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Abstract  
To understand how cortical circuits generate complex behavior, it is crucial to investigate the cell 
types that comprise them. Functional differences across pyramidal neuron (PyN) types have been 
observed in sensory and frontal cortex, but it is not known whether these differences are the rule 
across all cortical areas or if different PyN types mostly follow the same cortex-wide dynamics. 
We used genetic and retrograde labeling to target pyramidal tract (PT), intratelencephalic (IT) 
and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type 
drove unique neural dynamics at a cortex-wide and within-area scale. Cortical activity and 
optogenetic inactivation during an auditory discrimination task also revealed distinct functional 
roles: all PyNs in parietal cortex were recruited during sensory stimulation but, surprisingly, PT 
neurons were most important for perception. In frontal cortex, all PyNs were required for 
accurate choices but showed distinct choice-tuning. Our results reveal that rich, cell-type-specific 
cortical dynamics shape perceptual decisions. 

Introduction 
The neocortex is organized into discrete layers that form a vertically-arranged microcircuit motif. 
This core circuit is largely conserved across cortical areas with each layer consisting of distinct 
excitatory and inhibitory cell types that can be categorized based on genetic markers, cell 
morphology, anatomical projections or developmental lineage1. The precise interplay between 
these cell types is crucial for accurate cortical circuit function and their respective functional 
roles are the subject of intense study. Tremendous progress has been made particularly for 
cortical interneurons, where the availability of specific mouse driver lines has revealed the 
functional arrangement of inhibitory circuit motifs2–4, e.g. for network synchronization5–7 and 
state-dependent sensory processing8–11. However, the roles of glutamatergic pyramidal neuron 
(PyN) types are less well established, although PyNs comprise ~80% all cortical neurons and 
form almost all long-range projections that enable the communication between local cortical 
circuits and other brain areas. 

While PyNs are still often treated as a monolithic group, PyN types appear to be far more diverse 
than interneurons with at least one hundred putative types indicated by RNA sequencing12. These 
molecular signatures are critical for categorizing PyNs and go far beyond layer identity because 
different PyN types are often intermingled within layers13–17. PyNs can also be classified based 
on their projection target. Long-range projection neurons are broadly categorized into two major 
types: intratelencephalic (IT) neurons, projecting to other cortical structures and the striatum, and 
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pyramidal tract (PT) neurons, projecting to subcortical structures, such as the superior colliculus 
(SC), thalamus, the pons and the striatum. Aside from long-range projection targets, PT and IT 
neurons also differ in their electrophysiological properties, dendritic morphology and local 
connectivity, and differentially respond to sensory stimulation15–17. Recent studies in sensory 
cortex also showed that only PT but not IT neurons are important for active perception of tactile 
or visual stimuli, suggesting that PT and IT neurons encode separate streams of information18,19. 
Similar results have been found in secondary motor cortex (M2), where specific PT neurons are 
involved in motor generation13,20. This suggests that the functional divergence of PyN types 
could be key for understanding cortical microcircuits, with PT and IT neurons forming 
functionally-distinct, parallel subnetworks that independently process different information. 
However, the functional tuning of individual PyNs in frontal cortex is still best predicted by 
cortical area location instead of laminar location or projection type21. Since PyN type function 
has only been studied in single areas, it is therefore not known whether PyN-specific subcircuits 
are the rule throughout the cortex or restricted to a subset of cortical regions. 

