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ABSTRACT:  

Single cell RNA sequencing (scRNAseq) is a powerful technique that continues to expand 6 

across various biological applications. However, incomplete 3’ UTR annotations in less 7 

developed or non-model systems can impede single cell analysis resulting in genes that are 8 

partially or completely uncounted. Performing scRNAseq with incomplete 3’ UTR annotations 9 

can impede the identification of cell identities and gene expression patterns and lead to 10 

erroneous biological inferences. We demonstrate that performing single cell isoform 11 

sequencing (ScISOr-Seq) in tandem with scRNAseq can rapidly improve 3' UTR annotations. 12 

Using threespine stickleback fish (Gasterosteus aculeatus), we show that gene models resulting 13 

from a minimal embryonic ScISOr-Seq dataset retained 26.1% greater scRNAseq reads than 14 

gene models from Ensembl alone. Furthermore, pooling our ScISOr-Seq isoforms with a 15 

previously published adult bulk Iso-Seq dataset from stickleback, and merging the annotation 16 

with the Ensembl gene models, resulted in a marginal improvement (+0.8%) over the ScISOr-17 

Seq only dataset. In addition, isoforms identified by ScISOr-Seq included thousands of new 18 

splicing variants. The improved gene models obtained using ScISOr-Seq lead to successful 19 

identification of cell types and increased the reads identified of many genes in our scRNAseq 20 

stickleback dataset. Our work illuminates ScISOr-Seq as a cost-effective and efficient 21 

mechanism to rapidly annotate genomes for scRNAseq. 22 

 
 
INTRODUCTION: 23 

Single cell RNA sequencing (scRNAseq) is a revolutionary technique in biology that 24 

provides expression information from tissues and embryos (E. Shapiro, Biezuner, and 25 
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Linnarsson 2013). By barcoding RNA from individual cells directly from dissociated samples, 26 

scRNAseq allows for post hoc analysis of cell types and can be used to ascertain novel cell 27 

populations, explore developmental trajectories, and define gene regulatory networks (Luecken 28 

and Theis 2019). 29 

To maximize the utility of scRNAseq datasets, however, 3’ UTRs must be annotated for 30 

several reasons. ScRNAseq captures transcripts through poly(A) tails leading to a 3’ bias in 31 

coverage (Hwang, Lee, and Bang 2018). Partially annotated genes may be represented in a 32 

dataset with lower read counts, leading to erroneous conclusions regarding their magnitude of 33 

expression across cell types. In addition, downstream scRNAseq analysis clusters cell types 34 

through the determination of a covariance structure across highly variable genes (Stuart et al. 35 

2019). The systematic absence of such genes can lead to inferential errors in multivariate 36 

analyses and obscure biological reality.  37 

The annotations of even intensively studied models, such as mice and zebrafish, 38 

continue to be improved (Gupta et al. 2018; Lawson et al. 2020). Most other organismal 39 

genomes are even less well annotated. To facilitate a broader utility of scRNAseq requires 40 

more efficient and methods for 3’ UTR annotation. Recently, full length, single-molecule 41 

isoform sequencing (Iso-Seq) has been used to improve genome annotations (Ali, Thorgaard, 42 

and Salem 2021; Beiki et al. 2019; Kuo et al. 2017, 2020). PacBio’s Iso-seq has been further 43 

adapted to use the 10x Genomics platform for scRNA barcoding (ScISOr-Seq) to track cell type 44 

specific isoform expression (Gupta et al. 2018; Zheng et al. 2020).  45 

Here we show that ScISOr-Seq in the context of a scRNAseq experiment allows rapid 46 

3’UTR annotation in threespine stickleback fish (Gasterosteus aculeatus). This fish has long 47 
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been a focus of study in behavior, ecology and evolution (Bell and Foster 1994; Colosimo et al. 48 

2004; Cresko et al. 2004, 2007; Hohenlohe et al. 2010; Reid, Bell, and Veeramah 2021; M. D. 49 

