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Abstract

The importance of mosquitoes in human pathogen transmission has motivated major research efforts into
mosquito biology in pursuit of more effective vector control measures. Aedes aegypti is a particular concern
in tropical urban areas, where it is the primary vector of numerous flaviviruses, including the yellow fever,
Zika, and dengue viruses. With an anthropophilic habit, Ae. aegypti prefers houses, human blood meals,
and ovipositioning in water-filled containers. We hypothesized that this relatively simple ecological niche
should allow us to predict the impacts of insecticidal control measures on mosquito populations. To do this,
we use Skeeter Buster 2 (SB2), a stochastic, spatially explicit, mechanistic model of Ae. aegypti population
biology. SB2 builds on Skeeter Buster, which reproduced equilibrium dynamics of Ae. aegypti in Iquitos,
Peru. Our goal was to predict the response of mosquito populations to perturbations by indoor insecticidal
spraying and widespread destructive insect surveys.

To evaluate SB2, we conducted two field experiments in Iquitos, Peru: a smaller pilot study in 2013
(S-2013) followed by a larger experiment in 2014 (L-2014). Here, we compare model predictions with (pre-
viously reported) empirical results from these experiments. In both simulated and empirical populations,
repeated spraying yielded substantial yet temporary reductions in adult densities. The proportional effects
of spraying were broadly comparable between simulated and empirical results, but we found noteworthy
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differences. In particular, SB2 consistently over-estimated the proportion of nulliparous females and the
proportion of containers holding immature mosquitoes. We also observed less temporal variation in simu-
lated surveys of adult abundance relative to corresponding empirical observations. Our results indicate the
presence of ecological heterogeneities or sampling processes not effectively represented by SB2. Although
additional empirical research could further improve the accuracy and precision of SB2, our results under-
score the importance of non-linear dynamics in the response of Ae. aegypti populations to perturbations,
and suggest general limits to the fine-grained predictability of its population dynamics over space and time.

Introduction

Despite widespread prevention efforts, the public health impact of dengue has increased significantly over
the past 50 years, both in overall burden and expanded geographic distribution. The most common
interventions for disease prevention to date have focused on dengue’s primary vector, Aedes aegypti [1–
4]. And, while ongoing efforts aimed at the development of vaccines and novel vector control strategies
show potential, broadly effective tools are not expected to be available for public health application in the
short-term [5]. Unfortunately, vector control as currently practiced has yielded inconsistent and generally
disappointing results [2, 6–8] in part due to gaps in our understanding of Ae. aegypti’s ecology and life
history [9–12].

Ae. aegypti is adapted to an anthropophilic lifestyle: adults live in close association with humans,
females feed almost exclusively on human blood [13, 14], and larvae develop in water-filled containers,
mostly located in and around households [9, 15, 16]. As such, transmission of dengue virus is largely driven
by interactions between Ae. aegypti and humans within and around human dwellings. To better understand
these processes, numerous biological process models have been developed to simulate Ae. aegypti population
dynamics [17–20] and transmission of dengue virus [21]. Yet we lack critical assessments of existing models’
ability to predict non-equilibrium Ae. aegypti population dynamics [22, 23] or dengue epidemiology [24, 25].
Factors complicating predictions of Ae. aegypti population dynamics include heterogeneity of vector biotic
and abiotic habitat, as well as parameterization of relevant biological processes, such as mosquito life
history. Although recent simulations of Ae. aegypti have included insecticidal interventions [21, 26], to
date, models of Ae. aegypti dynamics have not been tested to determine whether they can reliably predict
the impacts of vector control measures.

In previous work we developed Skeeter Buster (SB), a biologically detailed, agent-based stochastic simu-
lation model of Ae. aegypti population dynamics that aimed to address the dual questions of spatiotemporal
detail and empirical realism [18]. SB was built upon a biologically detailed model of Ae. aegypti (CiMSIM)
that parameterized biological processes that researchers and practitioners considered critical to predicting
Ae. aegypti population dynamics [17, 22, 27]. Because CiMSIM did not include any spatial structuring or
stochasticity, it did not address the expected heterogeneity of Ae. aegypti populations in urban areas, the
impacts of low densities of adult mosquitoes, or the consequences of mosquito movement across a landscape
of separated, discrete habitats (i.e., human dwellings). SB was parameterized with values for Iquitos, Peru,
and its performance was initially evaluated for correspondence with the observed, unperturbed dynamics
of Ae. aegypti in that location [23, 28].

Vector suppression efforts necessarily perturb mosquito populations, whose subsequent responses must
be considered in the design and implementation of control strategies [29–31]. To better understand the
response Ae. aegypti populations to perturbations, we designed a series of two field experiments in Iquitos
using insights gained from SB. A smaller pilot experiment was conducted in 2013 (henceforth S-2013), fol-
lowed by a larger and more comprehensive experiment conducted in 2014 (henceforth L-2014) [32]. During
each experiment, we used indoor ultra-low volume (ULV) insecticide spraying of individual households to
suppress Ae. aegypti populations in a region of the study area, and also included an unsprayed buffer area.
In these experiments, we employed non-residual ULV spraying and did not incorporate larvicide in order
to differentiate the immediate impacts of suppression efforts from subsequent population dynamics. The
resulting dataset represents one of the most detailed accounts available of the spatiotemporal impact of
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area-wide spray interventions at a neighborhood spatial scale.
Spatial heterogeneity of suppression efforts and responses by mosquito populations can also impact

control strategies [33]. To better capture spatial heterogeneity in data from the two field experiments, we
substantially revised SB. The resulting model, Skeeter Buster 2 (SB2), uses the empirical date and location
of sampling (household surveys of larval habitat and adult abundance) and ULV spraying. This allowed
us to simulate each experiment and then directly compare simulated observations to experimental survey
results.