An ideal method to address this question is widefield calcium imaging, which allows measuring 
neural activity across the dorsal cortex with cell-type specificity22–24. Indeed, interneuron-
specific widefield imaging has already revealed clear differences in the spatiotemporal dynamics 
of different inhibitory cell types during an odor detection task25. However, cortex-wide studies of 
different PyN types are lacking, in part due to the limited availability of PyN-specific driver 
lines26–28. Here, we used two novel knock-in mouse driver lines for PT and IT neurons26 and 
performed widefield imaging to measure PyN-type-specific activity while animals performed a 
perceptual decision-making task. Moreover, we developed a retrograde labeling approach to 
selectively measure the activity of corticostriatal projection (CStr) neurons throughout the dorsal 
cortex. Dimensionality-reduction and clustering analyses revealed that cortex-wide dynamics 
were clearly distinct for each PyN type, suggesting the existence of specialized subcircuits. 
Cortical dynamics of different PyNs were further segregated based on their role in decision-
making, with encoder and decoder approaches revealing the strongest stimulus- and choice-
related modulation in sensory, parietal and frontal cortices. This was confirmed by PyN-type-
specific inactivation experiments. In parietal cortex, PT neurons were most important for sensory 
processing while all PyN types in frontal cortex were needed for choice formation and retention. 
Taken together, our results demonstrate that different PyN-types exhibit functionally distinct, 
cortex-wide neural dynamics with separate roles during perceptual decision-making. 

Results 
To monitor PyN-type specific neural activity throughout the dorsal cortex, we used two knock-in 
inducible CreER lines that target developmentally-distinct classes of excitatory cortical neurons: 
Fezf2-CreER targeting PT neurons and PlexinD1-CreER targeting IT neurons26. For PyN-type 
specific GCaMP6s expression, both lines were crossed with the Ai162 reporter line29 and CreER 
activity was induced at four weeks of age. In each mouse line, GCaMP expression was restricted 
to specific cortical layers and PyN types (Fig 1a,b). In Fezf2 mice, expression was concentrated 
in layer 5b (Fig. 1a). We observed axonal projections to multiple subcortical regions, such as 
striatum and the corticospinal tract, confirming that Fezf2 is a reliable marker for corticofugal PT 
neurons. In PlexinD1 mice, GCaMP expression was restricted to layer 2/3 and layer 5a and 
axonal projections were visible in the corpus callosum and the striatum (Fig. 1b). These results 
are in agreement with earlier reports26, confirming that PlexinD1 is a reliable marker for 
intracortical and corticostriatal IT neurons. 

After confirming non-overlapping expression patterns of PT and IT neurons, we measured cell-
type specific cortical activity with widefield calcium imaging. All imaging data was aligned to 
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the Allen Common Coordinate Framework v3 (CCF)25,30 to compare activity across individuals 
and PyN types. Both lines yielded robust GCaMP-dependent fluorescence and we observed rich 
neural dynamics throughout the dorsal cortex (Supp. Movies 1-3). We first used retinotopic 
mapping to assess sensory responses of different cell types and the resulting spatial arrangement 
of visual areas. Both PT and IT neurons robustly responded to visual stimulation and we could 
construct retinotopic maps that reliably indicated the location of known visual areas (Fig. 1c)31. 
Retinotopic maps were similar to those observed in an Emx-Cre-Ai93 mouse line (EMX) that 
expressed GCamp6f in all excitatory cortical neurons32, suggesting that the functional 
architecture of visual areas is comparable across PyN types. However, clear differences were 
apparent in the modulation of cortical regions in the absence of visual stimulation. For example, 
the total variance of cortex-wide activity was largest in parietal and frontal regions in PT neurons 
(Fig. 1d, left) while variance was highest in visual and somatosensory regions of IT neurons (Fig. 
1d, center). This was comparable to variance in EMX mice, which showed additional modulation 
in retrosplenial (RS) cortex (Fig. 1d, right). These different patterns were also highly consistent 
across individual mice (Supp. Fig. 1). 

 

Figure 1. Knock-in mouse lines allow a PyN-type-specific view of cortex-wide neural activity. 
a) GCaMP6s-expression in Fezf2-CreER-Ai162 mice was widespread throughout the dorsal cortex, and largely 
confined to deeper layer 5b. Axonal projections were found in multiple subcortical targets, such as the striatum, and 
the corticospinal tract. Scale bars are 100 µm. b) GCaMP6s-expression in PlexinD1-CreER-Ai162 mice was 
widespread throughout the cortex and restricted to superficial layers 2/3 and layer 5a. Subcortical axonal projections 
were found in striatum and corpus callosum but not the corticospinal tract. c) Visual sign maps from retinotopic 
mapping experiments. Both PyN types showed clear retinotopic responses in primary and secondary visual areas. 
Area outlines largely resembled known area outlines that were also observed in nonspecific EMX mice. d) Total 
variance maps, showing most modulated cortical regions in each PyN type. 