Shapiro et al. 2004), and is now a nascent system for biomedical research (E A Beck et al. 2020; 50 

Emily A. Beck et al. 2021; Fuess et al. 2021; Gardell et al. 2017; Miller et al. 2007; Small et al. 51 

2017). Although stickleback have a well assembled genome, it’s 3’ UTR annotations are 52 

incomplete which limits scRNAseq’s utility. We demonstrate that a single PacBio SMRT cell of 53 

ScISOr-Seq data is sufficient to significantly improve the stickleback annotations to an extent 54 

on par with zebrafish for the purpose of scRNAseq analysis at this stage. Our findings 55 

demonstrate that ScISOr-Seq will be a useful tool to efficiently improve genome annotations 56 

for scRNAseq in many organisms. 57 

 58 

RESULTS AND DISCUSSION: 59 

ScISOr-Seq captured novel isoforms and improved 3’UTR 60 

The ScISOr-Seq reads were classified with SQANTI3 (Tardaguila et al. 2018) using 61 

Ensembl gene models to describe isoforms based on how well they match splice variants 62 

(Figure 1A). The most common structural category (45.15% of isoforms) is “novel not in 63 

catalog” containing at least one new splicing site relative to the existing annotation (Figure 1A 64 

and 1B). While 17.42% of collapsed isoforms were “full splice matches” (FSM), only 16.7% of 65 

these isoforms matched the annotation. Therefore, roughly 3% of the unique isoforms matched 66 

the existing gene annotations, the rest improve existing or added gene models. Confirming that 67 

3’ UTRs were poorly annotated, 46.2% FSM had alternative 3’ ends and 27.4% had alternative 3’ 68 

and 5’ ends (Figure 1C). Therefore, the existing stickleback annotation - in addition to having 69 
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incomplete 3’ UTRs - is also missing many splice variants. Our work indicates that additional 70 

ScISOr-Seq or bulk Iso-Seq is necessary to capture these variants as well as prune erroneous 71 

transcript models from the Ensembl annotation. 72 

 73 

ScISOr-Seq improved the number of reads retained for scRNAseq 74 

  We initially tested how well the existing stickleback gene models from Ensembl 75 

(BROAD S1, 104.1 database version) would capture scRNAseq reads. Strikingly, less than 50% of 76 

 

 
 
Figure 1: SQANTI3 classification of ScISOr-Seq data revealed that the majority of isoforms were previously unannotated in 
the stickleback genome. A) SQANTI3 categorizes isoforms based on their match to the reference, the major categories 
are shown here. B) the distribution of ScISOr-Seq isoforms in the major SQANTI3 classes illustrating that the bulk of 
isoforms are novel not in catalog. C) within the novel not in catalog category, isoforms are largely coming from cases 
where there is at least one new splicing donor or acceptor with some coming from cases of intron retention (for 
example, nkx2.3 isoforms from Figure 2). D) the majority of isoforms that are full splice matches have at least an 
alternative 3’ site while few are complete reference matches. 
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reads were retained for downstream scRNAseq analysis (Figure 2B; Supplemental file 1). Using 77 

such an incomplete annotation for scRNAseq would likely result in erroneous interpretation of 78 

gene expression patterns for genes lacking 3’ UTR annotations.  79 

Next, we used ScISOr-sequencing data to generate new gene models and tested how 80 

well these new models would capture scRNAseq reads (Supplemental file 2). Using the ScISOr-81 

Seq dataset, 13,028 previously annotated genes and 2,942 novel genes were identified (Figure 82 

2A). The ScISOr-Seq annotations lead to a notable 26.1% increase in reads retained from 83 

scRNAseq compared to the Ensembl gene models alone (Figure 2B; Supplemental file 1).  The 84 

alignment of scRNAseq reads with existing Ensembl and new ScISOr-Seq gene models 85 

 

 
 