Our primary objective is to assess the performance of SB2 against empirical observations of the two
field experiments. We first present model predictions of the expected underlying dynamics of mosquito
populations in order to assess their response to ULV spraying and destructive sampling (i.e. removal
of collected adults and immatures during field surveys). We next compare simulated observations with
empirical observations. We identify areas of concordance between empirical and simulated results, and
explore predictions of the model that diverge from the empirical data. Ultimately, we seek to predict when,
and for how long, indoor space spraying reduced mosquito populations, and to identify key processes that
A) limit the efficacy of indoor ULV insecticidal vector control, and B) drive the post-spraying recovery of
mosquito populations. We also discuss noteworthy sources of uncertainty, and address the usefulness of
SB2 (and similar models) in future vector control research.

Methods

Iquitos, Peru

Iquitos is the largest urban center in the Department of Loreto, situated in the Amazon Basin of north-
eastern Peru. Citywide vector monitoring and control efforts have been ongoing in Iquitos since 2002
[15, 34–37]. Here we focus on two field experiments that were conducted in 2013 and 2014 in separate
neighborhoods in the Iquitos district in the city of Iquitos (Figure 1): an initial smaller pilot study (S-2013)
and a larger follow-up (L-2014). These experiments evaluated the impact of non-residual, indoor ultra-low
volume (ULV) pyrethroid spraying (henceforth spray or spraying) on Ae. aegypti populations. Each exper-
iment was spatially configured to provide a central area that was sprayed (the spray sector) surrounded
by an area that was not sprayed (the buffer sector). Here we use SB2 to simulate, as closely as possible,
the empirical details of each experiment, including regional weather, adult and immature surveys, and
spray interventions. Our primary goal is to compare simulated and empirically observed adult mosquito
abundances, and to thus assess the accuracy of SB2 predictions.

Details of the study area, experimental design, and observed outcomes, along with a detailed ethics
statement, are provided in Gunning et al. [32]; a brief overview is provided below.

Field Surveys

Field workers attempted to survey every study house exactly once in each experimental time period by
conducting a methodical, full circuit of the study area. These survey circuits typically lasted 2-4 weeks (up
to six weeks in L-2014, see Table S1 in Gunning et al. [32]). Adult surveys recorded the number of adults
captured per house (collected using Prokopack aspirators [38]) and the parity of captured females, which
was assessed by dissection and inspection of ovaries. Container surveys recorded all identifiable water-
holding containers (i.e., potential larval habitat) in and around each surveyed house, including container
type, dimensions, location (inside/outside), and water fill patterns (passive rain-filled, active rain-filled via
roof or rain gutter, manually filled by resident). The presence and number of Ae. aegypti eggs, larvae, and
pupae in each container were recorded, and positive containers were then emptied of water and immature
insects. Note that field workers destroyed and/or removed all sampled insects (adults and immatures) from
the surveyed house.

Each experiment commenced with an initial baseline circuit (C1, 65-72% of houses successfully sur-
veyed) that we used as a pre-intervention reference. Most circuits included adult and container surveys,
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Figure 1: Satellite map of Iquitos, Peru. Experimental sectors are shaded. The smaller S-2013 area is to the South. The larger,
northern L-2014 area borders an abandon air strip on its northwest edge.

but only adult surveys were conducted during spray circuits (see also Figures 2-3 in Gunning et al. [32]).

Spray Intervention

During each field experiment, experimental ULV spraying (treatment) was conducted in a set of six spray
cycles, where each spray cycle lasted approximately one week. During each spray cycle, spray teams
visited and attempted to spray every house in the spray sector exactly once (in this case, the six spray
cycles together were considered a single circuit). Adult surveys of sprayed houses were carried out either
immediately prior to spraying (S-2013) or 1-4 days after spraying (L-2014, see also Figure 2 in Gunning
et al. [32]). In addition, during L-2014 an unscheduled, emergency citywide spraying event (i.e., in both
sectors) was conducted by the Ministry of Health in response to an impending dengue epidemic.

During scheduled experimental spraying, small screened cages, each containing 25 adult Ae. aegypti
from a recently collected laboratory colony (Gunning 2018), were placed in randomly-selected houses
immediately prior to spraying as a bioassay to estimate spray efficacy based on percent mortality of
susceptible mosquitoes in the cages.

Simulation Overview

Both SB and SB2 model the population dynamics of Ae. aegypti. SB2 includes modifications to SB
that revised the spatial representation of houses to simulate key experimental events, including per-house
spraying and mosquito sampling. SB2 also streamlines the process of specifying, running, and exploring
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different model configurations. Unless otherwise noted, model behavior is conserved between SB and SB2
(see Supplemental Text for additional details).

In brief, SB2 models individual adult female Ae. aegypti, and cohorts of adult males and those of
immature stages: eggs, larvae, and pupae. Adult Ae. aegypti mosquitoes (henceforth adults) dwell within
and move among houses, which contain larval habitat (containers). Adult movement depends on the
availability of mates and larval habitat (we assume human hosts are available in all houses). Adult females
mate and subsequently lay eggs in water-filled containers, where container oviposition choice depends on
container volume and the presence of a cover or lid, and larval development depends on weather and food
availability. Survival of all life stages depends on temperature. Survival of adults and eggs also depends on
water vapor pressure deficit, which is a function of temperature and relative humidity. Finally, SB2 models
per-house destructive sampling of adults and immature insects within containers (i.e., eggs and larvae), as
well as the impacts of indoor ULV spraying on adults.

As in Gunning et al. [32], the house is our basic unit of spatial observation, while the relative location
of houses and blocks specifies the space through which adult mosquitoes move. Each house is directly
connected to zero or more neighboring houses based on geographical distance. In addition, houses are
grouped by block, and each block is connected to zero or more neighboring blocks. In local dispersal,
adults move among neighboring houses within a block. Between-block dispersal allows an adult to move
to a random house in a neighboring block. Unlike Magori et al. [18], SB2 does not include a long-range
dispersal term, though adults may traverse the simulated area via multiple steps of between-block dispersal.