The observed differences in variance could indicate general differences in the spatiotemporal 
dynamics of cortex-wide activity across PyN types. To better capture such differences in cortex-
wide activity, we performed semi-nonnegative matrix factorization (sNMF). This analysis 
captures the majority (at least 99%) of the variance by reducing the imaging data to a small 
number of spatial- and temporal components23,33. Here, two factors could point to PyN-specific 
differences in cortex-wide activity: the number of required components, capturing the overall 
complexity of cortical dynamics in each PyN type, and the pattern of the recovered spatial 
components, capturing the correlation structure between cortical areas. 
 
The number of components was similar for EMX and IT mice but far fewer components were 
needed for PT mice (Fig. 2a), suggesting that PT dynamics are less diverse than other PyN types. 
Correspondingly, PT neurons were also the most correlated across cortical regions (Supp. Fig. 
2). We then compared the patterns of spatial components from each PyN type. Because spatial 
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sNMF components are strictly positive, each component can be seen as a map of positively 
correlated cortical areas and we wondered whether these cortex-wide correlation patterns would 
differ between PyN types. We therefore performed a UMAP projection of the first 20 
components from all recordings and PyN types, non-linearly embedding the pixels of each 
component in a 2-dimensional space (Fig. 2b)34. If neural activity in PT, IT and EMX mice 
tended to exhibit similar correlation patterns, these spatial components would be mixed together. 
Instead, we found that components formed clusters that were largely dominated by either PT or 
IT neurons (green/blue dots). EMX neurons formed a third set of non-overlapping clusters, likely 
reflecting the combined cortical dynamics from the diverse PyN types in this larger group (red 
dots). A simple classifier could reliably identify each group with high accuracy based on the 
nearest UMAP neighbors from other animals, even when the classification was based on just a 
single spatial component (Fig. 2c). These results clearly demonstrate that PyN types differ in the 
complexity of cortical dynamics and also exhibit largely unique cortex-wide correlation patterns. 

A potential reason why cortex-wide correlation patterns are unique to each PyN type is that each 
type could show particularly distinct activity in specific cortical areas. This could lead to 
correlation patterns that are either dominated by highly active areas or where inactive areas are 
‘missing’. In this case, the relatively low dimensionality of PT neurons might also be due to a 
lower number of active cortical areas. We therefore used a localized form of sNMF 
(LocaNMF)33 which obtains spatial components that are dense and spatially restricted to a 
specific cortical “seed” region. This results in more interpretable spatial components which 
resemble functionally-defined cortical areas (Fig. 2d). We then isolated these localized activity 
patterns for each cell-type and again compared the number of components required to explain at 
least 99% of the variance. As expected, the required number of components was higher than with 
sNMF and, interestingly, was also more comparable across cell-types (Fig. 2e). This shows that 
cell-type specific differences in cortex-wide correlation patterns are not due to a lack of activity 
in some cortical areas (which would have resulted in a lower number of required components, 
e.g. in PT mice) but PyN-type specific differences in the coordinated activation of multi-area 
cortical networks. 
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Figure 2. PyN types exhibit unique cortical activity patterns. 
a) Number of sNMF components, accounting for 99% of cortical variance in each PyN type. Violin plots show 
individual mice in each group, dots represent individual sessions. b) UMAP embedding of spatial sNMF 
components for EMX (red), IT (green) and PT (blue) mice. Maps show example spatial components of each type, 
black dots show their respective UMAP locations. c) Accuracy of a PyN type classifier, based on neighbor identity 
of individual components in UMAP space. Each data point represents one session. d) Top left: Map of seed regions, 
used for LocaNMF analysis. Example spatial components (C1-C3) are compact and mostly confined to each seed 
region. e) Number of LocaNMF components, accounting for 99% of cortical variance in each PyN type. 
Conventions as in (a). f) UMAP projection embedding of spatial LocaNMF components. Conventions as in (b). Left: 
UMAP shows clustering of LocaNMF components from similar regions. Right: Components within individual 
regions are further divided for different PyN types. Black dots show UMAP location of example components, shown 
in (h). g) Accuracy of a PyN type classifier, based on individual LocaNMF components. Conventions as in (c). h) 
Left: Peak normalized distributions of area size for PyN-type-specific (blue) versus unspecific (red) LocaNMF 
components. Specific components are smaller than unspecific components (specific: median = 0.49 mm2, n = 4370 
components, unspecific: median = 0.6mm2, n = 10978 components; ranksum test: p < 10-10). Right: Examples of 
specific (I, II) and unspecific (III) components in right parietal cortex.  