 
Figure 2: ScISOr-Seq and bulk Iso-Seq captured a limited number of annotated transcripts, but both resulted in 
an increase in reads mapping to the transcriptome. Ultimately, pooling this data and merging with the 
ensembl annotation resulted in the largest gains in reads mapped. A) the number of genes in common and 
unique to each Iso-Seq read category is compared to the ensembl genome. B) results from cell ranger runs 
using the different genome annotation files illustrating the overall improvements by using Iso-Seq data 
particularly the ScISOr-Seq gene models. 
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illustrates that ScISOr-Seq models retain greater numbers of reads due to improved annotation 86 

of 3’ UTRs (Figure 3; Figure S1A and S1B). This result compares favorably with current research 87 

in the much better studied zebrafish model. Farnsworth, Saunders, and Miller (2020) 88 

completed their zebrafish atlas with 80% of reads retained in 5dpf (days post fertilization) fish. 89 

After Lawson et al. (2020) improved the zebrafish transcriptome, they noted a 4% increase in 90 

reads retained that lead to an increase of 2,257 cells and 8 clusters using the same 5 dpf atlas 91 

(Farnsworth, Saunders, and Miller 2020). The similarity in number of retained reads in our 92 

dataset with those published in zebrafish indicates that these improvements in stickleback are 93 

sufficient for scRNAseq. 94 

Recently, Naftaly, Pau, and White (2021) published a large bulk analysis of adult 95 

stickleback Iso-Seq data from 16 PacBio SMRT cells, which we reanalyzed to create an 96 

annotation to test if comparably more scRNAseq reads are retained (Supplemental file 3). 97 

Although we identified similar overall annotated and novel genes, the bulk Iso-Seq annotation 98 

 

 
 
Figure 3: ScISOr-Seq improved gene models by extending the 3’ UTRs illustrated here by the two models for 
nkx2.3. scRNAseq reads are shown at the top in grey. The existing ensembl model is shown in dark blue. 
Notably, this model does not overlap with the majority of the scRNAseq reads. The ScISOr-Seq reads (in grey) 
are shown above the respective gene models (in red) that they generated. Colored lines on the ScISOr-Seq and 
scRNAseq reads indicate a different base pair in the read than the stickleback reference genome (BROAD S1, 
104.1 database version). These ScISOr-Seq gene models capture all of the scRNAseq reads. 
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from adult stickleback captured 11% fewer reads than our embryonic ScISOr-Seq annotation 99 

(Figure 2A and 2B; Supplemental file 1). These results are likely due to differential expression 100 

of transcripts between the adult and embryonic samples, highlight that even for species with 101 

previous Iso-Seq libraries additional sequencing may be needed for scRNAseq analysis in other 102 

developmental stages or tissue types.  103 

Since both our ScISOr-Seq and the bulk Iso-Seq gtf files improved scRNAseq reads 104 

retained, Because of the improvements with ScISOr-Seq and bulk Iso-Seq we pooled them to 105 

create a comprehensive annotation and also merged this pooled dataset with the Ensembl 106 

annotations. We retained all transcripts and united them under a single gene model for 107 

scRNAseq analysis (Supplemental file 4). This new annotation contained 6,992 genes unique to 108 

Ensembl, 15,464 genes in both datasets, and 5,206 genes unique to the pooled dataset (Figure 109 

2A). Although pooling and merging added 16 SMRT cells of Iso-Seq data as well as the full suite 110 

of Ensembl annotations, this effort only improved the proportion of reads retained by +0.8% 111 

beyond the annotation created by just our single ScISOr-Seq sample (Figure 2B; Supplemental 112 

file 1). Therefore, the gene models originating from ScISOr-Seq data alone could be used for 113 

scRNAseq analysis if a system lacks a prior annotation. 114 

 115 

ScISOr-Seq enhances biological interpretation of cell clusters 116 
 117 

Using the pooled (ScISOr-Seq and bulk Iso-Seq) annotation that was merged with 118 

