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Abstract
Genome-wide functional genetic screens have been successful in discovering
genotype-phenotype relationships and in engineering new phenotypes. While broadly applied in
mammalian cell lines and in E. coli, use in non-conventional microorganisms has been limited,
in part, due to the inability to accurately design high activity CRISPR guides in such species.
Here, we develop an experimental-computational approach to sgRNA design that is specific to
an organism of choice, in this case the oleaginous yeast Yarrowia lipolytica. A negative selection
screen in the absence of non-homologous end-joining, the dominant DNA repair mechanism,
was used to generate single guide RNA (sgRNA) activity profiles for both SpCas9 and
LbCas12a. This genome-wide data served as input to a deep learning algorithm, DeepGuide, that
is able to accurately predict guide activity. DeepGuide uses unsupervised learning to obtain a
compressed representation of the genome, followed by supervised learning to map sgRNA
sequence, genomic context, and epigenetic features with guide activity. Experimental validation,
both genome-wide and with a subset of selected genes, confirms DeepGuide’s ability to
accurately predict high activity sgRNAs. DeepGuide provides an organism specific predictor of
CRISPR guide activity that could be broadly applied to fungal species, prokaryotes, and other
non-conventional organisms.
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Introduction

Class II CRISPR endonucleases such as Cas9 and Cas12a are now widely used for targeted
genome editing and in functional genomics screens. These multi-domain proteins function by
forming a ribonucleoprotein complex of a CRISPR RNA (crRNA or spacer) and a structural
component that enables complexation of the crRNA with the CRISPR associated endonuclease
(i.e., Cas9 or Cas12a) 1,2. Targeting is achieved by the complementarity of the crRNA to a desired
genomic locus, which must be adjacent to a protospacer adjacent motif (PAM) to activate
endonuclease function. When this targeting occurs, active Cas9 or Cas12a can create a loss of
function mutation as an endonuclease induced double stranded break in the genome is repaired
by native non-homologous end joining (NHEJ) or by homologous recombination (HR) in the
presence of a repair template 3,4. Gene regulation is also possible with Cas activity disabled, by
targeting repressor or activation domains to the promoter region of the gene of interest 5. Such
editing and regulation can be accomplished individually 6, in multiplexed format 7 or with pooled
libraries of gRNAs that target every gene in a genome 8. The development of these systems has
not only enabled genetic studies in model cell lines and microbes, but have also eased the burden
of developing targeted genome editing tools in many non-model or non-conventional organisms
9–14.

The successful application of CRISPR systems is largely dependent on the efficacy of the
sgRNA, and while a number of design tools have been developed, accurate predictions across
species and across different Cas endonucleases is not yet possible. A central challenge is that the
vast majority of predictive algorithms are trained on data generated from a limited number of
species, most commonly human and murine cell lines or E. coli. In addition, most screens to date
that correlate sgRNA sequence with activity have been conducted with Cas9 or Cas9 variants,
with only a limited number of such screens for Cas12a (Cpf1) or other Cas proteins. A recent
meta-analysis of CRISPR-Cas9 screens suggests that the lack of cross-species predictive power
comes from variation in genomic context; a strong correlation between sgRNA features and
guide activity for the target species were not able to predict guide activity when applied to other
species 15. We have also observed this in our own work, where genome-wide sgRNA activity
profiles in the oleaginous yeast Yarrowia lipolytica showed poor correlation with activity
predicted by a number of commonly-used guide design tools trained on data generated from
other species 8.

Here, we developed a deep learning-based guide design algorithm called DeepGuide that is
capable of accurately predicting Streptococcus pyogenes Cas9 and Lachnospiraceae bacterium
Cas12a sgRNA activity in Y. lipolytica. We focused our efforts on this non-conventional yeast
because it has value as an industrial host for the conversion of biomass derived sugars and
industrial waste streams (e.g., glycerol, alkanes, and fatty acids) into value added chemicals and
fuels 16–21. Similar to many other eukaryotes, DNA repair in Yarrowia is dominated by NHEJ 22.
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We exploit this trait to perform negative selection CRISPR screens in the absence of NHEJ repair
where double stranded breaks in the genome lead to cell death or a significant impairment to cell
fitness 8,23. Such screens enable the quantification of a cutting score (CS), a measure of activity,
for every plasmid expressed sgRNA in the library, thus creating a large data set correlating
sgRNA activity to guide sequence, genomic context, and other genomic and epigenetic features.
This work generates a new dataset for Cas12a and also uses Cas9 genome-wide CS profiles
generated in a previous work 8 to create a large, Y. lipolytica specific training set to understand
and predict guide activity for CRISPR studies in this yeast.

DeepGuide utilizes a deep learning framework based on a convolutional neural network (CNN),
that builds on existing sgRNA activity prediction tools such as DeepCRISPR 24 and
Seq-deepCpf1 25. Unsupervised learning was achieved using a convolutional autoencoder (CAE)
in a pretraining step to learn the representation of the sgRNA landscape within the genomic
context of Y. lipolytica. This was followed by supervised learning on a CNN using sequence and
a CS value for each sgRNA sequence within the Cas9 and Cas12a datasets, and related
chromatin accessibility information for the target site of each sgRNA. Lastly, the predictions of
the model were cross-validated to obtain correlations between observed and predicted CS values.
Activity of predicted guides was also independently validated by targeting a set of genes whose
null mutants generated easily screenable phenotypes. DeepGuide outperformed existing guide
activity prediction tools and predicted 20 nt Cas9 sgRNA with an NGG PAM, as well as 25 nt
Cas12a sgRNA with a TTTV PAM, with high accuracy.

Results and Discussion

Library design and generating genome-wide CS profiles
To generate Y. lipolytica CS profiles for CRISPR-Cas9 and -Cas12a, we designed plasmid-based
sgRNA libraries with 6-fold and 8-fold redundancy for every protein-coding gene in the Y.
lipolytica genome. The Cas9 library targeted 7,854 out of 7,919 protein-coding genes annotated
in the CLIB89 strain (parent strain of PO1f) of Y. lipolytica 26, while the more restrictive PAM
sequence of Cas12a (TTTV for Cas12a vs. NGG for Cas9) resulted in a library targeting only
7,801 protein coding genes. Gene coverage of the library as well as distributions of the guides
within each library after plasmid construction are shown in Figure S1. Libraries were designed
using two distinct approaches: a strategy biased towards active guides for Cas9, and an unbiased
strategy for Cas12a. For the Cas9 library, we used the first iteration of sgRNA Designer 27 to
rank all possible Cas9 guides in Y. lipolytica and selected the top six scoring guides for every
targeted gene (Note: experimental analysis of this library was previously accomplished,
including CS profiling, and negative and positive selection screens 8. Here, we re-analyze this
data and use it as training and validation sets for DeepGuide). For the Cas12a library, sgRNAs
were selected at random starting from the 5’ end of each gene. No other criteria were used to
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design the library with the intention that a significant portion of the library would contain poorly
active or inactive guides. This unbiased library was expected to provide a more informative
training set for DeepGuide due to the presence of a higher proportion of “negative” training
examples.

The workflow to generate the CS profiles, along with the distributions for both Cas9 and Cas12a
are shown in Figure 1, with replicate correlations shown in Figure S2 and Table S1. The CS
value for each guide is defined as the log2 ratio of normalized sgRNA abundance in a
NHEJ-deficient strain, to that in a strain both deficient in NHEJ and expressing Cas9/12a
(Supplementary Files S1 and S2). The lack of Cas activity removes a pressure for selection and
therefore sgRNA abundance in the control strain was expected to remain relatively constant over
the course of the growth screen. Cas9/12a induced double stranded breaks in a strain deficient in
NHEJ causes cell death or significantly impairs growth, thus linking sgRNA abundance (as
measured by next generation sequencing of the recovered sgRNA expression plasmids) to
Cas9/12a activity, where high positive CS values indicate high activity guides and negative CS
values indicated inactive or poorly active guides.