Repeating the UMAP embedding on these local components also uncovered PyN-type-specific 
clustering (Fig. 2f), which could be used to accurately identify each PyN type (Fig. 2g). This 
could either be due to the presence of specific ‘subregions’, where PyN types are most active in 
smaller parts of a given cortical area, or larger ‘superregions’, where the activity of a specific 
PyN type extends across known area borders. We therefore compared the size of PyN-type-
specific versus nonspecific components. Interestingly, specific clusters were significantly smaller 
as unspecific clusters (Fig. 2h), suggesting that different PyNs might be most active in distinct 
subregions instead of larger multi-area components. This indicates that smaller, PyN-specific 
subregions may reside within the coarser, traditionally-defined cortical areas. 

We next sought to determine how cortical dynamics of different PyN types are related to 
decision-making. We therefore examined task-related activity for each PyN type in an auditory 
decision-making task (Fig. 3a)35. Mice initiated trials by touching small handles, which triggered 
the simultaneous presentation of sequences of clicking sounds to their left and right side. After a 
delay period, mice reported their decision by licking one of two water spouts and were rewarded 
for choosing the side where more clicks were presented. To reduce temporal correlations 
between task events, such as trial initiation and stimulus onset, the duration of the initiation, 
stimulus and delay periods were randomly varied across trials. In all mice, decisions varied 
systematically with stimulus strength (Fig. 3b) and were equally affected by click sounds 
throughout the stimulus period (Supp. Fig. 3). 
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Figure 3. An auditory decision-making task reveals distinct functional activity patterns in each PyN type. 
a) Single-trial schematic of the auditory discrimination task. Mice touched handles to initiate randomized click 
sequences on the left and right side. After a delay period, a lick response on the correct side was rewarded with 
water. The episode duration was randomly varied in individual trials. b) Psychometric functions fit to behavioral 
data from the discrimination task in (a) of individual EMX (red), IT (green) and PT (blue) mice. c) Trial-averaged 
response maps for all correct, leftward trials in different PyN types. Shown are averages for the ‘Initiation’, 
‘Stimulus’, ‘Delay’ and ‘Response’ periods shown in (a). d) Averaged activity in auditory (left) and frontal cortex 
(right) for each PyN type. Averages were separately aligned to each of the four trial periods, indicated by short gaps. 
Left dashed line: time of initiation, the gray box: stimulus presentation, right dashed line: the animal’s response. 
Traces show standard deviation units (SDU). White dashed circles in (c) show respective area locations. Colors as in 
(b). Shading shows s.e.m.; n = 4 EMX/IT mice and 5 PT mice. 