Ensembl annotation, we proceeded with scRNAseq analysis (Supplemental file 5) to test 119 

whether biologically meaningful cell clusters would be created. We clustered cells by their 120 

transcriptional profiles into cell identities and analyzed the results with Seurat (Stuart et al. 121 
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2019). We identified 30 clusters of cells with 38 principal components (Figure 4A). We 122 

putatively annotated cell types via distinguishing sets of marker genes based on zebrafish 123 

literature (Farnsworth, Saunders, and Miller 2020; D. G. Howe et al. 2013; Wagner et al. 2018).  124 

Although zebrafish and stickleback diverged ~ 229.9 m.y.a. (K. L. Howe et al. 2021), we 125 

identified similar cell types as observed in existing zebrafish atlases for similar developmental 126 

stages as we analyzed in stickleback (Farnsworth, Saunders, and Miller 2020; Wagner et al. 127 

2018). Additionally, we compared the expression of sox9a and sox9b in our atlas to published 128 

descriptions of stickleback in situ expression at the same stage (Cresko et al. 2003). Supporting 129 

our cluster annotations, we observed expression of both SOX genes in roughly the same cell 130 

types as defined by in situ hybridization (Figure  S2A and S2B; Cresko et al. 2003). Despite our 131 

success using a single SMRT cell for ScISOr-Seq for isoform annotation, we would need to 132 

sequence additional SMRT cells to have enough data to correlate cell types and specific 133 

isoforms. 134 

Since the pooled and merged dataset has higher numbers of cells, genes per cell, and 135 

total genes detected than the Ensembl scRNAseq dataset (Figure 2B), assessing the degree to 136 

which pooled and merged gene models improved the scRNAseq analysis is complex. For 137 

instance, a higher overall expression of a gene in a cluster might be the result of different 138 

clustering patterns, more cells retained, and/or more reads counted. We compared the raw 139 

counts of specific genes, number of cells expressing these genes, and number of clusters where 140 

at least 10% of cells expressed them (Figure 4B). Since Cell Ranger provided a subset of these 141 

values on a global scale (Figure 2B), we chose to examine changes in gene counts, cell number, 142 

and number of clusters with a case study: the frizzled genes, a family of Wnt-pathway signaling 143 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.461747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461747


   
 

   
 

9 

molecules expressed in a wide range of tissues (Huang and Klein 2004; Wang et al. 2016). For all 144 

frizzled genes, we observed increases in raw counts and number of cells expressing them 145 

(Figure 4B). Some genes, however, exhibited dramatic increases (fzd1, fzd4, fzd2, and fzd8b) 146 

while others exhibited minor increases (fzd9b and fzd10). Comparing the gene models of fzd1 147 

and fzd9b, we determined which factors influenced expression detection. Importantly, fzd1’s 5’ 148 

and 3’ UTR expanded in the merged and pooled annotation, however only the 5’ end of fzd9b 149 

was extended (Figure 4C and 4D). Based on the read alignments (Figure 4C and 4D), fzd1’s 150 

increase in counted reads is solely due to the 3’ UTR changes, while fzd9b’a slight increase is 151 

 
 
Figure 4:  Using the updated gene models from our merged and pooled dataset, we identified expected cell 
types in 70hpf stickleback scRNAseq data and illustrated how annotations improvements are relevant for 
analysis. A) the clustering and cell identities of the scRNAseq data is illustrated on the UMAP. B) frizzled 
gene family expression compared between the ensembl annotation scRNAseq analysis and the pooled and 
merged analysis using total raw counts, number of cells expressing each gene, and the number of clusters 
where over 10% of cells are expressing each gene. C) fzd1 gene model is greatly extended in the pooled and 
merged annotation (purple) compared to the ensembl model (blue) which allows for much greater counting 
of reads (grey). D) fzd9b had minor changes in the pooled and merged model (purple), a longer 5’ UTR, in 
comparison with the ensembl annotation (blue) which led to minimal increases in reads (grey) counted. The 
scRNAseq read pileups in C and D have colored lines on base pairs that are different from the stickleback 
reference genome (BROAD S1, 104.1 database version). 
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due to the 5’ end extension. Cluster numbers also varied within the group. While fzd1, fzd4, 152 