Simulation Configuration

We generated spatial configurations for each experiment from a suite of GIS files of Iquitos (as of Jan 2016).
The number and configuration of containers within each house were specified by initial baseline surveys
for each experiment [32]. A summary of each field experiment’s configuration, including total number of
houses and containers, containers per house, and container-free houses by sector, is shown in Table 1 (see
also Table S1). The spatial distribution of container food input is shown in (Figure 2, see also Figure S1).
Weather observations were taken from Coronel Francisco Secada Vignetta International Airport (Station
84377099999, see Figure S2). For additional details, see SI Text.

We sampled from the simulation outputs as if we were conducting empirical survey circuits of the
experimental areas. This provided data at a comparable scale to those from the empirical surveys. The
timing and location of simulated surveys and spray events was based on detailed records of the two field
experiments [32]. In L-2014, the exact date of 164 spray events within the spray cycle was unknown
(3.3% of 4,840 events, excluding MoH spraying); here, the onset of the spray cycle was instead used.
Adult capture probability (equal to 0.29) was taken from previously estimated sampling exhaustion curves
using Prokopack aspirators in household contexts [39]. We assume uniform binomial sampling of adult
mosquitoes, i.e., that adults were captured independently and with equal probability regardless of across
time, location, sex or age. Spray efficacy was estimated separately for each experiment via mean observed
control cage mortality [32]. Key simulation parameters are listed in Table S2.

Table 1: Summary of model configuration. To determine the food input scaling factor, we minimized the difference between field and
simulation of the mean adult population in the 2013-2014 buffer sector. The result is a per-container mean food input of 0.63,
and a per-house mean food input of 1.57 and 1.16 for S-2013 and L-2014, respectively. See Table S2 for parameter details.

Experiment Sector Houses Container-Free Houses Containers Containers/House

S-2013 All 1240 147 3028 2.442
S-2013 Buffer 824 87 2065 2.506
S-2013 Spray 416 60 963 2.315

L-2014 All 2255 435 4163 1.846
L-2014 Buffer 1099 210 2044 1.860
L-2014 Spray 1156 225 2119 1.833
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Figure 2: Details of simulation spatial configuration. Each polygon contains 1 or (rarely) more houses. Houses are grouped by blocks,
which are separated by streets. Adult local migration occurs between neighboring houses within each block (see text for
details). Color shows total daily food input per polygon. Polygons with no surveyed containers are shown in gray. See also
Figure S1.

Model Scenarios

We present several different model scenarios. For each scenario, an ensemble of 100 simulations was run;
each run simulated and discarded one year of burn-in time. Simulations began with the onset of surveying
and concluded one week after the conclusion of surveying.

Our reference experimental scenario was developed based on detailed records from field experiments,
including container surveys, adult surveys, and spray events. We used this scenario to compute a single
multiplicative scaling factor of container food input that calibrated the observed mean adult population
density in the buffer sector (averaged across both experiments) between simulation and experimental
results. Except where noted, all other parameters were as described in previous work [18].

To better characterize model behavior, we developed six additional scenarios that selectively modified
the reference scenario. To compare the expected impact of field surveys versus spraying, we added scenarios
with: (1) no intervention, (2) only adult sampling, and (3) only container sampling. To assess the expected
impact of weather and climate, we added a scenario that ran for 10 years (2000 to 2010, plus burn-in)
with no spraying or surveying. Note that in the above four scenarios, we only consider the expected
(unobserved) population dynamics. Finally, to assess the impact of spray efficacy, we added two scenarios
that artificially varied spray efficacy to a low and high value (50% and 100%, respectively).
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Data Analysis

Overall, we focus on variation between simulation runs within an ensemble, rather than on variation
between houses within a given simulation. Variation within each ensemble is represented as 95% prediction
intervals (PI).

Expected dynamics in unperturbed conditions

We first provide an overview of simulated Ae. aegypti dynamics reported by day, assuming non-destructive
and complete observation of mosquitoes, including mean adults per house (Adult) and proportion nul-
liparous females (Prop Null). While this detailed view can provide useful insight into SB2’s dynamical
behavior, these results cannot be directly observed in the field due to logistical constraints, and thus are
not falsifiable.

For the long-running intervention-free scenario, we compute the correlation between weather and Ae. ae-
gypti populations over the full time period, stratified by mosquito life-stage. This allows us to characterize
the expected long-term response of mosquito populations to temperature, humidity (i.e., saturation deficit),
and precipitation.

Comparison to field experiments

For simulated sampling of houses (i.e., circuits), we report results grouped by experiment, sector, and
circuit. Simulated sampling results can be directly compared to field experiment results [32], and are
the primary focus of this study. Simulated sampling measures that we consider include mean Ae. aegypti
adults per house (AA/HSE), Aedes house index (AHI, proportion of houses infested with adults), propor-
tion of sampled adult females that are nulliparous (PrNF, proportion nulliparous females), and positive
containers per house (PC/HSE, number of containers with immatures present). To help characterize the
immediate response of adult populations to spraying, we provide a weekly summary of AA/HSE during
the experimental spray period for both experiments. Note that container measures are only available in
circuits where container surveys were conducted. We compute the difference between field and simulation
results, and report the ensemble distribution of differences for each measure.

To assess the effects of intervention on each measure, we report the ratio between the buffer and spray
sectors (Spray/Buffer) within each circuit, as well as the ratio between circuits (Circuit/Baseline) within
the spray sector. These ratios are directly comparable with the respective contrasts shown in Figure 5
of Gunning et al. [32], where confidence intervals for empirical results are provided. We omit empirical
statistical confidence intervals here because they are not directly comparable to simulation prediction
intervals.