In all PyNs, we observed broad recruitment of cortical structures, especially in parietal and 
frontal regions, with the highest activity during the response period (Fig. 3c). A clear difference 
between PyN types occurred during the stimulus period. Here, cortical activity was uniformly 
suppressed in EMX mice, partially suppressed in IT mice, and uniformly increased in PT mice 
(Fig. 3d). During all periods, most activity in all three cell types was largely symmetric across 
the left and right hemispheres, even when only analyzing trials where stimuli were presented on 
the left side and the animal made a corresponding leftward choice (Fig. 3c,d). Moreover, 
responses to sensory stimuli were much weaker than to movement-related events, such as trial 
initiation or the response (Fig. 3d, gray bar versus dashed lines). A potential explanation is that 
lateralized, task-related activity is obscured by cortical activity due to animal movements32,36–38.  
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To isolate task-related activity from movements we used a linear encoding model that we 
recently developed32. The model predicts single-trial fluctuations in cortical activity by 
combining task variables, such as stimulus and choice, with movement variables, such as handle 
touch and licking. All variables are combined into a single design matrix; we used ridge 
regression to fit the model to the imaging data. We then computed the tenfold cross-validated R2 
(cvR2), to assess how well the model captured cortical activity. For all PyN types, the model 
successfully captured a large fraction of single-trial variance throughout the cortex (Fig. 4a). 
Predicted variance was higher in IT and PT mice compared to EMX mice, with over 90% 
explained variance in frontal cortex of PT mice. Consistent with earlier results, a large fraction of 
the model’s predictive power was explained by movements, which consistently captured more 
variance than task variables (Fig. 4b). To isolate the unique contributions of movement or task 
variables, we also computed the loss in predicted variance (ΔR2) when removing either set of 
variables from the full model. This allowed us to separately examine their respective impact on 
cortex-wide activity by determining, for each PyN type, where in the cortex predictive power 
was lost (Fig. 4c). For movements, we observed a comparable pattern across PyN types with the 
highest unique contributions in primary somatosensory and motor areas (Fig. 4c, top row). In 
contrast, the overall pattern for task variables differed across PyN types: ΔR2 was highest in 
frontal cortex of EMX and PT mice, but more diffuse in IT mice with the highest ΔR2 in auditory 
cortex (Fig. 4c, bottom row). Examination of specific task variables further suggested distinct 
roles for each PyN type (Fig. 4d). Here, the ‘choice’ variable had the highest contributions in PT 
neurons but was overall weaker in IT neurons. Conversely, contributions from other task 
variables were higher in IT neurons. This dichotomy was not observed in EMX neurons, 
indicating that IT and PT neurons might have different functional roles that cannot be resolved 
without PyN-type specific measurements. 

 
Figure 4. An encoding model uncovers task-specific differences across PyN types. 
a) Average maps of cvR2 for different PyN types. The model accurately predicted cortical variance for all PyNs. b) 
cvR2 from two models, using only movement (‘Movement’) or task variables (‘Task’). In all groups, movements 
were more predictive than task variables and accounted for the majority of the full models explained variance 
(dashed lines). Circles denote sessions. c) Average maps of ΔR2 for different PyN types. Top row shows ΔR2 for 
movements, the bottom ΔR2 for task variables. Colors are scaled differently in each row. d) ΔR2 for different task 
variables and PyN types, averaged over all pixels. Rows show individual mice. 

To gain insight into the cortical dynamics related to stimulus and choice, we examined the event 
kernels learned by the model for each PyN type (see methods). Each event kernel represents the 
isolated time-resolved cortical response to a different task variable that is corrected for 
potentially confounding factors, such as movements, since those are captured by other model 
variables. First, we focused on responses to the auditory stimulus. In contrast to raw trial 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461599
http://creativecommons.org/licenses/by-nc/4.0/


 8 

averages (Fig. 3c), the stimulus kernels in EMX mice revealed clear sensory-locked responses in 
auditory, parietal and frontal cortex (Fig. 5a, top). Other areas, such as somatosensory and visual 
cortex, were inhibited. Sensory-locked responses were also present in sensory, parietal and 
frontal cortex of PT and IT mice (Fig. 5a, center and bottom). However, the cortex-wide 
response patterns were not identical, for instance, no inhibition was apparent in PT mice. 
Sensory responses were particularly distinct in parietal cortex. Responses in EMX and IT mice 
were more anterolateral in parietal area A while PT responses were surprisingly prominent and 
more posteromedial at the border between area AM and RS (Fig. 5a,b). 

 
Figure 5. PyN-specific differences are evident in the location and specificity of cortical stimulus responses. 
a) Left: Response kernels for contralateral stimuli over all EMX (red), IT (green), and PT mice (blue), averaged 
between 0 and 200 ms. Right: Stimulus-evoked activity in auditory (blue), parietal (red), and frontal cortex (yellow). 
Dashed circles in the left stimulus maps show locations of respective cortical areas. b) Magnified view on parietal 
regions of the stimulus maps in (a). PyNs differed in the location of sensory responses. Arrows show location of 
parietal areas A, AM and the RS. c) Side-specific stimulus responses, computed as the difference between contra- 
and ipsilateral stimulus kernels. Conventions as in (a). d) Magnified view on parietal regions of side-specific maps 
in (c). IT neurons show clear, side-specific responses that were weaker in EMX and absent for PT neurons. 

