-injection 407 aborted) was kept so that each gene was represented by a single attempt. If all attempts had a 408 status of "Founder obtained", the most recent was kept. However, if no attempts for a given 409 gene were successful in this filtered dataset, the larger IMPC dataset was queried to see if a 410 successful attempt existed in the pre-filtered dataset (e.g., at another IMPC production centre 411 or as the result of technology development activities at a given centre). Successful production 412 at another centre or through technology development activities could have resulted in aborting

the production attempt in our filtered dataset, rather than failure of a complete experiment, or
that technical issues rather than the parameters studied here resulted in failure, so these
attempts were excluded from analysis.

416 For repeat attempt analysis, all attempts at the same production centre for genes that had 417 more than one attempt were identified. This data set was then filtered to remove attempts in 418 progress (Status = "Microinjection in progress" or "Founders obtained"). The remaining 419 attempts were sorted in chronological order by microinjection [electroporation] date. If the first 420 attempt for a given gene was successful, the set of attempts for that gene was removed from 421 the repeat attempt analysis. Similarly, if an attempt was aborted within 6 weeks of a successful 422 germline transmission attempt, it was removed since it may have been aborted because 423 germline transmission had already been obtained, rather than having "failed". Finally, if there 424 was no GLT in any attempt at one centre, but successful GLT at another centre, the set of failed 425 attempts was removed from the repeat dataset. The resulting data set comprised the repeat 426 dataset (Supplementary Table 3). 427 **Data Annotation:** Genes targeted for mouse line production attempts in **Supplementary Table** 428 2 were annotated with derived parameters including bins for Cas9 mRNA and protein 429 concentration, gRNA cut sites and predicted deletion sizes, percentage of embryos that 430 survived to transfer of those treated (injected or electroporated), birth rate (number of pups 431 born divided by embryos transferred), founder rate (number of founders born divided by 432 embryos transferred), number of founders selected for breeding. Repeat attempts

433 (Supplementary Table 3) were annotated with whether the Cas9 type (mRNA vs. protein),

434 amount of Cas9, delivery of reagents (injection versus electroporation), or gRNA locations

435	(sequences) changed between sequential attempts. All filtering and annotation of the data was
436	performed in Python3.8.5 using packages numPy1.2.1 ⁴⁷ and pandas1.2.2 ⁴⁸ .
437	Genes for each attempt were annotated (Supplementary Table 4) with their viability (as
438	annotated at the IMPC – viable or homozygous lethal), human orthologs and cell essentiality of
439	human orthologous genes ¹⁹ , embryonic expression (GEO GSE11224) ²¹ , length, GC content,
440	number of CpG sites, and CpG percentage (Supplementary Table 2). The human orthologs'
441	probability of being loss-of-function intolerant (pLI) and observed / expected (oe) mutation rate
442	was retrieved from gnomAD ²² . Additional annotations were added for analysis of biological
443	variables affecting success. Annotation details are in Supplementary Table 2.
444	Statistical Analysis: The primary outcomes were the founder rate and the germline
445	transmission status. The founder rate had a right-skewed distribution with a range [0,0.5].
446	Hence, comparisons of the founder rate across different categories of biological or
447	experimental factors were conducted using nonparametric tests. For pairwise comparisons, the
448	Wilcoxon rank sum test ⁴⁹ was used and when there were more than two categories the Kruskal-
449	Wallis test ⁵⁰ was employed. The biological factors considered in the comparisons were the gene
450	essentiality (essential versus non-essential) and gene lethality (lethal versus non-lethal). The
451	experimental factors were the delivery method (three categories), number of gRNAs used (2
452	versus 4), deletion size (six categories), and number of founders selected for breeding (four
453	categories). Since the GLT status is binary (yes versus no), comparisons of the GLT rate
454	(proportion of genes with GLT) across different categories of biological or experimental factors
455	were performed using the Pearson chi-square test ⁵¹ . In the case of multiple pairwise
456	comparisons, correction for multiple testing was done using Holm's method ⁵² . Evaluation of