Results

Overview

We begin with an overview of our simulation’s internal dynamics (Figures 3-5). Next, we summarize
the ensemble distribution of simulated surveys of adult and immature mosquitoes (Figure 6) that, as
described in the methods, were designed to mimic the empirical data collection. We then describe the
spatial distribution and time course of simulated surveys during and after spray events and compare
simulated survey results with empirical survey observations (Figures 7-8). Finally, we examine the effects
of varying spray efficacy on adult densities (Figure 9). Unless otherwise noted, simulation survey results
show ensemble summaries rather than individual model runs within an ensemble.
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Simulation Dynamics

The SB2 reference scenario was developed to mirror the S-2013 and L-2014 field experiments, including
the location and timing of container surveys, adult surveys, and spray events. With this scenario we
simulate the empirical field sampling and spraying that occurred in S-2013 and L-2014 (Figure 3). When
we inspect the simulated but unobserved population dynamics for this scenario, we find that the first
cycle of simulated spraying (mimicking S-2013 C2 and L-2014 C6) yielded a sharp and immediate decrease
in the spray sector adult populations of both simulated experiments. However, only modest decreases
are evident after the subsequent five spray cycles. The effect of simulated citywide spraying in L-2014
(C3) is approximately equivalent between sectors, as expected. This reference scenario also demonstrates
considerable variation in adult populations over time, while variation among runs within the ensemble is
modest by comparison. This high variability within but not between simulations suggests a large role of
weather relative to demographic stochasticity.

In the reference scenario (Figure 3), substantial temporal variation is evident in the S-2013 buffer
sector, despite no spray interventions. A close inspection of the buffer sector during scenarios that include
adult and/or container sampling (Figure 4) shows that container sampling yields large drops in adult
populations. Perturbations to adult populations caused by container sampling also affect the proportion of
nulliparous female adults through shifting the adult age distribution (see below). The effects of simulated
adult sampling, on the other hand, are modest relative to within-ensemble variation. Finally, scenarios
that vary ULV spray efficacy (Figure 5) show a modest impact on the dynamics of adult densities relative
to overall temporal variation, while increased spray efficacy yields modest and short-lived increases in
proportion of nulliparous females.

To better characterize Ae. aegypti population dynamics in Iquitos in the absence of control measures or
human intervention, and across numerous years of varying weather, we simulated a long-running scenario
(2000-2010). We found that the long-term dynamical response of simulated mosquito populations to
weather is consistent with expectations, with temperature, humidity, and precipitation exerting consistent
and sometimes complex influences on all life stages (Figure S3).
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Figure 3: Daily time series of model dynamics for the default scenario (model states, not survey results). Colored shading shows
ensemble 95% prediction interval (PI) for each sector, and lines within shading show ensemble medians (each ensemble is
comprised of 100 runs). Vertical dashed lines shows spray events; lower horizontal lines show circuit durations by sector.
Steep declines in adult densities early in each experiment appear to be caused by C1 container surveys. Note that C1 was
delayed in the buffer sector of S-2013. All simulations include a 1-year burn-in period (not shown). Spray efficacy was set to
the empirically observed control cage mortality: S-2013, 91%; L-2014, 72%.
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Comparison of Empirical and Simulated Results

Simulated survey results from the reference scenario (Figure 6) recapitulate model dynamics (above) at
a much coarser timescale. Variation over time and between sectors is large relative to variation within
the ensemble, the impact of container sampling on both sectors is particularly evident in S-2013, and
adult abundance (as measured by AA/HSE and AHI) is reduced during and after spray events. Simulated
spray events yield a modest increase in PrNF, since spraying and subsequent adult emergence shifts the
age distribution of adult females away from older individuals. We observe some post-spray reduction in
PC/HSE, though the sparsity of container surveys dictated by simulation of the experimental design limits
our ability to detect patterns in immature insect presence.

Direct comparisons between the effects of experimental spraying in S-2013 and L-2014 are complicated
by differing spray efficacy (91.2% versus 72.3%, respectively) and the time interval between spraying
and subsequent adult surveys (seven days versus 1-4 days, respectively) (see also Figure 3 in Gunning
et al. [32]). The relatively long intervals between field surveys makes it difficult to directly compare the
empirical recovery rate, post-spraying, with the rapid recovery post-spraying seen in the full model outputs,
particularly in L-2014 (Figure 3) where much of the recovery was within the interval between empirical
field surveys. In addition, comparisons between model predictions and empirical observations are further
complicated by the stochasticity and logistical heterogeneity inherent in any complex field experiment,
from ULV spray applications to entomological surveys.

As in Gunning et al. [32], we describe the relative effects of spraying by contrasting between sectors
(within circuit) for each measure, as well as between circuits (within the spray sector) (Figure 7). Here we
compare the ratio of means between empirical results (observed point estimate) versus simulated results
(ensemble median + 95% PI). Additional details are provided in Tables S3 and S4.

In simulations of S-2013 experimental spraying (C2, six spray cycles, 73.0-90.8% spray coverage), mean
adult densities in the spray sector (AA/HSE, relative to buffer sector) were reduced by 47% (C2), 63%
(C3) and 44% (C4) (Figure 7A, Table S3). Relative to C1, mean AHI in the spray sector was reduced by
38% (C2), 54% (C3), and 38% (C4) (Fig 7B, Table S4).

