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1

Epigenetic clocks, DNA methylation based chronological age prediction models,2

are commonly employed to study age related biology. The error between the predicted3

and observed age is often interpreted as a form of biological age acceleration and many4

studies have measured the impact of environmental and other factors on epigenetic5

age. Epigenetic clocks are fit using approaches that minimize the error between the6

predicted and observed chronological age and as a result they reduce the impact of7

factors that may moderate the relationship between actual and epigenetic age. Here we8

compare the standard methods used to construct epigenetic clocks to an evolutionary9

framework of epigenetic aging, the epigenetic pacemaker (EPM) that directly models10

DNA methylation as a function of a time dependent epigenetic state. We show that11

the EPM is more sensitive than epigenetic clocks for the detection of factors that12

moderate the relationship between actual age and epigenetic state (ie epigenetic age).13

Specifically, we show that the EPM is more sensitive at detecting sex and cell type14

effects in a large aggregate data set and in an example case study is more sensitive15

sensitive at detecting age related methylation changes associated with polybrominated16

biphenyl exposure. Thus we find that the pacemaker provides a more robust framework17

for the study of factors that impact epigenetic age acceleration than traditional clocks18

based on linear regression models.19

20

1 Introduction21

Epigenetic clocks, accurate age prediction models made using DNA methylation, are22

promising tools for the study of aging and age related biology. Beyond predicting the23

age of an individual to within a couple of years, multiple studies have shown that24

the difference between the observed and expected epigenetic age can be interpreted25

as a measure of biological age acceleration [1]. Age acceleration observed using the26

first generation of epigenetic clocks [2, 3] has been associated with a variety of health27

outcomes including mortality risk[4, 5], cancer risk [6], cardiovascular disease[7] and28

other negative health outcomes[8–10]. However, as epigenetic clocks become more29

accurate, epigenetic age acceleration is no longer associated with mortality [11].30

Epigenetic clocks are generally trained using a regularized regression model. Given31

an elastic net model of the form y = βX the goal of penalized regression is to max-32

imize the likelihood by reducing the prediction error of the model, L(λ1, λ2, β) =33

|y−Xβ|2 +λ2|β|2 + |λ1β|. In the case of epigenetic clocks, the likelihood is maximized34
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by minimizing the difference between the observed and predicted age subject to the35

elastic net penalty,λ1 and λ2. . Methylation sites that increase modeled error but con-36

tain biologically meaningful information may be discarded during model fitting. This37

problem is magnified in the case of epigenetic clocks where the relationship between38

methylation and time is nonlinear[12].39

An alternative and complementary approach to studying epigenetic aging is to40

model how methylation changes for a predetermined collection of sites with respect41

to time. To this end, we have developed the epigenetic pacemaker (EPM) [13, 14]42

to model methylation changes with age. Given j individuals and i methylation sites,43

under the EPM an individual methylation site can be modeled as m̂ij = m0
i +risj+εij44

where m̂ij is the observed methylation value, m0
i is the initial methylation value, ri45

is the rate of change, sj is the epigenetic state, and εij is a normally distributed error46

term. The ri and m0
i are characteristic of the sites across all individuals and the47

epigenetic state of an individual sj is set using information from all modeled sites.48

Given an input matrix M̂ = [m̂i,j ] the EPM utilizes a fast conditional expectation49

maximization algorithm to find the optimal values of m0
i , ri, and sj to minimize the50

error between the observed and predicted methylation values across a set of sites. This51

is accomplished by first fitting a linear model per site using age as the initial sj . The52

sj of the modeled samples is then updated to minimize the error between the observed53

and predicted methylation values. This process is performed iteratively until the54

reduction in error is below a specified threshold or the maximum number of iterations55

is reached. Under the EPM, the epigenetic state has a linear relationship with the56

modeled methylation data, but not necessarily with chronological age. This allows57

for nonlinear relationships between time and methylation to be modeled without prior58

knowledge of the underlying form. Every modeled methylation site has a characteristic59

m0
i and ri that describes the site in relation to other modeled sites and the output60

epigenetic states. In the current work, we ask whether the EPM formalism can be61

utilized for the identification of moderators that impact the association between age62

and epigenetic state (i.e factors that accelerate or decelerate the changes in epigenetic63

states with time). To this end we extend the EPM model to simulate methylation64

matrices associated with age and age accelerating phenotypes. We then evaluate the65

ability of regularized regression and EPM models to detect age acceleration traits that66

have linear and nonlinear associations with age. Utilizing a large aggregate data set67

we validate the simulation results and in one illustrative example further assess the68

ability of both approaches to detect age related methylation changes associated with69