457	suc	cess of repeated attempts was based on descriptive summaries, mainly calculation of								
458	rele	evant proportions. The assessment of the impact of changing experimental factors to the								
459	suc	cess of gene editing in repeated attempts was conducted using logistic regression with the								
460	GL	Γ status as the binary response and changes in the delivery method (change versus no								
461	cha	inge), number of gRNAs used (decrease, no change, increase), deletion size (change versus								
462	no change) and number of founders selected for breeding (change versus no change) as									
463	cat	egorical covariates. All statistical analyses were performed using the R statistical programing								
464	sof	tware ⁵³ , along with the packages <code>ggplot2⁵⁴</code> for figures, <code>tidyverse⁵⁵</code> for data								
465	ma	nipulations and effects ^{56,57} for effect plots.								
466	The	e general linear models of biological variables were fit using the glm function in the R 3.6.2								
467	nat	ive stats package (https://rdocumentation.org/packages/stats/versions/3.6.2) using the								
468	fac	tors in Supplementary Table 4 and with founder rate as the dependent variable.								
469	All	code can be found at https://github.com/The-Centre-for-Phenogenomics/IMPC-Cas9-								
470	Production.									
471										
472		References								
473 474	1	Lloyd, K. C. K. et al. The Deep Genome Project. Genome Biol 21, 18, doi:10.1186/s13059-								
475		020-1931-9 (2020).								
476	2	Birling, M. C. et al. A resource of targeted mutant mouse lines for 5,061 genes. Nat Genet								
477		53 , 416-419, doi:10.1038/s41588-021-00825-y (2021).								
478	3	Bradley, A. et al. The mammalian gene function resource: the international knockout								

480	4	Popp <i>,</i> M. ۱	N. & I	Maquat, L	E.	The d	harma	of no	onsense-	mediated	mRNA	decay i	n
-----	---	--------------------	--------	-----------	----	-------	-------	-------	----------	----------	------	---------	---

- 481 mammalian cells. *Mol Cells* **37**, 1-8, doi:10.14348/molcells.2014.2193 (2014).
- 482 5 Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat
- 483 *Methods* **16**, 1087-1093, doi:10.1038/s41592-019-0614-5 (2019).
- 484 6 Lalonde, S. *et al.* Frameshift indels introduced by genome editing can lead to in-frame exon
- 485 skipping. *PLoS One* **12**, e0178700, doi:10.1371/journal.pone.0178700 (2017).
- 486 7 Mou, H. *et al.* CRISPR/Cas9-mediated genome editing induces exon skipping by alternative
- 487 splicing or exon deletion. *Genome Biol* **18**, 108, doi:10.1186/s13059-017-1237-8 (2017).
- 488 8 Behringer, R. R., Gertsenstein, M., Nagy, K. & Nagy, A. Manipulating the Mouse Embryo: A
- 489 *Laboratory Manual*. 4th edn, (Cold Spring Harbor Laboratory Press, 2014).
- 490 9 Doe, B., Brown, E. & Boroviak, K. Generating CRISPR/Cas9-Derived Mutant Mice by Zygote
- 491 Cytoplasmic Injection Using an Automatic Microinjector. *Methods Protoc* 1,
- doi:10.3390/mps1010005 (2018).
- 493 10 Gertsenstein, M. & Nutter, L. M. J. Production of knockout mouse lines with Cas9. *Methods*
- 494 **191**, 32-43, doi:10.1016/j.ymeth.2021.01.005 (2021).
- 495 11 Wang, W. et al. Delivery of Cas9 Protein into Mouse Zygotes through a Series of
- 496 Electroporation Dramatically Increases the Efficiency of Model Creation. *Journal of genetics*
- 497 and genomics = Yi chuan xue bao **43**, 319-327, doi:10.1016/j.jgg.2016.02.004 (2016).
- 498 12 Kaneko, T., Sakuma, T., Yamamoto, T. & Mashimo, T. Simple knockout by electroporation of
- 499 engineered endonucleases into intact rat embryos. *Scientific reports* **4**, 6382,
- 500 doi:10.1038/srep06382 (2014).