In simulations of L-2014 experimental spraying (C6, six spray cycles, 73.5-82.4% spray coverage), mean
adult densities in the spray sector were reduced by 43% (C6), 43% (C7), 19% (C8), and 9% (C9) (Figure
7A, Table S3). Relative to C1, spray sector AHI was reduced by 39% (C6), 37% (C7), 21% (C8) and 14%
(C9), (Figure 7B, Table S4). In addition, simulations of the Ministry of Health’s short-duration citywide
spraying during L-2014 C3 (both sectors, three spray cycles, 61.9-70.5% spray coverage) yielded modest
reductions of mean AA/HSE and AHI in both sectors relative to the previous circuit (C2). We note that
adults had recovered to approximately pre-intervention (C2) levels by the subsequent circuit (C4) (Figure
6 & 7B, Table S4).

Overall, simulation results broadly agree with empirical observations, yielding reductions in insect pop-
ulations that were transient and variable in duration (Figure 7-8, Figure S4). However, simulations fail to
capture initial differences in adult abundance between sectors in S-2013 (C1), and predict a sharp drop in
C2 buffer sector AA/HSE and AHI that was not empirically observed. In S-2013, simulations underesti-
mated the immediate effects of spraying on adults in C2 (Figure 7A). Finally, simulations underestimated
the speed of recovery in both years, and failed to capture the dramatic rise in spray sector adult abun-
dances seen in L-2014 in the months following spraying (C8-C9). Substantial differences were also observed
between simulated and empirical PrNF.

Because of the logistically necessary time delays between most of the (block-stratified) field surveys, it
was not generally possible to analyze insect abundance changes over short time scales (e.g., days and single
weeks). However, weekly monitoring of adults during the experimental spray period, shown in Figure 8,
reveals substantial week-to-week variation in empirical results during L-2014 that were not captured by
simulations, possibly due to fine-scale operational variations in spray efficacy that were not simulated (see
also Figure S3 in Gunning et al. [32]). In both years, however, simulations capture the sharp initial drop
in adult densities at the onset of spraying, minimal further reductions from additional spray cycles, and a
relatively rapid rebound after spraying concludes. This result in both simulated and empirical observations
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is consistent with strong density dependence, a hypothesis also supported by the rapid return of adult
mosquito populations to baseline levels once spraying concludes in both simulations and empirical results
(Figure 7). Absent strong density dependence, we expect that repeated spraying would have continually
decreased adult densities and, after spraying ceased, that adult densities would slowly recover to pre-spray
levels.

S−2013 L−2014

A
A

/H
S

E
A

H
I

P
rN

F
P

C
/H

S
E

C1 C2 C3 C4 C1 C2 C3 C4 C5 C6 C7 C8 C9

0.3

0.6

0.9

0.1
0.2
0.3
0.4
0.5

0.25

0.50

0.75

1.0

1.5

2.0

2.5

Circuit

E
ns

em
bl

e 
D

is
tr

ib
ut

io
n

Sector: Buffer Spray

Figure 6: Simulated survey results. For each measure (row), sector (color), and circuit, a per-run mean was computed; boxplots of
ensemble means are shown (default scenario, 100 runs). Vertical gray bars show periods when the spray sector was sprayed,
except during L-2014 C3 (dark gray), when both sectors were sprayed. AA/HSE: Aedes aegypti adults per house. AHI:
Adult House Index. PrNF: Proportion nulliparous females. PC/HSE: Positive containers per house. See also Figure S4.
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Figure 7: Contrasts between sectors (A) and circuits (B) for each measure (row), comparing simulated and empirical surveys (select
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Spray Efficacy

Scenarios that varied spray efficacy (Figure 9) cannot be directly compared to empirical results, yet they
provide insight into the possible effects of increased insecticide resistance (decreased efficacy) or novel
insecticides (increased efficacy). In S-2013, a simulated spray efficacy of 50% yielded modest reductions in
spray sector adult densities in the treatment circuit (C2) relative to a much higher efficacy of 100% efficacy.
In contrast, in simulations of the S-2013 spray sector, the circuit immediately after treatment (C3) yielded
differences between ensembles that were small relative to between-circuit temporal variation in the S-2013
buffer sector. This suggests a modest effect of spray efficacy on the short-term control of Ae. aegypti
populations relative to background temporal dynamics (e.g., weather) and demographic stochasticity. In
L-2014, both sectors were subject to lower intensity spraying as part of the MoH’s citywide intervention
(C3, three spray cycles, 61.9-70.5% spray coverage). Here, modest differences are observed between 50%
and 100% spray efficacy ensembles that quickly fade in subsequent circuits (e.g., C5). The effects of varying
spray efficacy are larger and longer lasting during the higher intensity experimental spraying (C6, six spray
cycles, 73.5-82.4% spray coverage), where differences between ensembles are still evident in C8, relative to
the C3 MoH intervention.
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Figure 9: Comparison of simulated AA/HSE within sector (row) among different spray efficacies. See Figure 3 and Figure 6 for
additional details.

Discussion

The primary goal of this study was to test how well our biologically detailed model of Ae. aegypti population
dynamics could reproduce the observed response of adult insect populations to experimental perturbations
during two field experiments in Iquitos, Peru. In both simulated and empirical populations, repeated
indoor ULV spraying with pyrethroids resulted in substantial yet temporary reductions in adult densities.
Indeed, the proportional effects of spraying were broadly comparable between simulated and empirical
results. Beyond the impacts of spraying, we found several noteworthy and unexpected differences between
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empirical and simulated results, particularly for PrNF and PC/HSE, as well as less temporal variation in
simulated surveys of adult abundance relative to corresponding empirical observations. We also found that
simulated container sampling reduced expected adult densities substantially. These results suggest that
larval control could aid in vector control in the absence of cryptic larval habitat, which we do not simulate
(see below). Separately, simulation results indicated a minimal impact of destructive adult sampling on
mosquito populations.