Figure 1. Generating genome-wide CRISPR-Cas9a and -Cas12a guide activity scores as input to
machine learning algorithms for guide activity prediction. (a) Pooled libraries of single guide RNAs
(sgRNAs) for Streptococcus pyogenes Cas9 and for Lachnospiraceae bacterium Cas12a were
transformed into Y. lipolytica strains with non-homologous end-joining (NHEJ) DNA repair disabled by
disruption of KU70. The sample strain (smpl) expresses Cas9 or Cas12a, while the control strain (cntrl)
does not. The Cas12a screens were conducted for this work, while the Cas9 screens were previously
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reported in ref. 8. A double stranded CRISPR cut to the genome in the absence of KU70 function leads to
cell death (or a dramatic reduction in cell growth), thus enabling the quantification of guide activity through
a cutting score (CS) defined as the log2 fold change of normalized guide abundance in the control vs. the
sample determined by next generation sequencing. (b) Genome-wide CS and sgRNA sequence are used
as inputs to the convolutional autoencoder (CAE)-based learning method, DeepGuide, to predict sgRNA
CS. DeepGuide prediction of Cas9 guides also used as input a normalized score for nucleosome
occupancy across the genome 28. The performance of established CRISPR guide prediction algorithms,
including Spacer Scoring for CRISPR (SSC) 29, sgRNA Scorer 2.0 (Scorer 2.0) 30, CRISPRater 31,
Designer v1 and v2 27,32, TSAM 33, CRISPRon 34, DeepCRISPR 24, and Seq-deepCpf1 25, are shown as a
comparison to DeepGuide. The graph shows the Pearson correlation coefficient between CS and the
predicted CS for each method. DeepGuide was trained on Cas9 and Cas12a genome-wide CS, the
corresponding sgRNA sequence, and genomic context, while all other algorithms used sgRNA sequence
(and when appropriate, genomic context) as inputs.

With CS profiles for both Cas9 and Cas12a in-hand, we set out to determine if a number of
commonly used guide prediction methods could capture our experimentally determined CS
profiles. Learning-based models that use only the sgRNA sequence as input, including
CRISPRater 31, SSC 29, and sgRNA Scorer 30 were partially able to capture CS across the genome
with SSC exhibiting the highest Pearson coefficient for Cas9 (r = 0.11) and sgRNA Scorer the
highest for Cas12a (r = 0.28). sgRNA Designer 27,32 and TSAM 33 take as input the guide
sequence and the genomic context immediately surrounding it, but were also not able to
accurately capture experimentally determined CS values in Y. lipolytica. TSAM performed the
best of these (including both versions of sgRNA Designer 27,32), achieving a pearson coefficient
of r = 0.16 for Cas9. These three algorithms are not designed for Cas12a guide prediction, as
such were not able to predict Cas12a CS in Y. lipolytica. Lastly, three neural network-based
approaches, Seq-deepCpf1 25, DeepCRISPR 24, and CRISPRon 34, were also only partially
aligned with CS; Seq-deepCpf1 fared the best at predicting Cas12a CS (r = 0.25), while
CRISPRon was best at predicting Cas9 activity (r = 0.21). DeepGuide, our CAE/CNN-based
approach, achieved Pearson coefficients of 0.5 and 0.66 for Cas9 and Cas12a CS values,
respectively. We note here that in the case of Cas9, nucleosome occupancy was also used as
input to the predictive algorithm; details of this and DeepGuide optimization are discussed in the
following subsections.

The comparison of existing methods to DeepGuide were accomplished using CS values after
four days of cell growth. CS distributions determined after two, four and six days are shown in
Figure 2. After only two days of culture, CS values remained close to zero indicating minimal
guide activity (at day 2, CSCas9,avg= -0.01±0.21, CSCas12a,avg 0.22±0.83). At the end of the second
day of growth post-transformation, the sample and control strains reached confluency for the first
time, and were subcultured to continue the growth screen at this time point as well as after
reaching confluency for a second time four days into the screen. We elected to use day 4 data for
further analysis because the observed CS profiles remained relatively unchanged from day 4 to
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day 6, suggesting that the majority of sgRNA activity and the resulting phenotypic effect had
occurred by day 4. Both libraries also included a population of non-targeting sgRNAs,
constituting ~1.5% of each library, that functioned as negative controls. For both Cas12a and
Cas9 the average CS for the negative control populations were in the -1.0 to -3.0 range (across
all days) and were represented by normal distributions around -1.56 for Cas12a (day 4) and -3.0
9 for Cas9 (day 4).

Figure 2. CRISPR-Cas12a and -Cas9 cutting score (CS) distributions in Yarrowia lipolytica. CS
distributions were calculated across three separate days after subculturing transformants twice when they
reached confluency. Blue and Pink distributions plotted on the left y-axis show CS values of Cas12a and
Cas9 libraries, while the dark red data plotted with the right y-axis depicts the non-cutting control
population, constituting ~1% of the respective library. The higher the value of CS, the better the cutting
activity of the sgRNA. (a) Histogram of CS values in Cas12a library. (b) Histogram of CS values in Cas9
library. The CS values at Day 4 for both Cas9a and Cas12a were carried forward for further analysis.

DeepGuide architecture and training
DeepGuide consists of three interconnected neural networks, namely a convolutional
autoencoder (CAE), a convolutional fully-connected neural network and a small fully-connected
network that is used to capture additional epigenetic features (in our case, nucleosome occupancy
data) (Figure 3). The convolutional autoencoder takes as input all the k-mers from the genome of
interest and builds a compressed representation (in the form of internal weights in the encoder)
of the genomic background distribution. The second network is composed of an encoder
followed by a fully connected neural network (see Table S2 for the list of layers). The encoder
matches the structure of the encoder in the CAE, and its weights are first initialized from the
CAE pre-training step. The fully connected neural network is composed of one flattening layer,
three fully connected layers, one concatenation layer, and one output layer (see Table S3 for the
list of layers). The entire second network (including the encoder) is trained via back-propagation
from input pairs of sgRNA sequences and their corresponding CS values. The nucleosome data
is fed into the third fully-connected neural network. One-dimensional occupancy data is
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expanded into a multi-dimensional real vector using a fully connected layer. The output layer of
this third network is finally combined using element-wise multiplication with the output layer of
the second network to generate CS predictions that account for the sgRNA sequence, genomic
context, and nucleosome occupancy. Additional details with respect to these architectures and
their training are provided in the Material and Methods section.

Figure 3. The architecture of DeepGuide. First, the entire Y. lipolytica PO1f genome was fragmented into
sgRNA sized chunks (using a sliding window of 20 bp for Cas9 and 25 bp for Cas12a). Unsupervised
pre-training was carried out on these unlabeled fragments using a convolutional autoencoder (left). The
internal weights from the autoencoder were used to initialize a fully connected convolutional neural
network (center). Labeled sgRNA (i.e., sequence and associated cutting score) were used as inputs for
back-propagation learning on the fully connected neural network. See Tables S2-3 for a description of the
layers.

DeepGuide optimization
The choice of a CAE combined with a fully-connected CNN was motivated by the results of a
five-fold cross-validation performance evaluation among various machine learning methods
(Figure 4a). The compared methods include support vector machines (SVM); gradient boosting
(GBR), logistic and linear regression; random forests (RF); and, a fully connected neural
network (FCNN). As judged by Pearson and Spearman correlations of the predicted CS and
experimentally determined CS, the core CAE/CNN architecture of DeepGuide performed better
than all other tested methods. For Cas12a, DeepGuide achieved a Pearson r-value of 0.66 and a
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Spearman r-value of 0.66, while for Cas9 Pearson and Spearman values were 0.43 and 0.37,
respectively. The inclusion of nucleosome occupancy data improved Cas9 prediction accuracy,
increasing the Pearson and Spearman r-values to 0.50 and 0.43, respectively. This effect is in
agreement with observations of nucleosome inhibition of Cas9/12a targeting in vitro and in vivo
35–38. A similar nucleosome occupancy effect on DeepGuide’s ability to predict Cas12a CS
values, however, was not observed here.