- 501 13 Modzelewski, A. J. et al. Efficient mouse genome engineering by CRISPR-EZ technology. Nat
- 502 *Protoc* **13**, 1253-1274, doi:10.1038/nprot.2018.012 (2018).
- 503 14 Peterson, K. A. et al. Whole genome analysis for 163 gRNAs in Cas9-edited mice reveals
- 504 minimal off-target activity. *Commun Biol* **6**, 626, doi:10.1038/s42003-023-04974-0 (2023).
- 505 15 Iyer, V. et al. Off-target mutations are rare in Cas9-modified mice. Nat Methods 12, 479,
- 506 doi:10.1038/nmeth.3408 (2015).
- 507 16 Anderson, K. R. *et al.* CRISPR off-target analysis in genetically engineered rats and mice. *Nat*
- 508 *Methods* **15**, 512-514, doi:10.1038/s41592-018-0011-5 (2018).
- 509 17 Willi, M., Smith, H. E., Wang, C., Liu, C. & Hennighausen, L. Mutation frequency is not
- 510 increased in CRISPR-Cas9-edited mice. *Nat Methods* **15**, 756-758, doi:10.1038/s41592-018-
- 511 0148-2 (2018).
- 512 18 Lanza, D. G. et al. Comparative analysis of single-stranded DNA donors to generate
- 513 conditional null mouse alleles. *BMC biology* **16**, 69, doi:10.1186/s12915-018-0529-0 (2018).
- 514 19 Cacheiro, P. *et al.* Human and mouse essentiality screens as a resource for disease gene
- 515 discovery. *Nature communications* **11**, 655, doi:10.1038/s41467-020-14284-2 (2020).
- 516 20 Ring, N. *et al.* A mouse informatics platform for phenotypic and translational discovery.
- 517 *Mamm Genome* **26**, 413-421, doi:10.1007/s00335-015-9599-2 (2015).
- 518 21 Barrett, T. et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids
- 519 *Res* **41**, D991-995, doi:10.1093/nar/gks1193 (2013).
- 520 22 Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in
- 521 141,456 humans. *Nature* **581**, 434-443, doi:10.1038/s41586-020-2308-7 (2020).

- 522 23 (McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore,
- 523 MD), 2020).
- 524 24 Scavizzi, F. *et al.* Blastocyst genotyping for quality control of mouse mutant archives: an
- 525 ethical and economical approach. *Transgenic Res* 24, 921-927, doi:10.1007/s11248-015-
- 526 9897-1 (2015).
- 527 25 Economides, A. N. *et al.* Conditionals by inversion provide a universal method for the
- 528 generation of conditional alleles. *Proc Natl Acad Sci U S A* **110**, E3179-3188,
- 529 doi:10.1073/pnas.1217812110 (2013).
- 530 26 Nagy, A. Cre recombinase: the universal reagent for genome tailoring. *Genesis* 26, 99-109,
- 531 doi:10.1002/(SICI)1526-968X(200002)26:2<99::AID-GENE1>3.0.CO;2-B [pii] (2000).
- 532 27 Cacheiro, P. *et al.* Mendelian gene identification through mouse embryo viability screening.

533 *Genome Med* **14**, 119, doi:10.1186/s13073-022-01118-7 (2022).

- 534 28 Russell, W. M. S. & Burch, R. L. *The Principles of Humane Experimental Technique*.
- 535 (Methuen, 1959).
- 536 29 Popp, M. W. & Maquat, L. E. Organizing principles of mammalian nonsense-mediated
- 537 mRNA decay. Annu Rev Genet **47**, 139-165, doi:10.1146/annurev-genet-111212-133424
- 538 (2013).
- 539 30 Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281-
- 540 2308, doi:10.1038/nprot.2013.143 (2013).
- 541 31 Hodgkins, A. et al. WGE: a CRISPR database for genome engineering. Bioinformatics 31,
- 542 3078-3080, doi:10.1093/bioinformatics/btv308 (2015).

- 543 32 Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and
- 544 integration into the guide RNA selection tool CRISPOR. *Genome Biol* **17**, 148,
- 545 doi:10.1186/s13059-016-1012-2 (2016).
- 546 33 Peterson, K. A. et al. CRISPRtools: a flexible computational platform for performing
- 547 CRISPR/Cas9 experiments in the mouse. *Mamm Genome* **28**, 283-290, doi:10.1007/s00335-

548 017-9681-z (2017).

- 549 34 Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: a web
- 550 tool for the next generation of CRISPR genome engineering. *Nucleic Acids Res* 44, W272-
- 551 276, doi:10.1093/nar/gkw398 (2016).
- 552 35 Elrick, H. et al. FORCAST: a fully integrated and open source pipeline to design Cas-
- 553 mediated mutagenesis experiments. *bioRxiv*, 2020.2004.2021.053090,
- 554 doi:10.1101/2020.04.21.053090 (2020).
- 555 36 Gertsenstein, M. & Nutter, L. M. J. Engineering point mutant and epitope-tagged alleles in
- 556 mice using Cas9 RNA-guided nuclease. *Curr Protoc Mouse Biol* **8**, 28-53,
- 557 doi:10.1002/cpmo.40 (2018).
- 558 37 Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of
- 559 Drosophila with the CRISPR/Cas9 system. *Cell reports* **4**, 220-228,
- 560 doi:10.1016/j.celrep.2013.06.020 (2013).
- 561 38 Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-
- 562 823, doi:10.1126/science.1231143 (2013).
- 563 39 Mali, P. et al. RNA-guided human genome engineering via Cas9. Science **339**, 823-826,
- 564 doi:10.1126/science.1232033 (2013).