fzd2, and fzd8b’s were expressed in more clusters, fzd9b and fzd10 were in one less cell class in 153 

the merged and pooled dataset than the Ensembl dataset. We hypothesize that two clusters 154 

(containing fzd9b and fzd10) were combined in the merged and pooled dataset relative to 155 

Ensembl. Overall, this gene family comparison illustrates the problem of using an annotation 156 

with missing 3’UTRs. If the Ensembl dataset’s fzd counts were accepted as their true qualitative 157 

and quantitative expression, flawed conclusions would have been made regarding the 158 

contributions of each gene in the family. 159 

 160 

SUMMARY: 161 

 Incomplete 3’UTR annotations can hinder single cell transcriptional profiling studies. In 162 

addition to reducing the overall number of genes included in an analysis, systematic differences 163 

in preliminary UTR annotations could lead to significant inferential errors. We illustrated in 164 

stickleback fish that a minimal ScISOr-Seq dataset, generated concurrently with scRNAseq data, 165 

was capable of dramatic improvements in retained read counts (+26.1%). Additionally, we 166 

showed that pooling reads from adult bulk Iso-Seq and merging with the existing Ensembl 167 

annotations improved reads retained negligibly beyond the models solely resulting from 168 

embryonic ScISOr-Seq (+0.8%) suggesting developmental stage of specimens is an important 169 

factor when improving annotations. Using the improved annotation for scRNAseq permitted 170 

identification of cell types and increased the observed expression of numerous genes. Overall, 171 

our work illustrates that ScISOr-Seq is a rapid and cost-effective method to annotate genomes 172 

of various organisms for scRNAseq and can improve efficacy of biological inferences. 173 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2021. ; https://doi.org/10.1101/2021.09.27.461747doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461747


   
 

   
 

11 

 174 

METHODS: 175 

Tissue Dissociation to Generate a Pool of Single Cells 176 

We crossed a laboratory line of stickleback originally isolated from Cushman Slough 177 

(Oregon) and raised embryos to 70 hours post fertilization (hpf) at 20°C using standard 178 

procedures from the Cresko Laboratory Stickleback Facility (Cresko et al. 2004). We euthanized 179 

36 embryos in MS-222 following IACUC approved procedures then dechorionated and deyolked 180 

them at room temperature. We limited our embryo dissection to 20 minutes based on Farrell et 181 

al. (2018). Following protocols from Bresciani, Broadbridge, and Liu (2018), we dissociated the 182 

cells for 6 minutes in 0.25% trypsin in PBS at 30°C, pipetting up and down every 30 seconds, 183 

then, stopped the dissociation using 10% FBS DMEM and spun down cells at 400xG for 3min at 184 

4°C. We resuspended cells in 1mL of 0.1% BSA PBS, centrifuged at 400xG for 3min at 4°C, and 185 

resuspended in 100ul 0.04% BSA in PBS. At room temperature, we filtered cells through a 40uM 186 

cell strainer (Thomas scientific 1181X52) then washed the original tube twice with 100ul of 187 

0.04% BSA in PBS and poured over the same cell strainer.  188 

 189 

Library Preparation 190 

The scRNAseq and ScISOr-Seq samples were prepared and sequenced by the University 191 

of Oregon Genomics and Cell Characterization core facility (https://gc3f.uoregon.edu). Samples 192 

were diluted to 800 cells/ul using 0.04% BSA in PBS to target 10,000 cells for the 10X Genomics 193 