Figure 4. Design and parameter optimization for DeepGuide on the Cas12a (top) and Cas9 (bottom)
datasets. (a) Evaluation of DeepGuide in a cross-validation analysis with several machine learning (ML)
methods, including random forest (RF), support vector machines (SVM), logistic regression (Logistic),
gradient boosting regression (GBR), linear regression (Linear), fully-connected neural networks (FCNN),
and the core architecture of DeepGuide, a combination of a convolutional autoencoder and a
convolutional fully-connected neural network (CAE+CNN). In addition to interconnected CAE and CNN,
the final architecture of DeepGuide also includes a third fully connected network to account for
nucleosome occupancy. Error bars indicate standard deviation over five independent cross-validation
experiments. (b) The dependency of DeepGuide’s performance as a function of the training set size with
smaller datasets produced by downsampling. (c) The dependency of DeepGuide’s performance as
function on the length of the context sequence around the sgRNA (ten-fold cross validation).

One important question about the performance of any machine learning method relates to the
size of the training set, that is, how much data is necessary to obtain the best predictions and
what performance penalty is incurred when the training dataset size is limited. Figure 4b shows
the Pearson and Spearman correlations for DeepGuide as the size of the dataset increases, up to
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the full size dataset correlating sgRNA sequence to experimentally determined CS. This analysis
shows that (i) DeepGuide’s performance improves as the size of the training set increases for
both Cas12a and Cas9, and (ii) the performance for Cas9 plateaus as dataset size increases above
~30,000 examples. While the performance curve for Cas12a appears to indicate that a larger
dataset could potentially improve performance, the trend still shows that the correlations start to
plateau above a training set size of ~30,000.

DeepGuide’s hyperparameters (e.g., number of hidden layers, number of neurons in each layer,
type of activation function, learning rate, etc.) were also optimized using cross-validation.
To determine the optimal number of hidden layers in the fully connected neural network
downstream of the encoder, we carried out an ablation analysis as described in the next section.
Among the input hyperparameters, the length of the context around the sgRNA significantly
affected prediction performance. Observe that sequence lengths from 32-40 bp resulted in the
best performance for Cas12a; 32 bp was selected because it produced a model with a smaller
number of parameters, thus reducing the possibility of overfitting (Figure 4c). Similarly, for Cas9
28 bp  was selected from a range of 20-40 bp as it produced the best prediction performance.

Ablation analysis of DeepGuide
To understand how pre-training and the number of fully connected layers (downstream of the
encoder in the second network) affects DeepGuide’s performance, an ablation analysis was
performed. First, as a “sanity” check, the encoder alone (i.e., no fully connected layers, but a
flatten layer to get a single output) was tested on Cas12a and Cas9 data without any training or
pre-training (i.e., using random weights). Observe in the first row of Table 1 (also see Tables S4
and S5) that Spearman and Pearson are essentially zero, as expected. Second, random weights
were used for the encoder, then back propagation was run on the flatten layer. Observe in the
second row that training just one layer resulted in a significant jump in prediction performance
on both data sets. In rows 3-7, the weights of the encoder were initialized from the pre-training
step (CAE) and back-propagation was run exclusively on the fully connected layers downstream
of the encoder, that is by freezing the pre-trained weights of the encoder. Under these conditions,
the performance was measured by incrementally adding one fully connected layer at the time. By
comparing row 2 to row 3, observe that pre-training improves the performance for both Cas12a
and Cas9, but more so for Cas12a. Also observe in rows 3-7 that the best performance on the
Cas12a data set is obtained when the second network includes only one fully connected layer
(fc8). Similarly, rows 3-7 show that none of the fully connected layers (fc8, fc9, fc10) help to
improve the performance on the Cas9 data set. However a significant performance improvement
was gained for Cas9 by introducing the multiplication layer (mult11), which combines the
nucleosome occupancy.
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Table 1. DeepGuide ablation analysis. Row 1 (green) shows the performance of the encoder (followed by
a flatten layer) using random weights (no pre-training or backpropagation); row 2 (purple) show the
performance of the encoder (followed by a flatten layer) using random weights and then performing
back-propagation only on the flatten layer; rows 3-7 (blue) show the performance after pre-training the
encoder and then running back-propagation only layers downstream of the encoder; rows 8-12 (pink)
show the performance after pre-training and then running back-propagation on the whole network
(including the encoder); correlation coefficients in bold corresponds to the best performance; fc = fully
connected layer; pool = pooling layer; flatten = flatten layer; mult = multiplication layer (see Tables S3 for
the list of layers).

If backpropagation is allowed to fine tune the weights of the encoder, the overall performance
improvement is striking (i.e., compare rows 3-7 with rows 8-12). Observe that in the case of
Cas12a, one additional fully connected layer (fc9) helps the performance, but adding more is
detrimental. As a result of this ablation analysis, the third fully connected layer (fc10) and the
multiplication layer (mult11) were removed from DeepGuide’s architecture for Cas12a guides.

On Cas9, observe in Table 1 that adding one fully connected layer (fc8) improves the
performance, but the biggest improvement is due to the multiplication layer (mult11) that
incorporates the nucleosome occupancy data. As a result of this ablation analysis, the second and
third fully connected layers (fc9 and fc10) were removed from DeepGuide’s architecture for Cas9
guides.

External and internal validation of DeepGuide
Given the optimized DeepGuide architecture, we next set out to measure its ability to predict
Cas9 and Cas12a sgRNA activity as measured in single gene disruption experiments. To do so,
we used DeepGuide to predict five high activity and five poor activity Cas9 and Cas12a sgRNAs
for four genes whose disruption can be measured with an easily screenable phenotype (Figure
S3). These genes included MFE1, the knockout of which prevents growth on long chain fatty
acids; CAN1, which is involved in resistance to L-canavanine; and MGA1 and RAS2, knockouts
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of which result in colonies with a smooth appearance due to loss of pseudohyphae formation.
Plasmids expressing each of the sgRNAs were individually transformed into Y. lipolytica in
biological triplicate and screened for the presence or absence of the targeted phenotype. For high
activity Cas9 guides, the predicted CS ranged from 4.65 to 5.19, while for Cas12a the CS values
of the highest activity guides ranged from 1.09 to 2.08. At the lower end, poor-activity guides
ranged from -1.12 to 1.88 for Cas9 and -0.72 to 1.00 for Cas12a. The near overlap of CS values
in the low and high predicted activity groups for Cas12a is due to the fact that only 12 TTTV
PAM sequences are contained within MGA1, thus providing a limited set to select from. The ten
guides that provided the largest range were selected even though two of these had nearly equal
predicted CS values (for MGA1, CSpredicted = 1.09 was included in the high activity group, while
CSpredicted = 1.00 was included in the low activity group).