- 565 40 Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat
- 566 *Biotechnol* **31**, 227-229, doi:10.1038/nbt.2501 (2013).
- 567 41 Mianne, J. et al. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-
- 568 mediated homology directed repair. *Genome Med* **8**, 16, doi:10.1186/s13073-016-0273-4
- 569 (2016).
- 570 42 Gardiner, W. J. & Teboul, L. Overexpression transgenesis in mouse: pronuclear injection.
- 571 *Methods Mol Biol* **561**, 111-126, doi:10.1007/978-1-60327-019-9_8 (2009).
- 572 43 Truett, G. E. et al. Preparation of PCR-quality mouse genomic DNA with hot sodium
- 573 hydroxide and tris (HotSHOT). *Biotechniques* **29**, 52, 54, doi:10.2144/00291bm09 (2000).
- 44 Green, M. R. & Sambrook, J. *Molecular Cloning: A Laboratory Manual*. Vol. 3 (Cold Spring
- 575 Harbor Laboratory Press, 2012).
- 576 45 Ryder, E. *et al.* Molecular characterization of mutant mouse strains generated from the
- 577 EUCOMM/KOMP-CSD ES cell resource. *Mamm Genome* 24, 286-294, doi:10.1007/s00335-
- 578 013-9467-x (2013).
- 579 46 Mianne, J. *et al.* Analysing the outcome of CRISPR-aided genome editing in embryos:
- 580 Screening, genotyping and quality control. *Methods* **121-122**, 68-76,
- 581 doi:10.1016/j.ymeth.2017.03.016 (2017).
- 582 47 Harris, C. R. et al. Array programming with NumPy. Nature 585, 357-362,
- 583 doi:10.1038/s41586-020-2649-2 (2020).
- 584 48 McKinney, W. in *9th Python in Science Conference*. (eds S. van der Walt & J. Millman) 50-61.
- 585 49 Wilcoxon, F. Individual comparisons by ranking methods. *Biometrics Bulletin* 1, 80-83,
- 586 doi:10.2307/3001968 (1945).

587	50	Kruskal, W. H. & Wallis, W. A. Use of Ranks in One-Criterion Variance Analysis. Journal of
588		the American Statistical Association 47, 583-621, doi:10.1080/01621459.1952.10483441
589		(1952).
590	51	Pearson, K. X. On the criterion that a given system of deviations from the probable in the
591		case of a correlated system of variables is such that it can be reasonably supposed to have
592		arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine
593		and Journal of Science 50 , 157-175, doi:10.1080/14786440009463897 (1900).
594	52	Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of
595		<i>Statistics</i> 6 , 65-70, doi:10.2307/4615733 (1979).
596	53	Team, R. C. in <i>R Foundation for Statistical Computing,</i> (2021).
597	54	Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).
598	55	Wickham, H. et al. Welcome to the Tidyverse. The Journal of Open Source Software 4, 1686,
599		doi:10.21105/joss.01686 (2019).
600	56	Fox, J. Effect Displays in R for Generalised Linear Models. 2003 8, 27,
601		doi:10.18637/jss.v008.i15 (2003).
602	57	Fox, J. & Weisberg, S. An R companion to applied regression. Third edition edn, (SAGE,
603		2019).
604		

605 [Author contributions]

606	K.A.P., B.W.	, D.L., L.T	., P.K.	, M-C. B.	, G.C.	, G.D.	, L.G.,	L.L.,	M.M.	, M.R.	, J.D.H.	, and L.M.J.N.

- designed alleles; D.L., E.R., P.K., A.C., G.C., B.D., G.D., M.G., L.G., L.L., K.L., I.L., M.M., S.A.M., and
- 608 L.M.J.N. produced mouse lines or data; H.E. and P.M. developed software, databases and/or
- 609 reporting tools; H.E., K.A.P., E.A., S.A.M., and L.M.J.N. analyzed data for the figures in the
- 610 manuscript; B.W., D.L., L.T., P.K., M-C.B., D.A., A.B., R.B., S.B., A.C., M.D., F.D., L.G., K.L., I.L.,

611 M.M., A-M. M., C.M., H.P., R.R.-S., R.S., W.S., D.M., S.W., J.K.W., J.A.W., S.A.M., J.D.H., and

- 612 L.M.J.N. co-supervised research; H.E., E.A., and L.M.J.N. wrote the manuscript. All authors
- reviewed and had the opportunity to comment on and edit the manuscript before submission.