Single Cell 3' Genome Expression (GEX) mRNA-Seq prep with v3.1 NextGem chemistry. The 194 

scRNAseq samples were then sequenced on 1/7th of a single S4 lane on a NovaSeq 6000 195 
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platform (Illumina). For the ScISOr-Seq library, 400ng of the amplified single cell cDNA as input 196 

for the SMRTbell Express Template Prep Kit 2.0 (P/N 100-938-900) without reamplification. 197 

Sample specific barcode (ATATAGCGCGCGTGTG) were added using the Barcoded Adapter Kit 198 

8B—OVERHANG (P/N 101-628-500). The ScISOr-Seq library was sequenced on a single SMRT 199 

Cell 8M on the PacBio Sequel II platform using the v4 primer, v2.1 polymerase, 1 hour binding, 200 

30-hour movie, and 2-hour pre-extension time at a loading concentration of 100pM.  201 

PacBio Data Processing 202 

The University of Oregon Genomics and Cell Characterization core facility 203 

(https://gc3f.uoregon.edu) generated “circular consensus” reads for our ScISOr-Seq dataset (ccs 204 

-j 39 --min-passes 3 --min-snr 2.5 --min-length 10 --max-length 50000 --min-rq 0.99; v6.6.0) and 205 

used lima (-j 39 –isoseq; v2.2.0) to remove a sample specific barcode (ATATAGCGCGCGTGTG) as 206 

a part of the PacBio SMRT Analysis software (Supplemental file 6). After barcode clipping, we 207 

used a custom ScISOr-Seq processing script (scISOr_Seq_processing.py) that removed the 208 

sample primers (3p: CTACACGACGCTCTTCCGATCT; 5p: 209 

CCCATGTACTCTGCGTTGATACCACTGCTT), removed and saved cell and UMI barcodes, removed 210 

poly(A) tails, then filtered out duplicated reads. This script outputs reads that had the expected 211 

presence and orientation of primers and polyA tails for downstream analysis. The script 212 

additionally outputs reads without the expected primers in a separate file; however, these 213 

other reads were not used for further analysis. 214 

We aligned reads to the stickleback genome (BROAD S1, 104.1 database version) using 215 

minimap2 (v2.7; parameters: -ax splice, -uf, -06,24, -B4; Li 2018) . We clustered for unique 216 

transcripts with collapse_isoforms_by_sam.py script (c=.99, i=.95; Tseng 2021) from cDNA 217 
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Cupcake (v27.0.0), classified transcripts with the sqanti3_qc.py script from SQANTI3 (v4.2), and 218 

refined transcripts with sqanti3_RulesFilter.py script (Tardaguila et al. 2018). We used the 219 

sqanti_classification.filtered_lite.gtf that resulted from the refining step (Supplemental file 2) to 220 

run Cell Ranger from 10x Genomics (v3.2.0) as described below. 221 

We downloaded the raw data from Naftaly, Pau, and White (2021) from NCBI. This adult 222 

Iso-Seq dataset contains gonad, pronephros, brain, and liver reads from both sexes, a total of 223 

16 SMRT cells.  We processed reads from this dataset with the following steps: we generated 224 

circular consensus reads with ccs (--min-rq=.9; v6.0.0), clipped barcodes listed in Naftaly, Pau, 225 

and White (2021) with lima (--isoseq –dump-clips; v2.2.0), removed polyA tails with isoseq3 226 

refine (--require-polyA; v3.4.0-0), and clustered reads with isoseq3 cluster (v3.4.0-0) from the 227 

PacBio SMRT Analysis software (Supplemental file 6). For the analysis with solely this data, we 228 

aligned reads to the stickleback genome (BROAD S1, 104.1 database version), collapsed 229 

transcripts with cDNA Cupcake (v28.0.0), and filtered and classified with SQANTI3 (v4.2) as 230 

done with the ScISOr-Seq data. Again, we used the sqanti_classification.filtered_lite.gtf from 231 