PBB exposure.70

2 Results71

2.1 Simulation of Trait Associated Methylation Matrices72

Under the EPM the epigenetic state for individual j, Sj , can be interpreted as a73

form of biological age that represents a weighted sum of aging associated phenotypes74

Sj =
∑n
k=1 α1p1,j + ... + αkpk,j . Under this model αk is the weight for phenotype75

k and pk,j is the value of phenotype k. Phenotypes may contribute to increased or76

decreased aging respectively and when considered as a whole contribute to the overall77

aging rate observed for an individual.78

As shown in our previous work[12], the relationship between pk,j and time is not79

necessarily linear. When simulating age associated phenotypes, each phenotype can80
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be represented as pk,j = Age
γk
j qk,j , where γk is a phenotype specific parameter shared81

among all individuals and qj,k represents the magnitude of exposure for a simulated82

trait and is personal to an individual. The observed phenotype is modeled as an83

interaction between age and an exposure of varying magnitude among individuals.84

This formulation is flexible as non-age dependent traits can be easily simulated by85

setting γk = 0, pk,j = qk,j = Age0jqk,j . Individual sites can be described as a linear86

model where m̂i,j = m0
i +riPi,j+εi,j . Pi,j is a weighted sum of phenotypes influencing87

the methylation status of an individual site, Pi,j =
∑n
k=1 υ1p1,j + ...+ υkpk,j .88

To assess the sensitivity of the EPM and penalized regression approaches at de-89

tecting moderator of epigenetic aging we simulated a methylation matrix contain-90

ing linear and nonlinear age associated traits of form pk,j = Age
N (0.5,0.01)
j qk,j and91

pk,j = Age
N (1,0.01)
j qk,j . The trait γ parameter was generated by sampling from a nor-92

mal distribution N (0.5, 0.01) to generate traits with varying relationships with time93

(Figure 1). Samples were simulated by assigning an age from a uniform distribution,94

U(0, 100) and setting sample health by sampling from a normal distribution. Sam-95

ple health is a sample specific metric that influences the magnitude and direction of96

the simulated age accelerating trait. Simulated traits included a binary phenotype97

(P = 0.5), continuous phenotypes influenced by only age, or by age and sample health98

(Table 1). The effect, q, of a binary trait was varied from 0.995 to 1.0 over 5 equally99

spaced intervals. Given a binary trait form of pk,j = Age0.5j qk,j a 0.001 decrease in100

q corresponds to a 1 percent decrease in epigenetic state by age 100 relative to sam-101

ples not assigned the binary trait. Within each interval the standard deviation of the102

sample health sampling distribution was varied from 0.0 to 0.01 over 5 equally spaced103

intervals. The simulation was repeated 50 times for each binary, continuous trait com-104

bination with 500 simulated samples within each simulation. Additionally, at a binary105

q of 0.995 the range of continuous traits was expanded over a broader range to assess106

the model sensitivity for detecting the continuous trait. Five methylation sites for all107

continuous traits were then simulated and 50 methylation sites for the binary trait.108

An additional 50 sites were simulated that were equally influenced by a mixture of109

four continuous traits and the simulated binary trait. The resulting simulation matrix110

contains 450 methylation sites.111

Given a simulation data set, the samples were split randomly in half for model112

training and testing. EPM and penalized regression models were fit for each simulation113

training set and epigenetic state and age predictions were made for the testing set.114

e then fit a regression model where the epigenetic age or state is dependent on the115

age, square-root of the age, the health status, and binary trait status of the sample116

(Sj = Age+
√
Age+healthj + binaryj). The square-root of the age is included in the117

regression model to account for the nonlinear relationship between the simulated age118

and methylation data.119

As the exposure size of the binary trait is decreased from 1.00 to 0.995 the ability120

to detect the influence of the trait on the epigenetic state and age is improved (Figure121