614

615 [Acknowledgements]

616 We thank all technical personnel at the IMPC production centres for their contributions. H.E.,

617 E.A., M.G., L.L., C.M., and L.M.J.N. were supported by Ontario Genomics and Genome Canada

618 OGI-051, OGI-090, OGI-137 and the Canada Foundation for Innovation. M-C.B. and Y.H. were

619 supported by the Université de Strasbourg, the CNRS, the INSERM and the 'Investissements

d'avenir' programs (ANR-10-IDEX-0002-02, ANR-10-LABX-0030-INRT and ANR-10-INBS-07

621 PHENOMIN). A.C., G.C., M.M., L.T., and S.W. were supported by the Medical Research Council

622 MC_UP_1502/3 International Mouse Phenotyping Consortium - building a functional catalogue

of a mammalian genome. B.D., G.D., E.R., H.W.-J., D.A., A.B., R.R.-S., and W.S. were supported

- by the Wellcome Trust. P.M. and H.P. were supported by European Molecular Biology
- 625 Laboratory core funding. P.K. and R.S. used services of the Czech Centre for Phenogenomics
- 626 supported by the Czech Academy of Sciences RVO 68378050 and project LM2018126 Czech

627 Centre for Phenogenomics provided by Ministry of Education, Youth and Sports of the

- 628 Republic, LM2015040 Czech Centre for Phenogenomics by MEYS, CZ.1.05/2.1.00/19.0395
- Higher quality and capacity for transgenic models by MEYS and ERDF, CZ.1.05/1.1.00/02.0109
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in
- 631 Vestec (BIOCEV) by MEYS and ERDF, CZ.02.1.01/0.0/0.0/16 013/0001789 Upgrade of the Czech
- 632 Centre for Phenogenomics by MEYS and ESIF.
- 633 Research reported in this publication was supported by the NIH Common Fund, the Office of
- 634 The Director and the National Human Genomic Research Institute of the National Institutes of
- 635 Health (U42OD011174 and UMIHG006348 supported A.C., G.C., F.D., I.L., M.M., J.S., L.T., S.W.,
- 636 M.D., and J.D.H.; U42OD011175 and UM1OD023221 supported M.G., L.L., C.M., L.M.J.N., B.W.,
- 637 J.A.W., M.R., and K.L.; U420D011185 and UM10D023222 supported L.G., K.P., R.B., J.K.W., and
- 638 S.A.M.; UM1HG006370 supported P.M., A.-M.M., and H.P.). The content is solely the
- 639 responsibility of the authors and does not necessarily represent the official views of the
- 640 National Institutes of Health.
- 641

642 International Mouse Phenotyping Consortium (IMPC)

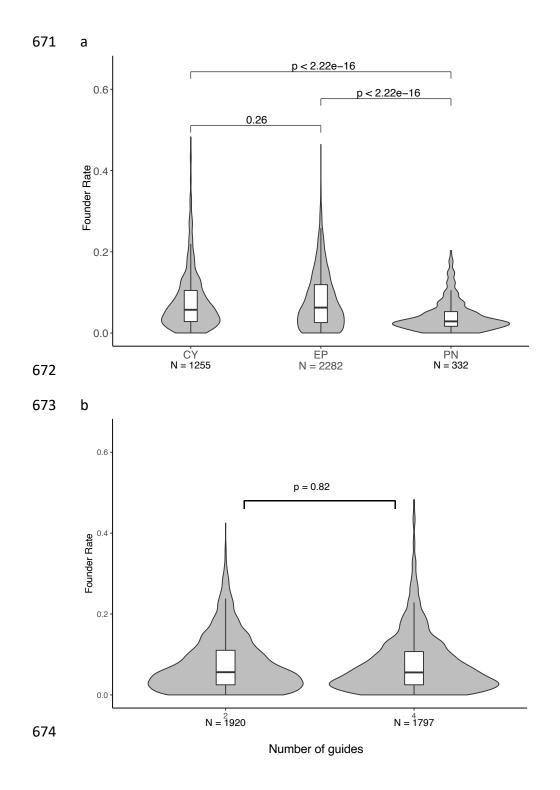
- 643 Shaheen Akhtar⁸, Alasdair J. Allan⁹, Susan Allen⁹, Philippe André¹¹, Daniel Archer⁹, Sarah Atkins⁹,
- 644 Ruth Avery⁹, Abdel Ayadi¹¹, Daniel Barrett⁸, Tanya Beyetinova⁸, Toni Bell⁹, Melissa Berry³,
- 645 Katharina Boroviak⁸, Joanna Bottomley⁸, Tim Brendler-Spaeth⁸, Ellen Brown⁸, Jonathan Burvill⁸,
- James Bussell⁸, Charis Cardeno⁴, Rebecca V. Carter⁹, Patricia Castellanos-Penton^{1,2}, Skevoulla
- 647 Christou⁹, Greg Clark^{1,2}, Shannon Clarke^{1,2}, James Cleak⁹, Ronnie Crawford⁸, Amie Creighton^{1,2},
- 648 Maribelle Cruz¹, Ozge Danisment^{1,2}, Charlotte Davis⁹, Joanne Doran⁸, Valérie Erbs¹¹, Qing Fan-