Model Validation

Simulation models can assist in the design and interpretation of intervention efforts. However, a model’s
usefulness relies on the robustness and reliability of its predictions. Uncertainty quantification (e.g. Xu
et al. [28]) can help quantify model robustness by assessing the sensitivity of model output to uncertainties
that inevitably exist in its parameterization. This technique, however, is purely model-based and does not
directly assess a model’s accuracy. Comparison between model predictions and real-world data is known
as model validation, which attempts to establish the ground truth of a model.

Model validation is a challenging task, particularly for detailed models that already require a large
amount of data for the estimation of their many parameters [40]. In order to avoid circularity, model
predictions must be tested against empirical data that is independent from that used to parameterize or
otherwise fit the model. In many cases, this is achieved by dividing a data set into two parts: one used
to fit the model (the “training” data) and one used to validate model predictions (the “testing” set). In
the case of detailed field experiments, sufficient data for repeated out-of-sample validation would be very
resource-intensive and thus rare.

The adequacy of a model’s performance may also be highly context specific, such that Oreskes [41]
argues for a cautious interpretation of the term “model validation”. Indeed, a model may perform well
when describing an unperturbed system, particularly when fit to equilibrium-state data, but perform
poorly when describing the same system when perturbed. The ability of a model to predict behavior of a
perturbed system is a much stronger test of its performance, and is an important consideration if a model
is used to predict the outcome of a large-scale control intervention.

Motivated by these observations, we designed and implemented the two field experiments described
here, where we intensively monitored real-world mosquito populations before, during, and after major
perturbations. We then compared these experimental results to ensembles of simulation runs that captured
demographic stochasticity. The resulting model assessment constitutes a rigorous test of our detailed
simulation model, and highlights several important considerations for future vector control research.

Comparing Empirical and Simulated Results

Determining the key sources of disagreement between simulations and empirical observations remains an
outstanding question. Our model was parameterized using the best available information in the literature
and from expert opinion about Ae. aegypti life history and population dynamics [17, 18, 23, 28], together
with more than a decade of intense field monitoring in Iquitos, Peru and elsewhere [32, 42]. In the
interest of making an unbiased comparison, we have not tuned simulation parameters to match empirical
results here, other than by adjusting the per-container daily food input to align simulation mean adult
densities with field observations. A priori, we expect some differences between empirical and simulated
results due to biotic and/or abiotic stochasticity. Disagreements could also stem from imperfect empirical
observations, and from erroneous or incomplete expert assumptions about the biology and habitats of
Ae. aegypti encoded in simulation dynamics. In addition, empirical field sampling could have been affected
by a range of logistical and physical factors, including weather, survey staff, adult mosquito sex or blood-
meal status. As such, attributing specific disagreements to particular simulation and/or field processes is
challenging. Nonetheless, process-based simulations yield testable predictions and highlight areas of vector
biology that deserve further attention, such as the role of density dependence in Ae. aegypti life history,
and larval habitat and food availability. We explore several specific issues below.
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Female Age Distribution: Adult mortality in our model is constant per unit time (i.e., Type II
survivorship). Yet age-dependent survivorship of Ae. aegypti has been proposed based on field release-
recapture field studies [43] and cage studies [44]. As others have noted [43, 45], reliable estimates of
vector survivorship are difficult to obtain, but may play a key role in the epidemiology of vector-borne
diseases [46, 47]. Our model provides testable predictions of adult female age distribution in response to
vector control measures. Here, our simulation results differ strikingly from estimates of the absolute PrNF
observed in the Iquitos field studies, while broadly reproducing the direction and duration of this response
in L-2014 (Figure 7). We note that field measure of adult parity, which were based on visual inspection
of dissected gonads, constitute a potential source of error, as variation in reproducibility among the field
observers was evident. Nonetheless, this disagreement between model output and empirical observations
of PrNF deserves further attention, since it indicates either that some element of Aedes life history has
been mischaracterized by previous research, or that our current understanding of Aedes life history has
not been properly represented in SB2.

Density Dependence and Larval Habitat Productivity: Competition between larvae within
containers for food resources is believed to be the main process regulating Ae. aegypti adult population
densities [48]. This competition impacts larval development time, the probability that larvae successfully
complete their development, and the size of emerging adults [16, 30]. Our model explicitly tracks food
resources within containers, but unfortunately these dynamics (and the resulting impact on larvae) are
poorly characterized in natural settings. While laboratory and cage studies have provided some insight
[48, 49], exactly how the food inputs used in these studies relate to field systems remains unclear. In
addition, food resource dynamics can lead to delayed density dynamics, where the current resource level
of a container depends on the consumption history of current and previous larval cohorts [29, 50]. Such
delayed density dependence has well-known potential for overcompensatory dynamics [51] and could explain
the dramatic increase in spray sector adult densities observed late in L-2014. The conspicuous absence of
a corresponding increase in the S-2013 spray sector raises difficult questions about how long an artificially
perturbed system should be observed in order to rule out the possibility of a future overcompensatory
response. A further complication is uncertainty surrounding the relative contribution of particular larval
habitats to adult abundance [52, 53]. On one hand, our model assumes that each container’s per-day
larval food input scales with its surface area. On the other hand, substantial natural variability amongst
containers of similar size and type is presumably found in the field. How to best measure and simulate
heterogeneous container productivity is a question that deserves further attention.

Cryptic Larval Habitat: Estimating the prevalence and impact of cryptic larval habitat remains a key
outstanding question in vector control, particularly in low-resource urban tropical settings. Most surveys
of immature abundance in Iquitos, Peru and elsewhere focus on discrete, easily found containers [42].
However, there is increasing awareness that cryptic and otherwise overlooked larval habitats can contribute
substantially to Aedes reproduction and vectorial capacity [53–61], and can impact the effectiveness of
vector control efforts. Due to a lack field data, our model assumes an absence of cryptic habitat, which
could explain the dramatic impact of container surveys (and associated container emptying) on simulated
adult densities relative to field results (Figure 4). While we cannot directly assess the impact of cryptic
habitat on adult abundance here, carefully designed experimental interventions (and simulations thereof)
could nonetheless yield testable hypotheses about the relative contribution of cryptic habitat to Aedes
reproduction and vectorial capacity.