DeepGuide was generally successful in predicting active sgRNAs for both Cas12a and Cas9, but
had limited ability to accurately predict low activity guides for Cas9 (Figure 5). Seventeen of the
twenty Cas12a guides that were predicted to be of high activity, clustered together with an mean
disruption efficiency of 77.4% and a CSpredicted of 1.67 (Figure S4). Three guides from the high
activity group, CSpredicted of 1.91, 1.65, and 1.09, did not cluster well with the others and exhibited
disruption efficiencies of 24.6%, 19.1%, and 4.8%, respectively. Predicting the lower end of the
activity scale was also successful for Cas12a where 20 of 20 guides clustered together with an
average disruption efficiency of 12.1% and a CSpredicted of 0.16. Predictions for highly active Cas9
guides were also accurate; 18 of 20 sgRNAs clustered together with an average disruption
efficiency and CSpredicted of 69.8% and 4.91, respectively. However, DeepGuide performed poorly
in predicting low or inactive guides for Cas9. Only 4 of 20 sgRNAs in the low activity group
exhibited disruption efficiencies below 25%, another nine sgRNAs achieved efficiencies between
25% and 50%, while the remaining seven proved to be highly active with disruption efficiencies
above 50%. One explanation for the discrepancy in performance between Cas9 and Cas12a is the
difference in training sets. The Cas9 library was biased from the outset towards high activity
guides, thus limiting the number of poor activity guides to learn from. Conversely, the Cas12a
sgRNA library was not biased from the outset and consequently resulted in a CS data set that
included a high number of both poorly active and highly active guides.
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Figure 5. External and internal validation of DeepGuide performance. (a) and (b) editing efficiencies of 5
predicted high-activity and 5 predicted low-activity sgRNA for Cas12a and Cas9 in single gene disruption
experiments. Genes MGA1, MFE1, CAN1, and RAS2 were picked as their null mutants displayed easily
screenable phenotypes. Predicted high-activity sgRNAs clustered together, while low activity sgRNAs
clustered at lower editing efficiencies for Cas12a. (c) and (d) ROC plots and AUROC values for
DeepGuide prediction of high- and low-activity Cas9 and Cas12a sgRNAs.

In addition to the external validation where individual sgRNAs were tested for disruption
efficiency, we also sought to evaluate DeepGuide’s ability to discriminate between active and
inactive sgRNAs as measured in the pooled screens; that is, we compared experimentally
determined CS vs. predicted CS in a ROC analysis. To do so, the mean CS values of the high
activity clusters for Cas9 and Cas12a were taken as the threshold for binarizing guide activity.
Guides with CS > 1.67 for Cas12a and CS > 4.91 for Cas9 were classified as active, and CS
values below this threshold were classified as inactive. DeepGuide outperformed all other tools
in classifying highly active guides as indicated by an AUROC of 0.77 for Cas12a and 0.73 for
Cas9 (Figures 5c,d and Figure S5). It is important to note that when seq-DeepCpf1, a prediction
algorithm with similar architecture as DeepGuide, was retrained on the Cas9 and Cas12a CS
profile generated in Yarrowia, the AUROC curve improved from 0.61 to 0.72 for Cas12a and
0.58 to 0.69 for Cas9, underscoring the importance of the dataset used for training the machine
learning model.
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Current prediction methods have proven effective at designing active CRISPR sgRNAs
24,25,27,29–34, but the predictive power is typically limited to the organism from which the training
data was generated 8,15. In this context we created DeepGuide, a machine learning approach to
design sgRNA guides based on an organism-specific training set. When trained on Y. lipolytica
genome-wide CS profiles for both Cas12a and Cas9, DeepGuide accurately designed sgRNA
sequences that resulted in high genome editing efficiency (Figure 5) and outperformed other
methods in predicting Cas9 and Cas12a activity across the genome (Figure 1). Ablation analysis
revealed that the organism specific nature of DeepGuide is not solely related to the sgRNA
training set but also the genomic context; predictions improved for both Cas9 and Cas12a if
DeepGuide’s internal weights were initialized via a genome-wide unsupervised learning step on
the Y. lipolytica genome, rather than being assigned at random (Figure 3 and Table 1).

While DeepGuide was successful in designing active guides for both Cas12a and Cas9, our
analysis and validation experiments revealed significant differences between the two systems.
The first was that DeepGuide performed much better on the Cas12a dataset (Cas12a Pearson, r =
0.66 vs. Cas9, r = 0.50), possibly due to the fact that the Cas12a library covers a greater fraction
of the total Cas12a PAM sites within the genome (there are 809,401 TTTN and 531,432 TTTV
PAM sites for Cas12a in Y. lipolytica and 2,415,425 Cas9 NGG PAM sites). Library design could
also be a driving factor; DeepGuide was not able to accurately predict poor activity guides for
Cas9, a result that we ascribe to the low number of “negative” examples in the biased library
designed for Cas9. Lastly, sequence and genomic context were sufficient to drive accurate
predictions for Cas12a, but additional contextual information in the form of nucleosome
occupancy was necessary to obtain the maximal predictive power for Cas9.

While this work focuses on the development of DeepGuide for its specific use in Y. lipolytica,
the same experimental-computational workflow that involves (i) library design, (ii) predictor
design (learning and optimization) and (iii) external validation, can be readily applied to other
fungal species, broadly to prokaryotes, and any other organisms in which genome-wide
functional screens can be used to estimate sgRNA activities.
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Materials and Methods

DeepGuide architecture
DeepGuide uses a convolutional autoencoder (CAE) to derive a reduced-dimensionality
representation of the underlying distribution of sgRNA sequences in the whole genome. The
autoencoder is composed of an encoder (6 layers) and a decoder (6 layers). The objective of the
unsupervised training is to infer the internal weight so the input layer to the encoder is as close as
possible as the output layer of the decoder. The CAE encoder has two Conv1D layers of 20
filters and 40 filters, respectively, one MaxPooling1D layer, one AveragePooling1D layer and
two BatchNormalization layers (see Table S2 for the order). A rectified linear activation function
(ReLU) is used as activation and the Glorot uniform initializer is used to initialize the
convolutional filters. The layer regularizers for the encoder is L2 with value 10E-4. The decoder
has the same structure as the encoder but uses UpSampling1D instead of MaxPooling, and
UpSampling1D instead of AveragePooling1D. The layer regularizer in the decoder is again L2
with value 10E-4. The loss function for training is the binary cross entropy, and Adam is the
optimizer with a learning rate of 10E-3. A batch size of 64 and 200 epochs are used for training
(no early stopping).

The encoder in the second network has the same structure of the encoder in the CAE (see Table
S3). The initial configuration of the network downstream of the encoder uses one flatten layer,
three fully connected layers (fc8, fc9, fc10) of 80 neurons, 40 neurons and 40 neurons,
respectively. The feature map for layer pool6 is 7 x 40 which is 280 dimensional. The feature
map for the first fully connected layer (fc8) is 280 x 80 = 22400 dimensional. The feature map
for the second and third fully connected layers (fc9 and fc10) are 80 x 40 = 3200 and 40 x 40 =
1600 dimensional, respectively. Layer mult11 is a multiplication layer that combines sequence
and nucleosome occupancy features. ReLU is the activation and Glorot uniform initializer is
used to initialize the convolutional filters. The second network is trained for 150 epochs using
backpropagation; if the value of loss function does not improve for 15 consecutive epochs the
training is terminated.

The third fully connected network is used to provide DeepGuide with nucleosome occupancy
data. The nucleosome occupancy for each sgRNA is a floating point value in [0,1]. The third
network uses one fully connected layer with 40 units to expand the one-dimensional nucleosome
occupancy value to a 40-dimensional vector, to match the dimensionality of the output layer of
the second network. Sequence and nucleosome data are merged by performing an element-wise
multiplication between the output layer of the second network and the output layer of the third
network. When DeepGuide is used in “classification mode” (i.e., binary output) the activation
function is a sigmoid; when DeepGuide is used in “regression mode” (i.e., cutting score output),
the activation function is linear.
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Note that following the ablation analysis, only two fully connected layers (and no multiplication
layer) are used for Cas12a; similarly, only one fully connected layer connected to the
multiplication layer is used for Cas9.

DeepGuide training and pre-training
For the pre-training step of the CAE all k-mers from the Y. lipolytica genome were extracted
using a sliding window of 1 bp. For Cas9 the input length was 28 bp, which includes the length
of each possible spacer (20 bp), plus 3 bp for a PAM sequence, and 2 bp up- and downstream for
context. For Cas12a, 32-mers were used to account for the 25 bp spacer, a 4 bp PAM, 1 bp of
context upstream of the PAM, and 2 bp of context downstream of the spacer (see Figure 4b).
These unlabeled sgRNA data sets contained over 20 million k-mers each. sgRNA sequences
were converted into a numerical representation using one-hot encoding, that is, each sgRNA was
converted into a 4 x n dimensional binary matrix where n is the length of the guide.