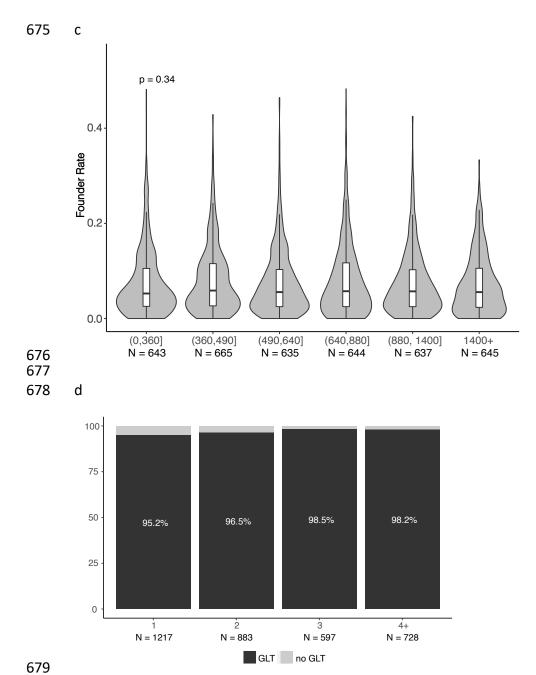
649	Lan ^{1,2} , Rachel Fell ⁹ , He Feng ⁵ , Jean-Victor Fougerolle ¹¹ , Alex Fower ⁹ , Gemma Frake ⁹ , Martin D.
650	Fray ⁹ , Antonella Galli ⁸ , David Gannon ⁸ , Wendy J. Gardiner ⁹ , Angelina Gaspero ⁵ , Diane Gleeson ⁸ ,
651	Chris Godbehere ⁹ , Evelyn Grau ⁸ , Mark Griffiths ⁸ , Nicola Griggs ⁸ , Kristin Grimsrud ⁴ , Sarah
652	Hazeltine ⁴ , Marie Hutchison ⁹ , Catherine Ingle ⁸ , Vivek Iyer ⁸ , Kayla Jager ⁴ , Joanna Joeng ^{1,2} , Susan
653	Kales ³ , Perminder Kaur ⁴ , Janet Kenyon ⁹ , Jana Kopkanova ¹⁰ , Christelle Kujath ¹¹ , Helen Kundi ⁸ ,
654	Peter Kutny ³ , Valerie Laurin ^{1,2} , Sandrine Lejeay ¹¹ , Christopher Lelliott ⁸ , Jorik Loeffler ⁹ , Romain
655	Lorentz ¹¹ , Christopher V. McCabe ⁹ , Elke Malzer ⁹ , Peter Matthews ¹⁶ , Ryea Maswood ⁸ , Matthew
656	McKay ³ , Terrence Meehan ¹⁶ , David Melvin ⁸ , Alison Murphy ⁸ , Asif Nakhuda ⁸ , Amit Patel ¹ , Ilya
657	Paulavets ⁸ , Guillaume Pavlovic ¹¹ , Ashley Pawelka ⁵ , Fran J. Pike ⁹ , Radka Platte ⁸ , Peter D. Price ⁹ ,
658	Kiran Rajaya ⁵ , Shalini Reddy ⁸ , Whitney Rich ⁵ , Barry Rosen ⁸ , Victoria Ross ⁸ , Mark Ruhe ⁴ , Luis
659	Santos ¹⁵ , Laurence Schaeffer ¹¹ , Alix Schwiening ⁸ , Mohammed Selloum ¹¹ , Debarati Sethi ⁸ , Jan R.
660	Sidiangco ⁹ , Caroline Sinclair ⁸ , Elodie Sins ⁸ , Gillian Sleep ^{1,2} , Tania Sorg ¹¹ , Becky Starbuck ⁹ ,
661	Michelle Stewart ⁹ , Holly Swash ⁹ , Mark Thomas ⁸ , Sandra Tondat ¹ , Rachel Urban ³ , Jana
662	Urbanova ⁸ , Susan Varley ⁹ , Dominque Von Schiller ⁸ , Hannah Wardle-Jones ⁸ , Lauren Weavers ⁸ ,
663	Michael Woods ⁸