We found additional differences across PyN types in the spatial specificity of sensory responses. 
That is, how selectively cortical areas in each hemisphere responded to a stimulus on the contra- 
but not the ipsilateral side. To assess such side-specificity, we computed the difference between 
the contra- and ipsilateral stimulus kernels (Fig. 5c, colors indicate regions for which responses 
differed for contra- versus ipsilateral stimulus kernels). In EMX mice, we found side-specific 
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responses in auditory, frontal, and to a lesser extent, parietal cortex (Fig. 5c,d). IT mice showed 
side-specific responses in auditory and parietal but not frontal cortex. In contrast, PT mice 
showed clear side-specific responses in auditory and frontal but not in parietal cortex. PT and IT 
neurons therefore not only differ in the cortical location of sensory responses but also in the 
degree of side-specificity in parietal and frontal cortex. 

Having identified PyN-type dependent activity for sensory stimuli, we then examined choice-
dependent activity and again observed differences across PyN types. In EMX mice, a number of 
regions showed choice-related activity, particularly in the frontal cortex, while sensory and 
parietal regions were only weakly modulated (Fig. 6a). We also found choice signals in 
somatosensory areas of the whiskers and nose that slowly increased over the course of the trial, 
even before the stimulus onset (Supp. Fig. 4a). In contrast, choice-specific activity in frontal 
cortex strongly increased after stimulus onset and remained elevated as the decision progressed 
from sampling the stimulus to the subsequent delay period (Fig. 6a, yellow trace). We found 
equally prominent choice signals in frontal cortex of PT mice while very little modulation was 
seen in IT mice (Fig. 6b, Supp. Fig. 4b,c). In EMX and PT mice, positive signals for contralateral 
choices were concentrated in the medial part of secondary motor cortex (M2) while parts of the 
primary motor cortex (M1) were inhibited. This could indicate accumulation of sensory evidence 
and motor preparation in M2 while inhibiting parts of M1 to prevent early lick responses39. 

Although the choice kernels revealed differences between PyN types, choice-related activity only 
accounted for a small amount of the total neural variance (Fig. 4). Since the encoding model is 
designed to capture as much variance as possible, we wondered if this approach might miss 
subtle choice signals that are specific but low in magnitude. The encoding model’s ridge penalty 
also enforces choice-related variance to be distributed over all correlated model variables, which 
could ‘diffuse’ weaker choice-related activity from the choice to other model kernels. 