The training data to DeepGuide consisted of sgRNA sequences, their nucleosome occupancy
score, and their CS values. sgRNA sequences were one-hot encoded, while nucleosome
occupancy data was processed as explained in the “Nucleosome occupancy analysis” subsection
below. CS scores were produced as explained in the “Cutting Score analysis” subsection also
provided below.

When the pre-training concluded, the internal weights of the CAE were used to initialize the
encoder in the second network. The second network was trained via back-propagation using
either ~45,000 sgRNAs for Cas9 or ~58,000 sgRNA for Cas12a, each with their associated CS
value. 60% of these guides were used for training, 20% for validation and 20% for testing. The
training step not only allowed the inference of the weights for the fully connected layers
downstream of the encoder, but also fine-tuned the weights of the encoder. As explained in the
Section “Ablation analysis of DeepGuide” (Main Text) the pre-training step helped the
supervised learning to converge faster and improved the prediction performance.

Figure S6 illustrates the loss curve for training and validation of the CNN without pre-training
and with pre-training as a function on the number of training epochs. Observe that in the CNN
without pre-training the difference between training and validation loss function starts increasing
after about 20 epochs. In contrast, for the CNN with pre-training the training and validation
curves of the loss function are overlapping after about 30 epochs. This indicates that the
pre-training prevents the network from overfitting, and helps the network to generalize better.

sgRNA library design
Custom Matlab scripts were used to design an LbCas12a sgRNA library with ~8-fold coverage
of all protein coding sequences annotated in the Y. lipolytica PO1f parent strain genome, CLIB89
26. A list of 25 nucleotide (nt) sgRNA with a TTTV (V=A/G/C) PAM were identified in both the
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top and bottom strand of the coding sequence of each gene (CDS). A second list containing all
possible 25nt sgRNAs with a TTTN PAM from the top and bottom strands of all 6 chromosomes
in Y. lipolytica was also generated and used to test for sgRNA uniqueness. The uniqueness test
was carried out by comparing the first 14nt of each sgRNA in the first list to the first 14nt of
every sgRNA in the second list. If a sequence occurred more than once, the sgRNA was
identified as non-unique and excluded from consideration. The sgRNAs that passed the test for
uniqueness were then picked in an unbiased manner, with even representation from top and
bottom strands when possible, starting from the 5’ end of the CDS. Six-hundred and fifty one
sgRNAs of random sequence confirmed to not target in the genome were also designed using a
similar methodology but with a more stringent criteria for uniqueness (i.e., first 10nt were not
found anywhere in the genome). A detailed procedure of sgRNA design for both Cas9 and
Cas12a is provided in ref. 39 and additional data on the Cas9 guide design criteria is provided in
ref.8. Briefly, for Cas9 sgRNAs the first version of sgRNA Designer 27 was used to identify the
top predicted guides for every CDS, these guides were filtered for uniqueness, and the top six
unique guides were selected.

Microbial strains and culturing
The parent yeast strain used in this study was Yarrowia lipolytica PO1f with genotype MatA,
leu2-270, ura3-302, xpr2-322, axp-2. The PO1f Cas9 and the PO1f Cas12a strains were
constructed by integrating UAS1B8-TEF(136)-Cas9 -CycT and UAS1B8-TEF(136)-LbCpf1
-CycT expression cassettes into the A08 locus 40. The PO1f Cas9 ku70 and PO1f Cas12a ku70
strains were constructed by disrupting KU70 using CRISPR-Cas9 as previously described 23. All
strains used in this study are listed in Table S6. All plasmid construction and propagation was
conducted in Escherichia coli TOP10. Cultures were conducted in Luria-Bertani (LB) broth with
100 mg L-1 ampicillin at 37 °C in 14 mL polypropylene tubes, at 225 rpm. Plasmids were
isolated from E. coli cultures using the Zymo Research Plasmid Miniprep Kit.

Plasmid construction
All plasmids and primers used in this work are listed in Table S7 and S8. To create the LbCas12a
sgRNA expression plasmid (pLbCas12ayl), we first added a second direct repeat sequence at the
5’ of the polyT terminator in pCpf1_yl (see ref. 41). This was done to ensure that library sgRNAs
could end in one or more thymine residues without being construed as part of the terminator. To
make this change, pCpf1_yl was first linearized by digestion with SpeI. Subsequently, primers
ExtraDR-F and ExtraDR-R were annealed and this double stranded fragment was used to
circularize the vector (NEBuilder® HiFi DNA Assembly) For integrating LbCas12a,
pHR_A08_LbCas12a was constructed by digesting pHR_A08_hrGFP (Addgene #84615) with
BssHII and NheI, and the LbCas12a fragment was inserted using the New England BioLab
(NEB) NEBuilder® HiFi DNA Assembly Master Mix. The LbCas12a fragment was amplified
along with the necessary overlaps by PCR using Cpf1-Int-F and Cpf1-Int-R primers from
pLbCas12ayl. Successful cloning of the entire fragment was confirmed with sequencing primers
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A08-Seq-F, A08-Seq-R, Tef-Seq-F, Lb1-R, Lb2-F, Lb3-F, Lb4-F, and Lb5-F. To create the
Cas12a sgRNA genome-wide library expression plasmid (pLbCas12ayl-GW) the UAS1B8-TEF-
LbCas12a-CYC1 fragment was removed from pLbCas12ayl with the use of XmaI and HindIII
restriction enzymes. Subsequently, the primers BRIDGE-F and BRIDGE-R were used to
circularize the vector, and the M13 forward primer was used to ensure correct assembly of the
construct.

To conduct the validation experiments of predicted CS values by DeepGuide, four genes with
easily screenable phenotypes were selected and 10 sgRNA (five highly active and five with poor
activity) targeting each of these genes for Cas9 and Cas12a were selected and cloned for
individual disruption experiments. All 40 Cas9 sgRNAs with required overlaps for cloning were
purchased from a commercial vendor (IDT-DNA) as single stranded primers, and assembled into
pCRISPRyl (Addgene #70007) after linearizing the vector with AvrII, using NEBuilder® HiFi
DNA Assembly. In a similar manner, the 40 Cas12a sgRNAs with necessary overlaps were
cloned into pLbCas12ayl, after linearizing the vector with SpeI. These primers are also included
in Table S8.