SQANTI3 (Supplemental file 3) to run Cell Ranger as described below. Due to reduced novel and 232 

increased annotated genes relative to Naftaly, Pau, and White (2021), we additionally tried 233 

using minimap2-2.15 with -ax splice -uf -C5 -secondary=no to match their parameters; however, 234 

we observed negligible changes. We propose that differences in our analyses arise from 235 

different earlier processing steps, different versions of stickleback gene models, and an updated 236 

version of SQANTI. 237 

 We pooled both sets of Iso-Seq reads and merged it with existing Ensembl annotations 238 

to create an improved version of the Ensembl annotations. Previously, we created a modified 239 
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version of the Ensembl annotations where we extended the 3’ UTRs (Supplemental files 7,8) for 240 

several marker genes (tbx16, sox10, sox32, and eya1) and fgf/fgfr genes (fgfr1a, fgfr1b, fgfrl1a, 241 

FGFRL1, fgfr2, fgfr3, fgfr4, fgf3, fgf4, fgf16, fgf17, fgf6, fgf6a, fgf8a, and fgf8b). Because we 242 

lacked ScISOr-Seq reads for fgf4, we used this modified gtf for the merging (Supplemental file 243 

8). We completed the processing of the ScISOr-Seq and bulk Iso-Seq data separately as 244 

described above then combined the files prior to alignment. We aligned the combined files with 245 

minimap2, collapsed transcripts with cDNA cupcake, and refined and classified isoforms with 246 

SQANTI3 as explained above.  247 

We merged the sqanti_classification.filtered_lite.gtf resulting from SQANTI3 with the 248 

Ensembl annotation using TAMA (Kuo et al. 2020). To prepare the gtf files for TAMA Merge, we 249 

converted them to bed files using bedparse gtf2bed (--extraFields gene_id). Then, modified the 250 

output with awk to rearrange the columns of the bed file such that the gene id was separated 251 

from the transcript id by a semicolon (awk -v OFS=’\t’ ‘{print $1,$2,$3, $13 “;” $4, $5, 252 

$6,$7,$8,$9,$10,$11,$12}’). We merged with TAMA’s script tama_merge.py (-s ensembl -cds 253 

ensembl -d merge_dup). We applied the ensembl gene names to genes with corresponding IDs 254 

using a custom script (tama_associating_ensembl_ids_with_genes.py). For our final gtf file, we 255 

converted the output bed file back to a gtf with TAMA’s 256 

tama_convert_bed_gtf_ensembl_no_cds.py (Supplemental file 4). We also generated a gtf file 257 

specifically for scRNAseq analysis where mitochondrial genes started with “MT” by 258 

transforming the bed file with a custom script 259 

(tama_associating_ensembl_ids_with_genes_for_scRNAseq.py) and then converting the output 260 

back to a gtf in the same fashion as above (Supplemental file 5). 261 
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 262 

scRNAseq analysis 263 

We quantified gene counts using 10x Genomics Cell Ranger v3.0.2 (Supplemental file 1). 264 

We generated a reference using mkgtf and mkref, retaining protein coding and non-protein 265 

coding genes, and then aligned and counted reads using the stickleback genome (BROAD S1, 266 

104.1). We analyzed the counts using the Seurat package (v3.2.3; Stuart et al. 2019) on R 267 

(v4.0.2). We retained all cells for the analysis. We normalized the counts using SCTransform and 268 

regressed out the mitochondrial genes using the glmGamPoi method (Hafemeister and Satija 269 

2019). Based on the inflection point in the elbow plot of the PCA results, we chose 38 270 

dimensions for generating the UMAP and identifying clusters. We identified cluster identities 271 

using three marker gene approaches.  272 

First, we searched for marker genes identified in Farnsworth et al. (2020) for specific cell 273 

types found in a similar developmental stage from zebrafish (24hpf in zebrafish). Next, we 274 

identified markers with Seurat’s FindAllMarkers searching for genes that were positively 275 

upregulated in each cluster compared to the other identities, in a minimum of 25% of cells, and 276 

a log fold change threshold of 0.25. Finally, we identified markers with Seurat’s FindMarkers 277 

searching for genes that were positively upregulated in each cluster versus all the other cells. 278 