To selectively isolate all choice-related activity, we therefore built a decoding model, using a 
logistic regression choice classifier with L1 penalty (see Methods). In contrast to the encoding 
model, this decoder approach isolates the cortical signals that are best suited to predict the 
animal’s choices, regardless of their magnitude. 
For all PyN types, the decoder predicted the animal’s choices with high accuracy, confirming 
that cortical activity reliably reflects trial-by-trial choices (Supp. Fig. 5a). When analyzing the 
decoder weights, we found comparable patterns to the encoding model’s choice kernels but with 
much clearer separation of cortical areas (compare top row ‘Delay’ in Fig. 6c to Fig. 6a, left). 
For all PyN types, the decoder weights identified choice signals in multiple areas of the anterior 
cortex that evolved during decisions (Fig. 6c). In EMX and PT mice (top and bottom rows), large 
parts of M2 were again highly choice predictive, including the anterior lateral motor cortex 
(ALM) and the medial motor cortex (MM). M2 choice weights strongly increased immediately 
after stimulus onset and remained elevated during the subsequent delay period (Fig. 6c,d). 
Surprisingly, we also found a mild suppression of M2 in IT mice. This choice-related inhibition 
evolved more slowly during the stimulus and delay period (Fig. 6c,d) and was more spatially 
restricted to ALM (Fig. 6e). In somatosensory cortex, choice signals were again visible 
throughout the trial (Supp. Fig. 5b) while no clear modulation was seen in parietal cortex (Fig. 
6d, left). This is in line with our previous results and suggests that parietal areas are more 
involved in sensory processing instead of choice formation or motor execution40,41. 
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Figure 6. The temporal dynamics of choice-related activity differ across PyN types. 
a) Left: Averaged choice kernels for EMX mice during the delay period. Positive weights indicate increased activity 
for contralateral choices, negative weights indicate choice-related reduction in activity. Right: Choice-related 
activity in auditory (blue), parietal (red), and frontal cortex (yellow). Traces are re-aligned to the initiation, stimulus, 
delay and response periods, indicated by gaps in weight traces. b) Zoomed-in map for frontal choice kernels of 
EMX, IT and PT mice during the delay period. c) Cortical maps of contralateral choice weights for different trial 
episodes. Several areas in anterior cortex showed clear choice signals. d) Baseline-corrected decoder weights in 
parietal (left) and frontal cortex (right) throughout the trial. Conventions as in (a). Dashed circles in the delay maps 
of (c) show the parietal and frontal locations that were used to compute the traces. e) Zoomed-in map for frontal 
decoder weights of EMX, IT and PT mice during the delay period. Dashed circle shows location of ALM. 

The decoding model recovered more finely structured choice maps than the encoding model, 
especially in frontal cortex (compare Fig. 6e to 6b), revealing strong choice-selective activation 
of PT neurons and inhibition of IT neurons. The choice-specific suppression of IT neurons was 
unexpected and we wondered if this was due to the modulation of superficial intracortical 
projections or, instead, the deeper corticostriatal projecting IT neurons. Earlier work suggested a 
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lack of choice selectivity in intracortical projection neurons20,21, and we thus hypothesized that 
our results in IT mice were due to corticostriatial (CStr) projecting IT neurons. To address this 
directly, we developed an intersectional approach that exclusively labels the majority of CStr 
neurons. This was achieved by performing multiple, bilateral injections of a retrograde CAV2-
Cre virus in the striatum of Ai162 reporter mice (Fig. 7a), inducing wide-spread expression of 
GCaMP6s in CStr neurons throughout the cortex (Fig. 7b). As expected, GCaMP6 expression in 
CStr neurons was largely confined to layer 5 with some sparse expression in deeper layers. 
We then used widefield calcium imaging to selectively measure activity from CStr neurons. As 
with the PT and IT mice, we obtained robust fluorescence signals throughout the dorsal cortex 
(Supp. Movie 4) and could identify visual areas using retinotopic mapping (Supp. Fig. 6a). 
sNMF analysis showed that the dimensionality of CStr mice was intermediate between PT and 
IT mice, and that the spatial components did not strongly overlap with other PyN types (Supp. 
Fig. 6b,c). This clear difference between IT and CStr mice strongly suggests that imaging signals 
from IT mice are not solely dominated by deeper IT-positive CStr neurons but represent a 
combination of superficial intracortical and deeper CStr neurons. 

 

Figure 7. An intersectional approach to measure cortex-wide activity of CStr neurons. 
a) Schematic of the retrograde labeling approach. Multiple bilateral injections of retrograde CAV2-Cre virus in 
Ai162 mice robustly induced expression of GCaMP6s in CStr neurons. b)  GCaMP6s-expression was robust 
throughout the dorsal cortex, and largely confined to layer 5a. Scale bars are 100 µm. c) Cortical dynamics of CStr 
neurons in the auditory discrimination task. Shown are trial-averages over all correct, leftward trials in different trial 
episodes. No clear lateralization was observed in trial averages. d) Averaged activity in auditory (left) and frontal 
cortex (right) for CStr (orange) and IT (gray) mice. Dashed lines show times of initiation and response periods, gray 
areas the stimulus period. Traces show standard deviation units (SDU). e) Left: Contralateral stimulus kernel 
(“weight map”), averaged over all CStr mice, between 0 and 200 ms after stimulus onset. Right: Colored traces 
show changes in sensory (blue), parietal (red) and frontal cortex (yellow). Locations for each area are indicated by 
dashed circles in the weight map. f) Top: Weight map from (e), zoomed in on parietal cortex. Bottom: Difference of 
contra- versus ipsilateral stimulus kernels. g) Left: Cortical weight map from choice decoder during the delay 
period, averaged over all CStr mice.  Right: Baseline-corrected decoder weights in parietal (left) and frontal cortex 
(right) for CStr (orange) and IT mice (gray). Traces are re-aligned to the initiation, stimulus, delay and response 
periods, indicated by gaps in weight traces. h) Weight map from (g), zoomed in on frontal cortex. 