sgRNA library cloning
The LbCas12a library targeting the protein coding genes in PO1f were ordered as an
oligonucleotide pool from Agilent Technologies Inc. and cloned in-house using the Agilent
SureVector CRISPR Library Cloning Kit (Part Number G7556A). The backbone vector
(pLbCas12ayl-GW) was first linearized by PCR using the primers InversePCR-F and
InversePCR-R, DpnI digested, cleaned up using Beckman AMPure XP SPRI beads, and
transformed into E.coli TOP10 cells to verify minimal contamination from the circularized
plasmid. Library oligos were amplified by PCR using the primers OLS-F and OLS-R for 15
cycles as per vendor instructions using Q5 high fidelity polymerase and cleaned up using the
AMPure XP beads. The linearized backbone and the amplicons were combined in 4 replicate
reactions of sgRNA library cloning that were carried out as per vendor instructions and pooled
prior to bead cleanup. Two amplification bottles containing 1L of LB media and 3 g of library
grade low gelling agarose were prepared, autoclaved, and cooled to 37 °C. Eighteen replicate
transformations of the cloned library were conducted using Agilent’s ElectroTen-Blue cells
(Catalog #200159) via electroporation (0.2 cm cuvette, 2.5 kV, 1 pulse). Cells were recovered
and with a 1 hr outgrowth in SOC media at 37 °C (2% tryptone, 0.5% yeast extract, 10 mM
NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose.) The transformed E.
coli cells were then inoculated into two amplification bottles and grown for 2 days until colonies
were visibly suspended in the matrix. Colonies were recovered by centrifugation and subject to a
second amplification step by inoculating a 800 mL LB culture. After 4 hr, the cells were
collected and the pooled plasmid library was isolated using the ZymoPURE II Plasmid Gigaprep
Kit (Catalog #D4202) yielding ~2.4 mg of plasmid DNA containing the Cas12a sgRNA library.
The library was subject to a NextSeq run to test for fold coverage of individual sgRNA and skew.
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Yeast transformation and screening
Transformation of Y. lipolytica with the sgRNA plasmid library was done using a previously
described method with slight modifications 8. Briefly, 3 mL of YPD was inoculated with a single
colony of the strain of interest and grown in a 14 mL tube at 30 °C with shaking at 200 RPM for
22-24 hours (final OD ~30). Cells were pelleted by centrifugation (6,300g) and washed with 1.2
mL of transformation buffer (0.1 M LiAc, 10 mM Tris (pH=8.0), 1 mM EDTA). To these
resuspended cells, 36 µL of ssDNA mix (8 mg/mL Salmon Sperm DNA, 10 mM Tris (pH=8.0),
1 mM EDTA), 180 µL of β-mercaptoethanol mix (5% β-mercaptoethanol, 95% triacetin), and 8
µg of plasmid library DNA were added, mixed via pipetting, and incubated for 30 mins. at room
temperature. After incubation, 1800 µL of PEG mix (70% w/v PEG (3,350 MW)) was added and
mixed via pipetting, and the mixture was incubated at room temperature for an additional 30
min. Cells were then heat shocked for 25 min at 37 °C, washed with 25 mL of sterile milliQ
H2O, and used to inoculate 50 mL of SD-leu media for screening experiments. Dilutions of the
transformation (0.01% and 0.001%) were plated on solid SD-leu media to calculate
transformation efficiency. Three biological replicates of each transformation were performed for
each condition. Transformation efficiency for each replicate is presented in Table S9. Details of
the Cas9 library are provided in ref. 8.

Screening experiments were conducted in 50 mL of liquid media in a 250 mL baffled flask (220
rpm shaking, 30 °C). Cells first reached confluency after 2 days of growth (OD600 ~12), at which
time 200 µL (which includes sufficient number of cells for approximately 500-fold library
coverage) was used to inoculate 25 mL of fresh media. The cells were again subcultured upon
reaching confluency at day 4 for the growth screen, and the experiment was halted after 6 days of
growth. At each timepoint (i.e., days 2, 4, and 6), 1 mL of culture was removed and treated with
DNase I (New England Biolabs; 4 µL and 25µL of DNaseI buffer) for 1 h at 30 °C to remove
any extracellular DNA. Cells were isolated by centrifugation at 4,500g and the resulting cell
pellets were stored at -80 °C for future analysis.

Library isolation and sequencing
Growth screen samples were thawed and resuspended in 400 µL sterile, milliQ H2O. Each cell
suspension was split into two, 200 µL samples and plasmids from each sample were isolated
using a Zymo Yeast Miniprep Kit (Zymo Research). Splitting into separate samples here was
done to accommodate the capacity of the Yeast Miniprep Kit. The split samples from a single
pellet were then pooled, and plasmid copy number was quantified using quantitative PCR with
qPCR-GW-F and qPCR-GW-R and SsoAdvanced Universal SYBR Green Supermix (Biorad).
Each pooled sample was confirmed to contain at least 107 plasmids.

To prepare samples for next generation sequencing, isolated plasmids were subjected to PCR
using forward (ILU1-F, ILU2-F, ILU3-F, ILU4-F) and reverse primers (ILU(1-12)-R) containing
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all necessary barcodes and adapters for next generation sequencing using the Illumina platform
(Table S10). Schematics of the amplicons from the Cas9 and Cas12a experiments submitted for
NGS are pictured in Figure S7. At least 0.2 ng of plasmids (approximately 3x107 plasmid
molecules) were used as template, and PCR reactions were amplified for 16 cycles and not
allowed to proceed to completion to avoid amplification bias. PCR product was purified using
SPRI beads, and tested on the bioanalyzer to ensure the correct length. Samples were pooled in
equimolar amounts and submitted for sequencing on a NextSeq 500 at the UCR IIGB core
facility.

Generating sgRNA read counts from raw reads
Next generation sequencing reads were processed using the Galaxy platform 42. First read quality
was assessed using FastQC v0.11.8. The reads were then demultiplexed using Cutadapt v1.16.6,
trimmed using Trimmomatic v0.38, and mapped to each sgRNA using a combination of Bowtie
2 v2.4.2, and custom MATLAB scripts for counting bowtie alignments and naïve exact
matching. Parameters used for each method are provided in Table S11 and Matlab scripts are
provided as part of the GitHub link found below in the section “Data and software availability”.
Table S12 provides further information correlating the NCBI SRA file names to the information
needed for demultiplexing the readsets. Analysis of the CRISPR-Cas12a growth screens revealed
that five sgRNAs were not present in the sequencing data. Pairwise comparison between
normalized read abundances for biological replicates were done to verify consistency, see Figure
S2 and Table S1.

Cutting Score analysis
The cutting score (CS) associated with each guide was determined by taking the log2 of the ratio
of normalized read counts of the control condition to the normalized read counts of the treatment
condition. The control condition was taken as the normalized read counts at the end of the
growth screen in a strain without Cas12a or Cas9. The treatment condition included
constitutively expressed Cas9 or Cas12a with disrupted KU70. Normalized counts were taken as
the total number of reads for a given sgRNA divided by the total reads for the corresponding
sample. If no reads were identified for a given sgRNA, a pseudo-count of one was added to the
read count to facilitate subsequent calculations. In all cases, normalized read counts for each
biological replicate were averaged together to produce an average normalized read count and
associated standard deviation for each sgRNA. All normalized read counts and CS values are
provided in Supplementary Files S3 and S4.

Nucleosome Occupancy analysis
To account for genomic features, specifically nucleosome occupancy, we determined an average
normalized occupancy score (ranging from 0 to 1) for every target locus using previously
published MNase-Seq coverage data 28 (Supplementary File S5). Per base nucleosome occupancy
scores were summed up for each sgRNA, averaged and normalized to a value between 0 and 1
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by taking its ratio to the highest averaged value. This information was integrated into DeepGuide
via a separate fully connected neural network, the first step of which was to convert the
one-dimensional occupancy data into an 80-dimensional real vector using a fully connected layer
with 80 neurons. Using element-wise multiplication, the output of this layer was combined with
the output of the last fully connected layer of the CS-predicting CNN to generate CS predictions
that account for guide sequence, genomic context, and nucleosome occupancy.

Validation of predicted sgRNA for Cas9 and Cas12a
Four genes with easily screenable phenotypes, including MEF1, CAN1, MGA1, and RAS2 were
selected for the validation of predicted sgRNA CS values (Figure S3). Gene sequences and the
per base nucleosome occupancy of these genes were provided as input to the DeepGuide
algorithm. As output DeepGuide predicted a CS value for each sgRNA of a given gene. sgRNAs
were sorted from best to worst based on the predicted CS value from sequence-only (for Cas12a)
and sequence plus nucleosome occupancy (for Cas9). The top 5 and bottom 5 sgRNA from the
list were tested for editing efficiency.