2A and B). At an effect size of 0.995 the estimated effect of the binary trait on the122

epigenetic state is significant (µ = 0.035, σ = 0.089) while the effect on the epigenetic123

age it is not (µ = 0.269, σ = 0.282). At an exposure size of 1.0, where the simulated124

binary trait has no effect, the distribution of p values forEPM and linear models is ran-125

domly distributed. The ability to observe the health effect of the simulated continuous126

traits improves in both the linear and EPM models as the standard deviation of the127

sample health sampling distribution is increased (Figure 2 C and D). At an exposure128

size of 0.002 and 0.0025 the average EPM model is significant (µ = 0.0194, σ = 0.0436)129
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while the average linear model is not (µ = 0.0607, σ = 0.128). At a continuous trait130

standard deviation above 0.005 both models produce significant results.131

2.2 Universal Blood EPM and Penalized Regression Mod-132

els133

We validated the simulation results using a large aggregate data set composed of134

Illumina 450k array data[15–27] deposited in the Gene Expression Omnibus[28] (GEO).135

All methylation array data sets were processed using a unified pipeline from raw array136

intensity data (IDAT) files using minfi (Aryee et al., 2014). Sex and blood cell type137

abundance predictions were made for each processed as previously described[29, 30].138

The aggregate data set contains 6,251 whole blood tissue samples representing 16 GEO139

series.140

We trained EPM and penalized regression models using data assembled from four141

GEO series[31–34] (n = 1605) with samples spanning a wide age range (0.01 - 94.0142

years). The training set was split by predicted sex, within each sex we used stratified143

sampling by age to select 95% of the samples for model training. The selected samples144

from each sex were combined (n = 1524) and the remaining samples (n = 81) left out145

for model evaluation. Methylation values for all samples were quantile normalized by146

probe type[2] using the median site methylation values across all training samples for147

each methylation site. Principal component analysis (PCA) was performed on the cell148

type abundance estimates using the training data. The trained PCA model was used149

to predict the cell type PCs for the testing and validation data sets.150

We fit a penalized regression model to the training matrix as follows. The normal-151

ized training methylation matrix was first filtered to remove sites with a variance below152

0.001, resulting in a training matrix with 183,114 sites. A cross validated (cv = 5)153

elastic net model was trained against training sample ages using the filtered methy-154

lation matrix. The trained model performed well on the training (R2 = 0.981) and155

testing (R2 = 0.940) data sets (S.Figure 2).156

In contrast to penalized regression based approaches, site selection for the EPM157

model is performed outside of model fitting. Methylation sites were selected for model158

training if the absolute Pearson correlation coefficient between methylation values and159

age was greater than 0.4 (n = 16, 880). A per site regression model was fit using160

the observed methylation value as the dependent variable and age as the explanatory161

variable. Sites with a mean absolute error (MAE) less than 0.025 between the predicted162

and observed methylation values were retained for further analysis (n = 7, 013). An163

EPM model was fit using these sites (Figure 3A). We then sought to identify subsets of164

sites that had functionally similar forms between age and methylation. This was done165

to filter sites that were associated with age by chance and to select clusters of sites with166

low prediction error. Subsets of sites with similar functional form were identified by167

clustering sites using affinity propagation [35]) by the euclidean distance between the168

single site regression model residuals. Cross validated EPM and penalized regression169

models were trained for all clusters with greater than ten sites (n = 55). The cluster170

EPM models show varying associations between the epigenetic state and age relative171

to the EPM model fit with all sites initially selected by absolute PCC(Figure 3B).172

Clusters with an observed EPM and penalized regression MAE less than 6 (n = 5)173

were combined to fit final EPM and penalized regression models. This resembles174

the simulated methylation matrices where sites with differing functional forms are175

modeled collectively. The combined cluster EPM and combined cluster regression176
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model performed well on the training and testing data sets (S.Figure 1).177

We evaluated the combined cluster EPM, combined cluster penalized regression,178

and the full penalized regression models against a validation data set consisting of 14179

GEO series experiments representing 4,600 whole blood tissue samples. Each model180

accurately predicted the epigenetic state or epigenetic age of the validation samples181

(Figure 4). We then fit an ordinary least squares regression model for every validation182

experiment individually to predict the observed epigenetic age or state using the sample183

age, the square root of age, cell type PCs, and predicted sex (Sj = Age +
√
Age +184

PC1 + PC2 + PC3 + Sex + Intercept). If the proportion of female samples to the185

total number of samples was greater than 0.7 the sex term was dropped from the186

regression model. Significant cell type PC2 coefficients were observed for all EPM187

models and the majority of the cluster and full penalized regression models (Figure188

5A). Significant cell type PC1 and PC3 coefficients were observed for the majority of189

the EPM models but not for the cluster or full penalized regression models. Significant190

sex effects (p < 0.0038) were observed for 9, 4, 0 out of 15 models for the EPM, cluster191

penalized regression, and full penalized regression respectively (Figure 5B).192

2.3 Polybrominated Biphenyls Exposure193

Polybrominated biphenyls (PBB) were widely used throughout the United States in the194