For the second and third approaches, we searched for the homologous gene in zebrafish and 279 

used expression data from zfin to predict which cell types expressed the gene. To quantify 280 

frizzled gene counts, we used FetchData to isolate raw counts for each gene (fzd1, fzd4, fzd2, 281 

fzd8b, fzd9b, and fzd10) and the number of cells expressing the gene. To determine the number 282 

of cell clusters each frizzled gene was expressed in, we saved a dotplot, subsetted for clusters 283 
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where the percent of cells expressing the gene was greater than 10%, and then counted the 284 

number of clusters left for each gene. 285 
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Figure supplement 1: By comparing the median difference in starting or ending position between the ensembl 
annotations and pooled Iso-seq annotations, it shows that bulk Iso-Seq and ScISOr-Seq reads overall lead to earlier 
starting positions (median=-62, A) and extended ending positions (median=62, B). We plotted this on a pseudo log 
scale to account for the negative values. 
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  316 

 
 

 
Figure supplement 2: Expression patterns of sox9a and sox9b recapitulate expression seen in Cresko et al. 2003. 
The two paralogs are plotted on separate Dot plots due to an order of magnitude difference in expression. A) as 
observed in Cresko et al. 2003, sox9a is expressed in the pharyngeal arches, mesenchyme, and endoderm as 
well as the somites; however, we did not observe any sox9a expression in the forebrain. B) We found sox9b 
expression in the pharyngeal arches, retina, somites, hindbrain, and midbrain similar to Cresko et al. 2003, 
though our dataset lacked forebrain sox9b. 
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Supplementary file captions 317 

 318 

Supplementalfile1_CellRangerOutputInformation.xlsx: A table containing detailed Cell Ranger 319 
results for each annotation that was used. 320 

Supplementalfile2_Annotation1_scISOrSeq.gtf: The genome annotations that originated from 321 
the scISOrSeq sequencing reads and was produced from SQANTI3.  322 

Supplementalfile3_Annotation2_Bulk_Iso_Seq.gtf: The genome annotations that originated 323 
from the bulk Iso-Seq sequencing reads from Naftaly et al. (2021) and was produced from 324 
SQANTI3.  325 

Supplementalfile4_Annotation3_Pooled_Iso_Seqs_merged_with_ensembl.gtf: The genome 326 
annotations from ensembl (BROAD S1, 104.1) merged with the gtf file produced by SQANTI3’s 327 
file that originated from the bulk Iso-Seq and scISOrSeq data.  328 

Supplementalfile5_Annotation4_Pooled_Iso_Seqs_merged_with_ensembl_for_cellranger.gtf: 329 
The genome annotations from ensembl (BROAD S1, 104.1) merged with the gtf file produced by 330 
SQANTI3’s file that originated from the bulk Iso-Seq and scISOrSeq data. The file is the same as 331 
the annotation 4 file with the exception of mitochondrial genes which have gene names that 332 
start with MT. 333 

Supplementalfile6_IsoSeq_Processing_Data.xlsx: The processing information (reads retained 334 
and lost at each step) for the Bulk Iso-seq and ScISOr-Seq datasets. 335 

Supplementalfile7_EnsemblModified_manual_changes.xlsx: The 3’ UTR modifications made to 336 
the ensembl genome for select marker genes and fgf/fgfr genes. 337 

Supplementalfile8_Annotation5_ensembl_modified.gtf: The genome annotations from 338 
ensembl (BROAD S1, 104.1) with 3’ UTRs extended in select marker genes and fgf/fgfr genes as 339 
described in EnsemblModified_manual_changes.xlsx. 340 
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