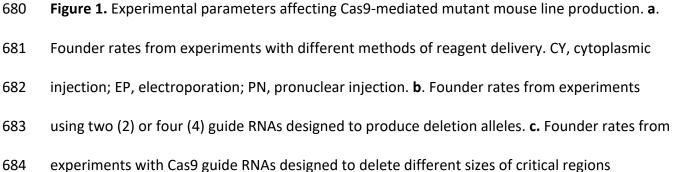
664

experimental parameter	3		
Predictors	Odds Ratio	CI	p-value
(Intercept)	1.18	0.96-1.47	0.136
Δ Delivery method	0.74	0.45-1.21	0.222
Δ Decrease no. guides	1.88	0.92-4.07	0.092
Δ Increase no. guides	0.86	0.37-2.03	0.731
Δ Guide sequence	1.88	1.02-3.58	0.048
Δ Target exon	1.22	0.44-3.58	0.709
Observations: 498			

Table 1. Logistical regression model for GLT status between production attempts conditional onexperimental parameters

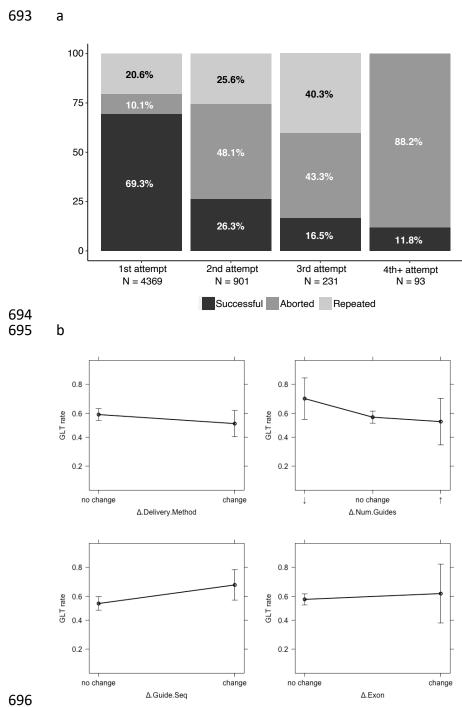

667

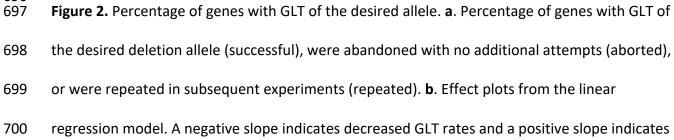

Table 2. General linear model for successful founder production conditional on biological