To screen for RAS2 and MGA1 gene disruption, cultures with CRISPR plasmids growing in
SD-Leu were diluted and plated in triplicate on YPD to obtain greater than 50 colonies on each
plate. After two days of growth at 30 °C, the number of smooth colonies were counted and
expressed as a fraction of total colonies on the plate. For disruption of the CAN1 gene, cultures
were similarly diluted and plated on YPD to obtain single colonies. Thirty colonies in triplicate
were then randomly selected and streaked on SD-leu agar media supplemented with 50 mg L-1 of
L-canavanine. Colonies that grew on SD with canavanine were identified as positive for CAN1
disruption. To screen for MFE1, cultures were similarly plated, and 30 colonies from each
transformation were randomly selected and streaked on SD-Oleic acid and dotted on YPD.
Growth on YPD but not on SD-Oleic acid indicated MFE1 disruption. Screening of MFE1 was
done on agar plates containing SD media supplemented with oleic acid as the sole carbon source
(SD oleic acid; 0.67% Difco yeast nitrogen base without amino acids, 0.079% CSM (Sunrise
Science, San Diego, CA), 2% agar 0.4% (v/v) Tween 20, and 0.3% (v/v) oleic acid).

Data and software availability

Sequencing data has been deposited in NCBI SRA (BioProject number PRJNA766088). Source
code for DeepGuide can be found at https://github.com/dDipankar/DeepGuide. Our GitHub page
includes instructions for installation, usage examples. Custom Matlab scripts that were used for
the design of the Cas12a CRISPR library, and processing of Illumina reads to generate sgRNA
abundance can also be found in the GitHub page. Generating sgRNA predictions for Y. lipolytica
using DeepGuide does not require any specialized hardware and it can be carried out on a laptop
with Conda installed.

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.461753doi: bioRxiv preprint 

https://github.com/dDipankar/DeepGuide
https://doi.org/10.1101/2021.09.29.461753


Author contributions
All authors conceived the idea and wrote the manuscript. AR, CS, and IW planned and analyzed
the genome-wide CRISPR screens. AR conducted the CRISPR-Cas12a and guide-activity
validation experiments. CS conducted the CRISPR-Cas9 screens. DB and SL planned the
computational prediction of guide activity. DB designed and optimized the architecture of
DeepGuide, and collected data with DeepGuide and all other sgRNA prediction tools.

Acknowledgements
This work was supported by DOE DE-SC0019093 (IW and SL), DOE Joint Genome Institute
grant CSP-503076 (IW) and NSF 1706545 (IW).

References

1. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial
immunity. Science 337, 816–821 (2012).

2. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas
system. Cell 163, 759–771 (2015).

3. Sadhu, M. J. et al. Highly parallel genome variant engineering with CRISPR–Cas9. Nature
Genetics vol. 50 510–514 (2018).

4. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339,
819–823 (2013).

5. Gilbert, L. A. et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and
Activation. Cell 159, 647–661 (2014).

6. Schwartz, C. M., Hussain, M. S., Blenner, M. & Wheeldon, I. Synthetic RNA Polymerase
III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in
Yarrowia lipolytica. ACS Synth. Biol. 5, 356–359 (2016).

7. Löbs, A.-K., Schwartz, C., Thorwall, S. & Wheeldon, I. Highly Multiplexed CRISPRi
Repression of Respiratory Functions Enhances Mitochondrial Localized Ethyl Acetate
Biosynthesis in Kluyveromyces marxianus. ACS Synth. Biol. 7, 2647–2655 (2018).

8. Schwartz, C. et al. Validating genome-wide CRISPR-Cas9 function improves screening in
the oleaginous yeast Yarrowia lipolytica. Metab. Eng. 55, 102–110 (2019).

9. Liu, R., Chen, L., Jiang, Y., Zhou, Z. & Zou, G. Efficient genome editing in filamentous
fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1, 15007 (2015).

10. Dalvie, N. C. et al. Host-Informed Expression of CRISPR Guide RNA for Genomic
Engineering in Komagataella phaffii. ACS Synthetic Biology vol. 9 26–35 (2020).

11. Löbs, A.-K., Engel, R., Schwartz, C., Flores, A. & Wheeldon, I. CRISPR–Cas9-enabled
genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in
Kluyveromyces marxianus. Biotechnology for Biofuels vol. 10 (2017).

12. Fuller, K. K., Chen, S., Loros, J. J. & Dunlap, J. C. Development of the CRISPR/Cas9
System for Targeted Gene Disruption in Aspergillus fumigatus. Eukaryot. Cell 14,

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.461753doi: bioRxiv preprint 

http://paperpile.com/b/mHKJ81/cxZK
http://paperpile.com/b/mHKJ81/cxZK
http://paperpile.com/b/mHKJ81/hzis
http://paperpile.com/b/mHKJ81/hzis
http://paperpile.com/b/mHKJ81/ddGY
http://paperpile.com/b/mHKJ81/ddGY
http://paperpile.com/b/mHKJ81/wlqa
http://paperpile.com/b/mHKJ81/wlqa
http://paperpile.com/b/mHKJ81/wInr
http://paperpile.com/b/mHKJ81/wInr
http://paperpile.com/b/mHKJ81/rzQ3
http://paperpile.com/b/mHKJ81/rzQ3
http://paperpile.com/b/mHKJ81/rzQ3
http://paperpile.com/b/mHKJ81/VE0n
http://paperpile.com/b/mHKJ81/VE0n
http://paperpile.com/b/mHKJ81/VE0n
http://paperpile.com/b/mHKJ81/tI1H
http://paperpile.com/b/mHKJ81/tI1H
http://paperpile.com/b/mHKJ81/hKq9
http://paperpile.com/b/mHKJ81/hKq9
http://paperpile.com/b/mHKJ81/QP47
http://paperpile.com/b/mHKJ81/QP47
http://paperpile.com/b/mHKJ81/c9Ey
http://paperpile.com/b/mHKJ81/c9Ey
http://paperpile.com/b/mHKJ81/c9Ey
http://paperpile.com/b/mHKJ81/hk6p
http://paperpile.com/b/mHKJ81/hk6p
https://doi.org/10.1101/2021.09.29.461753


1073–1080 (2015).
13. Cao, M., Gao, M., Ploessl, D., Song, C. & Shao, Z. CRISPR-Mediated Genome Editing and

Gene Repression in Scheffersomyces stipitis. Biotechnol. J. 13, e1700598 (2018).
14. Tran, V. G., Cao, M., Fatma, Z., Song, X. & Zhao, H. Development of a

CRISPR/Cas9-Based Tool for Gene Deletion in Issatchenkia orientalis. mSphere vol. 4
(2019).

15. Moreb, E. A. & Lynch, M. D. Genome dependent Cas9/gRNA search time underlies
sequence dependent gRNA activity. Nat. Commun. 12, 5034 (2021).

16. Schwartz, C., Frogue, K., Misa, J. & Wheeldon, I. Host and Pathway Engineering for
Enhanced Lycopene Biosynthesis in. Front. Microbiol. 8, 2233 (2017).

17. Rodriguez, G. M. et al. Engineering xylose utilization in Yarrowia lipolytica by
understanding its cryptic xylose pathway. Biotechnol. Biofuels 9, 149 (2016).

18. Blazeck, J. et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid
and biofuel production. Nat. Commun. 5, 3131 (2014).

19. Xue, Z. et al. Production of omega-3 eicosapentaenoic acid by metabolic engineering of
Yarrowia lipolytica. Nat. Biotechnol. 31, 734–740 (2013).

20. Lv, Y., Marsafari, M., Koffas, M., Zhou, J. & Xu, P. Optimizing Oleaginous Yeast Cell
Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synth. Biol. 8,
2514–2523 (2019).

21. Ledesma-Amaro, R., Dulermo, R., Niehus, X. & Nicaud, J.-M. Combining metabolic
engineering and process optimization to improve production and secretion of fatty acids.
Metab. Eng. 38, 38–46 (2016).

22. Löbs, A.-K., Schwartz, C. & Wheeldon, I. Genome and metabolic engineering in
non-conventional yeasts: Current advances and applications. Synthetic and Systems
Biotechnology vol. 2 198–207 (2017).