1960’s and 1970’s for a variety of industrial applications. Widespread PBB exposure195

occurred in the state of Michigan from the summer of 1973 to later spring of 1974 when196

an industrial PBB mixture was incorrectly substituted for a nutritional supplement197

used in livestock feed[36]. PBB is biologically stable and has a slow biological half life;198

individuals exposed during the initial 1973 - 1974 incident still have detectable PBB199

in their blood[37]. PBB is an endocrine-disrupting compound and exposure has been200

linked to numerous adverse health outcomes in Michigan residents such as thyroid201

dysfunction[38, 39] and various cancers[40, 41]. A study by Curtis et al. showed total202

PBB exposure is associated with altered DNA methylation at CpG sites enriched for203

an association with endocrine-related autoimmune disease [42]. Utilizing the publicly204

available Illumina Methylation EPIC array [43] profiles (n = 679), that covered a wide205

age range (23 - 88 years), we sought to compare the ability of penalized regression and206

the EPM to detect epigenetic age acceleration associated with PBB exposure.207

Briefly, 50% of samples (n = 339) were selected for model training using strat-208

ified cross validation by age. A cross validated elastic net model was trained us-209

ing all methylation sites with a site variance above 0.001, (n = 529, 703). The210

trained model performed well on the training and testing data sets (R2 = 1.00, R2 =211

0.740, S.F igure2A−B). EPM sites were selected and models fit as described with the212

universal blood EPM. Four EPM clusters (MAE < 6) were merged for a combined213

EPM model built using 413 CpG sites. The combined EPM model performed well in214

training and testing data sets (R2 = 0.794, R2 = 0.812, S.F igure2C −D). Epigenetic215

age and epigenetic state predictions were then made for the testing samples using the216

penalized regression and EPM models.217

We then fit an OLS regression model to predict the epigenetic age or state depen-218

dent on PBB-153 exposure, h age, the square root of age, cell type PCs, and predicted219

sex (Sj = Age+
√
Age+PC1+PC2+PC3+Sex+PBB−153+Intercept). PBB-153220

exposure was highly significant in the EPM regression model (p = 5.9e− 10) but not221

the penalized regression model (p = 0.141).222
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3 Discussion223

A long standing question in the field of epigenetics was whether biomarkers could be224

trained to predict various traits using methylation measurements. The most successful225

biomarkers to date have been epigenetic clocks that can accurately predict the age of226

an individual based on their methylation pattern. These have been shown to be227

useful for human studies of aging, as well as for animal studies, including mice[44]228

and dogs[45]. DNA methylation biomarkers are typically constructed using penalized229

regression approaches. Given a large enough matrix, penalized regression will select230

sites that minimize the prediction error given a modeled trait. Epigenetic clocks are231

examples of such models. Beyond predicting actual ages, these models have also been232

used to measure the influence of external factors on the rates of aging, and multiple233

studies have shown that the resulting age accelerations (i.e the differences between234

actual and predicted ages) are significantly associated with multiple factors such as235

cardiovascular disease[7] and mortality risk[4, 5].236

While epigenetic clocks have proven to be useful they have significant limitations.237

Because they are based on linear models, it may be difficult to model aging when the238

underlying methylation changes are non-linear in time. Moreover, epigenetic clocks239

are prone to over fitting, and while cross validation schemes are often used to construct240

robust clocks, they often do not yield accurate estimates for other data sets. Finally,241

epigenetic clocks are not very interpretable, and highly degenerate, so that it is difficult242

to extract biological insights from the weights of the models.243

To overcome some of these limitations, we have previously developed the epigenetic244

pacemaker formalism. In this approach, rather than building a model for the age,245

we construct a model for the observed methylation data that depends on age. The246

advantage of this approach is that this formalism allows us to identify non-linear247

associations between methylation and age across a lifespan. Moreover, these models248

tend to be robust to training as they are fit to large methylation matrices rather than249

age vectors. Finally, the model describes the change in methylation at each site with250

respect to a time dependent epigenetic state, and therefore all parameters of the model251

are directly interpretable as either initial values of methylation or rates of change of252

methylation.253

Depending on the context, epigenetic clocks are both more and less effective than254

the EPM. The penalized regression models provide more accurate age predictions255