669 factors annotated for a gene

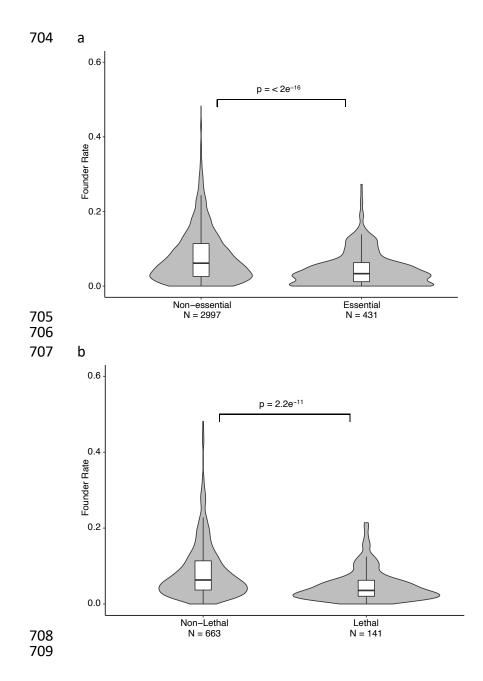
Variable	Without	Essentiality	With Essentiality			
	Odds Ratio	p-value	Odds Ratio	p-value		
(Intercept)	2.50	2.0x10 ⁻¹⁶	2.52	2.22x10 ⁻¹⁶		
Essential	NA	NA	0.89	2.06x10 ⁻¹¹		
Embryonic expression	0.95	0.011	0.97	0.219		
pLI score	0.97	0.101	0.97	0.183		
o/e score	1.00	0.987	1.00	0.887		
Chromosome position	1.01	0.647	1.01	0.653		
Acetylated gene	0.98	0.193	0.99	0.450		
Methylated gene	1.03	0.137	1.01	0.383		
Gram positive stain	1.00	0.938	1.00	0.891		
OMIM annotation	0.99	0.412	0.98	0.220		
Observations: 3209						

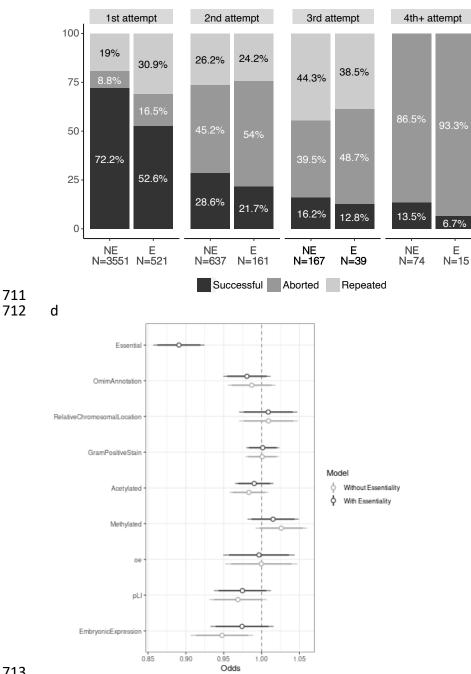
670

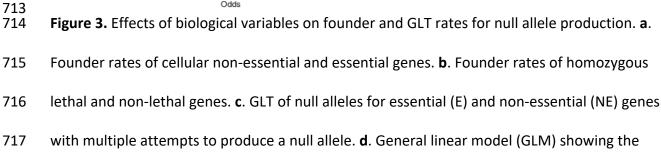




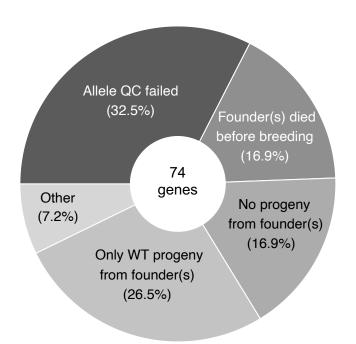
685	(genomic DNA). Each bin has ~640 unique gene deletion attempts. d . Percentage of genes with
686	GLT of the desired deletion allele after breeding one (1), two (2), three (3) or four or more (4+)
687	founders. Pairwise comparison of GLT rates using the Holm method showed a significant
688	difference only when breeding one founder was compared to breeding three or four founders
689	(p = 0.004 for both comparisons). Unique gene attempts are the first attempt with GLT of the
690	desired allele or the last of a set of unsuccessful attempts for each gene. See materials and
691	methods for a complete description of data filtering. GLT, germline transmission.


692




- 701 increased GLT rates in subsequent attempts after the indicated parameter changed. See
- 702 materials and methods for a complete description of data filtering.

703



718	association of each variable with the success of the attempt to generate founders. An odds
719	ratio below 1 is associated with a reduced probability of success, an odds ratio above 1 is
720	associated with an improved probability of success, and an odds ratio of 1 is associated with no
721	effect on success. Table 2 has the odds ratios and p-values for each variable, with and without
722	essentiality in the model, that assess the significance of the difference of the estimate from
723	zero. Supplementary Table 5 has the full model output. Each attempt represents a unique gene
724	with the first attempt that successfully generated the desired allele or the last unsuccessful
725	attempt for each gene used for analysis. See materials and methods for a complete description
726	of data filtering.

727

728

729

730 **Figure 4.** Summary of reasons founders failed to transmit a quality-controlled deletion allele to

731 subsequent generations to establish a knock-out mouse line.