23. Schwartz, C., Frogue, K., Ramesh, A., Misa, J. & Wheeldon, I. CRISPRi repression of
nonhomologous end-joining for enhanced genome engineering via homologous
recombination in Yarrowia lipolytica. Biotechnol. Bioeng. 114, 2896–2906 (2017).

24. Chuai, G. et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning.
Genome Biol. 19, 80 (2018).

25. Kim, H. K. et al. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.
Nat. Biotechnol. 36, 239–241 (2018).

26. Magnan, C. et al. Sequence Assembly of Yarrowia lipolytica Strain W29/CLIB89 Shows
Transposable Element Diversity. PLoS One 11, e0162363 (2016).

27. Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated
gene inactivation. Nature Biotechnology vol. 32 1262–1267 (2014).

28. Tsankov, A. M., Thompson, D. A., Socha, A., Regev, A. & Rando, O. J. The role of
nucleosome positioning in the evolution of gene regulation. PLoS Biol. 8, e1000414 (2010).

29. Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25,
1147–1157 (2015).

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.461753doi: bioRxiv preprint 

http://paperpile.com/b/mHKJ81/hk6p
http://paperpile.com/b/mHKJ81/7P6K
http://paperpile.com/b/mHKJ81/7P6K
http://paperpile.com/b/mHKJ81/zgmb
http://paperpile.com/b/mHKJ81/zgmb
http://paperpile.com/b/mHKJ81/zgmb
http://paperpile.com/b/mHKJ81/pGVX
http://paperpile.com/b/mHKJ81/pGVX
http://paperpile.com/b/mHKJ81/qEih
http://paperpile.com/b/mHKJ81/qEih
http://paperpile.com/b/mHKJ81/ZxyI
http://paperpile.com/b/mHKJ81/ZxyI
http://paperpile.com/b/mHKJ81/AgcB
http://paperpile.com/b/mHKJ81/AgcB
http://paperpile.com/b/mHKJ81/lv3G
http://paperpile.com/b/mHKJ81/lv3G
http://paperpile.com/b/mHKJ81/Mmwv
http://paperpile.com/b/mHKJ81/Mmwv
http://paperpile.com/b/mHKJ81/Mmwv
http://paperpile.com/b/mHKJ81/Oiuj
http://paperpile.com/b/mHKJ81/Oiuj
http://paperpile.com/b/mHKJ81/Oiuj
http://paperpile.com/b/mHKJ81/6HTE
http://paperpile.com/b/mHKJ81/6HTE
http://paperpile.com/b/mHKJ81/6HTE
http://paperpile.com/b/mHKJ81/qhHh
http://paperpile.com/b/mHKJ81/qhHh
http://paperpile.com/b/mHKJ81/qhHh
http://paperpile.com/b/mHKJ81/z2AO
http://paperpile.com/b/mHKJ81/z2AO
http://paperpile.com/b/mHKJ81/sROy
http://paperpile.com/b/mHKJ81/sROy
http://paperpile.com/b/mHKJ81/dmOW
http://paperpile.com/b/mHKJ81/dmOW
http://paperpile.com/b/mHKJ81/E7ax
http://paperpile.com/b/mHKJ81/E7ax
http://paperpile.com/b/mHKJ81/TMmi
http://paperpile.com/b/mHKJ81/TMmi
http://paperpile.com/b/mHKJ81/fLtK
http://paperpile.com/b/mHKJ81/fLtK
https://doi.org/10.1101/2021.09.29.461753


30. Chari, R., Yeo, N. C., Chavez, A. & Church, G. M. sgRNA Scorer 2.0: A
Species-Independent Model To Predict CRISPR/Cas9 Activity. ACS Synth. Biol. 6, 902–904
(2017).

31. Labuhn, M. et al. Refined sgRNA efficacy prediction improves large- and small-scale
CRISPR-Cas9 applications. Nucleic Acids Res. 46, 1375–1385 (2018).

32. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target
effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

33. Peng, H., Zheng, Y., Blumenstein, M., Tao, D. & Li, J. CRISPR/Cas9 cleavage efficiency
regression through boosting algorithms and Markov sequence profiling. Bioinformatics 34,
3069–3077 (2018).

34. Xiang, X. et al. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration
and deep learning. Nat. Commun. 12, 3238 (2021).

35. Horlbeck, M. A. et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. Elife
5, (2016).

36. Yarrington, R. M., Verma, S., Schwartz, S., Trautman, J. K. & Carroll, D. Nucleosomes
inhibit target cleavage by CRISPR-Cas9 in vivo. Proc. Natl. Acad. Sci. U. S. A. 115,
9351–9358 (2018).

37. Strohkendl, I. et al. Inhibition of CRISPR-Cas12a DNA targeting by nucleosomes and
chromatin. Sci Adv 7, (2021).

38. Verkuijl, S. A. & Rots, M. G. The influence of eukaryotic chromatin state on CRISPR-Cas9
editing efficiencies. Curr. Opin. Biotechnol. 55, 68–73 (2019).

39. Ramesh, A. & Wheeldon, I. Guide RNA Design for Genome-Wide CRISPR Screens in
Yarrowia lipolytica. Methods Mol. Biol. 2307, 123–137 (2021).

40. Schwartz, C., Shabbir-Hussain, M., Frogue, K., Blenner, M. & Wheeldon, I. Standardized
Markerless Gene Integration for Pathway Engineering in Yarrowia lipolytica. ACS Synth.
Biol. 6, 402–409 (2017).

41. Ramesh, A., Ong, T., Garcia, J. A., Adams, J. & Wheeldon, I. Guide RNA Engineering
Enables Dual Purpose CRISPR-Cpf1 for Simultaneous Gene Editing and Gene Regulation
in. ACS Synth. Biol. 9, 967–971 (2020).

42. Jalili, V. et al. Corrigendum: The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 48, 8205–8207 (2020).

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 30, 2021. ; https://doi.org/10.1101/2021.09.29.461753doi: bioRxiv preprint 

http://paperpile.com/b/mHKJ81/5fM2
http://paperpile.com/b/mHKJ81/5fM2
http://paperpile.com/b/mHKJ81/5fM2
http://paperpile.com/b/mHKJ81/PWxU
http://paperpile.com/b/mHKJ81/PWxU
http://paperpile.com/b/mHKJ81/9kDh
http://paperpile.com/b/mHKJ81/9kDh
http://paperpile.com/b/mHKJ81/4LVE
http://paperpile.com/b/mHKJ81/4LVE
http://paperpile.com/b/mHKJ81/4LVE
http://paperpile.com/b/mHKJ81/r1Kp
http://paperpile.com/b/mHKJ81/r1Kp
http://paperpile.com/b/mHKJ81/uVsa
http://paperpile.com/b/mHKJ81/uVsa
http://paperpile.com/b/mHKJ81/lQOf
http://paperpile.com/b/mHKJ81/lQOf
http://paperpile.com/b/mHKJ81/lQOf
http://paperpile.com/b/mHKJ81/yPUT
http://paperpile.com/b/mHKJ81/yPUT
http://paperpile.com/b/mHKJ81/r6Nk
http://paperpile.com/b/mHKJ81/r6Nk
http://paperpile.com/b/mHKJ81/sqly
http://paperpile.com/b/mHKJ81/sqly
http://paperpile.com/b/mHKJ81/VHB5
http://paperpile.com/b/mHKJ81/VHB5
http://paperpile.com/b/mHKJ81/VHB5
http://paperpile.com/b/mHKJ81/gr3e
http://paperpile.com/b/mHKJ81/gr3e
http://paperpile.com/b/mHKJ81/gr3e
http://paperpile.com/b/mHKJ81/0SSi
http://paperpile.com/b/mHKJ81/0SSi
https://doi.org/10.1101/2021.09.29.461753