Microclimate: In our model, container productivity also depends on temperature and precipitation.
We used observations from a single automated monitoring station (located at the nearest airport) to
estimate daily average temperature and total precipitation for the entire study area, recognizing that this
point measurement cannot capture the spatial variability expected of precipitation, nor diurnal variation
in temperature across the diversity of houses in the two study sites. Additional sources of variation include
microclimate affecting container temperature (house construction materials, vegetation, etc.). Fine-scale
spatial or temporal variation in air temperature is expected to affect adult life span [62], which would
affect PrNF. Detailed biophysical models have used GIS data to estimate diurnal thermal cycles in larval
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habitat [63], and intensive field monitoring of container water levels and temperature could yield valuable
information regarding their spatial and temporal variability that could, in turn, inform models. High-
precision monitoring of abiotic drivers over long time periods across many houses, however, is not logistically
feasible in most settings where Ae. aegypti is common.

Conclusion

An underlying motivation for this work was a better understanding of vector-borne disease transmission
of dengue virus and other Flaviviruses. Numerous models (or systems of models) have directly integrated
Ae. aegypti population dynamics with human epidemiological dynamics at varying levels of complexity
[24, 64, 65]. A more conservative approach would combine the insights of separate simulation models
and empirical lab and/or field results to arrive at specific testable hypotheses regarding the influence of
mosquito vector ecology and population dynamics on virus transmission dynamics. Variation in disease
driven by Ae. aegypti ’s role in virus transmission is influenced by a wide range of factors, including weather
and climate [37], movement patterns of human hosts and insect vectors [66], host immune history [67], virus
variation, vector lifespan [68], and vector control measures [2]. Of these many factors, our model focuses
exclusively on vector population dynamics and control measures. Our targeted insights can nonetheless be
used as inputs into other simulation models, or to test specific hypotheses, such as the effect of insecticidal
spraying on vector age distribution and population density.

We intentionally constructed SB2 to maintain compatibility with previous work that captured our
general understanding of Ae. aegypti biology, e.g., SB and CIMSIM. Adding to the complexity of CIMSIM,
SB incorporated spatial dynamics and demographic stochasticity, which are critical for studying invasion
ecology and population genetics. SB2 was further modified to represent field studies with a high degree of
spatial and temporal precision, e.g., house-based surveys and spraying. We note that SB2 (and SB) occupies
an uncomfortable niche in ecological model complexity. It lacks the simplicity of mean-field models, yet
makes a number of simplifying assumptions regarding insect biology and spatial processes. As such, our
model is too complex for some uses (e.g., direct use by public health officials) and yet lacks sufficient
detail for others (e.g., prediction). We expect that biotic and abiotic stochasticity, coupled with nonlinear
population dynamics, fundamentally limit the fine-grained predictive power of any such population model.
We nonetheless hope that SB2 will prove useful to identify research gaps and challenges that merit further
investigation, to explore specific hypotheses about Ae. aegypti ecology and life history, and to design further
large-scale field experiments.

The simulations presented here are based on the best available mechanistic model of two extensive
and logistically complex field experiments in Iquitos, Peru. While our model’s mechanistic complexity
complicates attribution and interpretation, its granular structure permits a direct comparison between
empirical and simulated results. This allowed us to highlight key areas of agreement, such as the effects
of spraying on adult populations over time and space. We have also highlighted noteworthy disagreements
where further investigation is warranted, such as the observed proportion of nulliparous females (PrNF) or
positive containers (PrPC). Our results highlight the many challenges to effective ongoing vector control,
from monitoring of spray efficacy, to rapid population rebound, to the potentially long time lags between
control activities and population response.

Software and Data Availability

Code and documentation for SB and SB2 is avaible at https://github.com/helmingstay/SkeeterBuster.
Data will be available at https://osf.io/jsfn8/ upon publication.
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tins, Waraporn Juntarajumnong, Vincent Corbel, Clement Gouagna, et al. Alternative strategies for mosquito-
borne arbovirus control. PLoS neglected tropical diseases, 13(1):e0006822, 2019.

[6] Duane J Gubler. The global emergence/resurgence of arboviral diseases as public health problems. Archives of
Medical Research, 33(4):330–342, 2002.

[7] Duane J Gubler. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem
in the 21st century. Trends in Microbiology, 10(2):100–103, 2002.
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Supplemental Tables and Figures

Table S1: House counts in the baseline circuit (C1) of each experiment, showing the proportion of houses with and without successful
surveys. When available, baseline surveys were used to parameterize each house’s container configuration.

Experiment Survey Houses Proportion

S-2013 Yes 943 0.719
S-2013 No 368 0.281

L-2014 Yes 1470 0.659
L-2014 No 762 0.341
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Table S2: Key parameters of default scenario. Dispersal parameters show per-day probabilites. Container food input multiplier was
determined by matching mean adult populations in the buffer sector between model and data (including both experiments
together). Spray efficacy was empirically determined for each experiment from observed cage mortality: S-2013=0.91;
L-2014=0.72. Finally, spray efficacy was systematically varied from the default scenario (Low=0.5; High=1).

Parameter Value

nulliparous female adult long range dispersal 0.001
parous female adult long range dispersal 0.001
male adult long range dispersal 0.001
container movement probability 0
nulliparous female adult dispersal 0.1
parous female adult dispersal 0.1
male adult dispersal 0.1
nulliparous female adult dispersal from empty house 0.1
parous female adult dispersal from empty house 0.1
male adult dispersal when no female 0.1
do adult spraying TRUE
do cont sampling TRUE
do adult sampling TRUE
proportion of adult females sampled 0.29
proportion of adult males sampled 0.29
food input multiplier 0.65
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Table S3: Ratio of sector means (spray / buffer) by circuit, as in Figure 7. Values show ensemble summary (default
scenario): median 95% PI (empirical). * denotes spray circuits. See also Figure 7 and Table S4.