(R2 = 0.875, 0.911) than the EPM model (R2 = 0.821), and the model output can256

be directly compared to the age of a sample. However, because these models are257

optimized to reduce the error between actual and predicted age, they tend to minimize258

the effect of extraneous factors on the predicted age. As such, epigenetic clocks are259

not optimal for identifying external factors that moderate the relations between actual260

and predicted age. By contrast, the EPM models are not optimized to minimize the261

difference between predicted and actual age, but rather try to minimize the difference262

between observed and modeled methylation values. As such, they retain many of263

the effects that other factors may have on the association between methylation and264

epigenetic states.265

In this study we find that while the penalized regression models were more ac-266

curate for predicting age, the epigenetic state generated by the EPM is significantly267

impacted by cell type and sex effects in both simulations and real data. We also268

found that The EPM model generated for individuals exposed to PBB was sensitive269

to e PBB exposure, which has been linked to negative health outcomes, while the270

penalized regression epigenetic aging model was not. Additionally, the sensitivity of271
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the EPM to moderators of epigenetic aging has been supported by two two recent272

studies investigating epigenetic aging in marmots[46] and zebras[47]. In the first of273

these studies, EPM models showed an association between hibernation and slowed274

epigenetic aging in marmots and in the second an increased epigenetic age associated275

with zebra inbreeding; no such associations were observed with penalized regression276

epigenetic age models.277

Most studies of human epigenetic aging are not motivated by the development of278

accurate age predictors, since ages are nearly always known in studies, but rather by279

the discovery of biological aging moderators. The EPM is a more sensitive approach280

than epigenetic clocks for the detection of factors other than age that influence the281

epigenome and therefore potentially more useful for discovering moderators of biolog-282

ical aging.283

4 Methods284

4.1 Simulation285

We implemented the simulation framework as a python package with numpy(≥v1.16.3)[48]286

and scikit-learn(v0.24)[49] as dependencies. A simulation run generates a trait-associated287

methylation matrix and samples are tied to the simulated traits. The simulation pro-288

cedure is implemented as follows:289

• Traits are intialized that contain the information about the trait relationship290

with age and a simulated sample phenotype. Given the structure pk,j = Age
γk
j qk,j ,291

and k samples and j traits γ is characteristic of the trait. When a sample is292

passed to a trait, a value of q is generated for the sample by sampling from a293

normal distribution with a variance characteristic of the simulation trait. Ad-294

ditionally, each trait can be optionally influenced by a characteristic measure of295

sample health, hj . Given, a normally distributed trait N (µ, σ2) and a health296

effect hj , the sampled distribution for individual j is N (µ+hj , σ
2). Continuous297

and binary traits can be simulated. If a binary trait is simulated, a q other than298

1 is assigned at a specified probability.299

• Samples are simulated by setting the age by sampling from a uniform distribu-300

tion over a specified range and by setting a sample health metric h by sampling301

from a normal distribution centered on zero with a specified variance. Traits302

passed to a sample simulation object are then set according to the age and health303

of the sample. Simulated samples retain all the set phenotype information for304

downstream reference.305

• Methylation sites are simulated by randomly setting the initial methylation306

value, maximum observable methylation value, the rate of change at the site,307

and the error observed at each site. Sites are then assigned traits that influence308

the methylation values at each site.309

• Methylation values are simulated for each site for every individual given the310

simulated phenotypes with a specified amount of random noise.311

4.2 Simulation EPM and Penalized Regression Models312

Simulation data was randomly split in half into training and testing sets. EPM models313

were fit using the simulated methylation matrix against age. Penalized regression314
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models were fit using scikit-learn(v0.24)[49] ElasticNet (alpha=1, l1 ratio=0.75, and315

selection=random). All other parameters were set to their default values. Ordinary316

least squares regression as implemented in statsmodels (0.11.1)[50] was utilized to317

describe the epigenetic state or age with the following form (Sj = Age +
√
Age +318

healthj + binaryj). Full analysis is found in the EPMSimulation.ipynb supplementary319

file.320

4.3 Methylation Array Processing321

Metadata for Illumina methylation 450K Beadchip methylation array experiments322

deposited in the Gene Expression Omnibus (GEO) [28] with more than 50 samples323

were parsed using a custom python tool set. Experiments that were missing methy-324

lation beadchip array intensity data (IDAT) files, made repeated measurements of325

the same samples, utilized cultured cells, or assayed cancerous tissues were excluded326

from further processing. IDAT files were processed using minfi[30] (v1.34.0). Sample327