Exper. Circuit AA/HSE AHI PrNF PC/HSE

S-2013 C1 0.89 0.77-1 (1.5) 0.95 0.82-1.1 (1.1) 1.1 0.91-1.3 (2) 0.95 0.92-0.97 (0.98)
C2 * 0.53 0.4-0.66 (0.26) 0.62 0.49-0.79 (0.38) 1.7 1.4-2.1 (0.95) -
C3 0.37 0.28-0.46 (0.41) 0.46 0.37-0.57 (0.6) 1.1 0.88-1.4 (0.33) 0.49 0.42-0.56 (0.41)
C4 0.56 0.4-0.75 (0.84) 0.62 0.47-0.81 (0.74) 1 0.82-1.3 (1.1) 0.57 0.45-0.67 (1.2)

L-2014 C1 0.94 0.85-1.1 (1.2) 0.95 0.87-1 (1.1) 1.1 0.86-1.3 (2) 0.97 0.93-1 (1)
C2 0.9 0.61-1.3 (0.9) 0.85 0.59-1.2 (0.89) 1.2 0.66-2.2 (0.088) -
C3 * 0.94 0.7-1.3 (0.82) 0.96 0.72-1.4 (1.1) 1.1 0.81-1.5 (1.1) -
C4 0.9 0.78-1.1 (0.91) 0.93 0.78-1 (0.88) 0.98 0.81-1.2 (1.7) 0.9 0.84-0.96 (1.1)
C5 1 0.81-1.3 (1.5) 0.98 0.82-1.2 (1.3) 1 0.82-1.2 (1.4) -
C6 * 0.57 0.47-0.67 (0.67) 0.61 0.52-0.71 (0.52) 1.4 1.2-1.5 (3.5) -
C7 0.57 0.46-0.67 (0.71) 0.63 0.51-0.74 (0.82) 1 0.82-1.3 (1.3) 0.64 0.58-0.71 (0.82)
C8 0.81 0.7-0.97 (1.9) 0.79 0.67-0.92 (1.5) 1 0.87-1.3 (1) 0.85 0.78-0.94 (1)
C9 0.91 0.74-1.1 (2.5) 0.86 0.73-1 (1.6) 1 0.8-1.2 (3.7) 0.88 0.81-0.97 (1.6)

Table S4: Ratio of circuit means (indicated circuit / baseline) within the spray sector (values as in Table S3). See also Figure 7.

Exper. Circuit AA/HSE AHI PrNF PC/HSE

S-2013 C2 * 0.25 0.19-0.31 (0.17) 0.38 0.3-0.46 (0.35) 1.6 1.3-1.9 (0.4) -
C3 0.31 0.24-0.38 (0.55) 0.4 0.32-0.48 (0.79) 1.1 0.91-1.5 (0.16) 0.45 0.39-0.52 (0.75)
C4 0.27 0.2-0.36 (0.89) 0.36 0.28-0.47 (1.1) 1.2 0.92-1.6 (0.79) 0.49 0.4-0.57 (2)

L-2014 C2 0.43 0.31-0.61 (0.85) 0.52 0.4-0.67 (0.86) 0.91 0.62-1.3 (0.43) -
C3 * 0.3 0.23-0.38 (0.39) 0.39 0.31-0.48 (0.54) 1.4 1.1-1.8 (1.6) -
C4 0.56 0.47-0.67 (0.69) 0.64 0.55-0.72 (0.69) 1.3 1.1-1.6 (1.7) 0.64 0.59-0.67 (0.85)
C5 0.66 0.55-0.79 (0.88) 0.71 0.61-0.82 (0.83) 1.2 0.96-1.4 (1.3) -
C6 * 0.43 0.37-0.49 (0.4) 0.49 0.43-0.55 (0.33) 1.6 1.4-1.8 (3) -
C7 0.48 0.4-0.56 (0.67) 0.53 0.45-0.62 (0.66) 1.1 0.88-1.3 (1.5) 0.49 0.45-0.53 (1.2)
C8 0.59 0.51-0.71 (1.5) 0.62 0.54-0.72 (1) 1.2 1-1.4 (0.69) 0.59 0.55-0.64 (0.59)
C9 0.82 0.67-0.95 (1.7) 0.74 0.66-0.89 (1.2) 1.1 0.86-1.3 (1.6) 0.71 0.66-0.76 (0.69)
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Figure S1: Map of simulation configuration, showing houses per polygon (top row) and containers per polygon (bottom row). See also
Figure 2.
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Figure S2: Daily time series of observed weather at station 843770. Vertical dashed lines show spray events (see Figure 3).
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Figure S3: Correlation between weather and insect populations at different life stages for long-running scenario. Adult females closely
track total adult populations, while eggs and larvae have an inverse response as eggs transition into larvae. In the short-term
(<5 days), increased temperature and humidity yield increases in adults and eggs, and a decrease in proportion nulliparous
females; precipitation causes eggs to hatch into larvae, while increased temperatures cause larvae to develop into pupae.
High humidity is also associated with lower larval populations across a range of time lags, most strongly at <10 days. In the
medium to long-term (10-20 days), increased temperature and humidity was associated with increased pupal populations
(peak correlation at approx. 10 days), while precipitation was associated with increased adult populations (peak correlation
at approx. 18 days). No consistent correlation between weather and number of positive containers per house is evident.
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Figure S4: A: empirical results (as in Gunning et al. [32]). B, ensemble residuals (simulated - empirical). See also Figure 6.
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