IDAT files were processed in batches according to GEO series and Beadchip identi-328

fication. Methylation values within each batch were normal-exponential normalized329

using out-of-band probes[51]. Blood cell types counts were estimated using a regres-330

sion calibration approach[29] and sex predictions were made using the median intensity331

measurements of the X and Y chromosomes as implemented in minfi[30]. Whole blood332

array samples were used for downstream analysis if the sample median methylation333

probe intensity was greater than 10.5 and the difference between the observed and334

expected median unmethylation probe intensity is less than 0.4, where the expected335

median unmethylated signal is described by (y = 0.66x+ 3.718).336

4.4 Blood EPM and Penalized Regression Models337

Methylation sites with an absolute Pearson correlation coefficient between methyla-338

tion values and age greater than 0.40 and 0.45 for the unified whole blood and PBB339

data sets respectively were initially selected for EPM model training. A linear model340

was generated using numpy polyfit [48] with age and the independent variable and341

methylation values as the dependent variable. Mean absolute error (MAE) was calcu-342

lated as the mean absolute difference between the observed and predicted meth values343

according to the site linear models. A vector of residuals generated using these models344

were utilized for clustering by affinity propagation[35]) as implemented in scikit-learn345

(v0.24)[49] with a random state of 1 and a cluster preference of -2.5. Cross-validated346

EPM, and penalized regression models for the universal blood analysis, were trained347

for all clusters containing greater than ten sites. Clusters with an observed EPM and348

penalized regression MAE less than 6.0 were combined to fit final EPM and regression349

models.350

Penalized regression models were fit using scikit-learn(v0.24)[49] ElasticNetCV351

(cv=5 alpha=1, l1 ratio=0.75, and selection=random). All other parameters were352

set to their default values. Principal Component Analysis as implemented in scikit-353

learn was utilized with default parameters to perform PCA on training sample cell type354

abundances. The trained PCA was utilized to calculate cell type PCs for the testing355

and validation samples. Ordinary least squares regression as implemented in statsmod-356

els (0.11.1)[50] was utilized describe the epigenetic state or age with the following form357

(Sj = Age+
√
Age+CellTypePC1+CellTypePC2+CellTypePC3+Sex+Intercept).358

Full analysis is found in the EPMUniversalClock.ipynb supplementary file.359
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4.5 Analysis Environment360

Analysis was carried out in a Jupyter[52] analysis environment. Joblib[53], SciPy[54],361

Matplotlib[55], Seaborn[56], Pandas[57] and TQDM[58] p ackages were utilized during362

analysis.363

4.6 Supplementary Information364

Analysis code and notebooks can be found at https://github.com/NuttyLogic/EPM-365

ModeratorsOfAging.366
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Figure1: Simulated trait forms where the shaded area represent one standard devia-
tion away from the mean γ, given pk,j = Age

γk
j qk,j .

Table 1: Simulated Trait Conditions

Trait Form Beta Gamma Gamma
Std. Dev.

Sample Ef-
fect

Age Only Generated
Pheno-
types

Continuous 0.1 N (0.5, 0.01) 0.05 Yes No 10
Continuous 0.1 N (1.0, 0.01) 0.05 Yes No 10
Continuous 0.1 N (0.5, 0.01) 0.05 No Yes 20
Continuous 0.1 N (1.0, 0.01) 0.05 No Yes 20
Binary
(Pr = 0.5)

0.1 0.5 0 Yes No 1
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Figure2: The distribution binary coefficient p-values for A EPM and B penalized
regression models. The distribution of p-values given a simulation health standard
deviation for C EPM and D penalized regression models.

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2021. ; https://doi.org/10.1101/2021.10.05.463222doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.05.463222
http://creativecommons.org/licenses/by-nd/4.0/


Figure3: A EPM model fit with 3832 methylation sites with a MAE below 0.025. B
The fit trend line for EPM clusters with more than 10 sites and an R2 ≥ 0.4.

Figure4: Whole blood tissue validation A EPM, B cluster penalized regression and
C full penalized regression models.
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Figure5: A Cell type principal component and B predicted sex regression coefficient
p-values.
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S.Figure1: Universal blood EPM and regression models. A - C Train, testing, and
validation EPM model. D-E Train, testing, and validation cluster penalized regression
model. G-J Train, testing, and validation full penalized regression model.
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S.Figure2: PBB EPM and regression models. A - B Train and testing EPM model.
C-D Train and testing penalized regression model.
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