We then trained CStr mice in the auditory discrimination task. Trial-averaged dynamics partially 
resembled IT mice, for example in frontal cortex, but also showed clear differences, such as a 
lack of pre-stimulus suppression in sensory cortex (Fig. 7c,d; orange versus gray traces). 
Differences between CStr and IT mice were also visible in the stimulus kernels from the 
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encoding model. In CStr mice, stimulus-related activity in parietal cortex was stronger than in 
sensory and frontal cortex but the activated parietal regions were more medial than in IT mice 
(Fig. 7e). Interestingly, these stimulus-driven parietal regions (Fig. 7f, left) closely resembled 
cortical areas that form anatomical and functional connections to the dorsomedial striatum42,43. 
As with PT neurons (Fig. 5b,d), parietal CStr responses equally responded to contra- and 
ipsilateral stimulation (Fig. 7f, bottom). 

To determine whether choice-related inhibition in frontal cortex of IT mice arises from CStr 
neurons, we then repeated the choice decoder analysis. The decoder predicted animals’ choices 
with similarly high accuracy as for PT and IT mice (Supp. Fig. 6d). We then extracted choice 
weights for each task episode. Here, CStr activity was overall similar to that of IT mice, with 
even stronger inhibition in frontal cortex that started after stimulus onset and lasted throughout 
the delay and response period (Fig. 7g, right). As in IT mice, choice-specific inhibition was 
prominent in area ALM but did not extend to MM. Choice-specific inhibition thus occurs 
specifically in CStr neurons in ALM and likely explains similar results in IT mice. 

The observed differences between PyN types suggest that these types may drive distinct aspects 
of decision-making. To causally test the functional role of different PyN types, we performed 
PyN-specific optogenetic inactivation. We induced Cre-dependent expression of the inhibitory 
opsin stGtACR244 by injecting an adeno-associated virus (AAV) in the parietal and frontal 
cortex of Fezf2-, PlexinD1-, or EMX-Cre mice (Fig. 8a). To express stGtACR2 in CStr neurons 
of wildtype mice, we combined cortical AAV injections with multiple CAV2-Cre injections in 
the striatum (Fig. 8b). Locations of parietal and frontal injections were based on our earlier 
stimulus and choice analyses (Fig. 5a, 6a; dashed circles). We placed glass fiber implants (ø = 
0.4mm) over each area to illuminate the cortical surface with blue light (λ = 470 nm, Irradiance = 
40mW/mm2). To test whether optogenetic effects are area-specific, we also targeted the primary 
visual cortex (V1) in a subset of EMX mice. To simplify the behavioral task during the 
optogenetic inactivation experiments, we only presented auditory stimuli on one side in each trial 
and kept the duration of the stimulus and delay periods constant (1 and 0.5 seconds, 
respectively). 

Bilateral optogenetic inactivation of either parietal or frontal cortex of EMX mice strongly 
impaired auditory task performance (Fig. 8c). Performance was unaffected by V1 inactivation, 
demonstrating that parietal and frontal cortex are selectively required for auditory decisions. We 
then illuminated each area for 0.5 seconds during four different task episodes: Early and late 
stimulus (the first and last 0.5 seconds of the stimulus period), delay and response (Fig. 8d). In 
agreement with our observation that parietal cortex reflects stimulus driven activity (Fig. 5a, red 
traces), parietal inactivation strongly reduced animal’s performance, particularly during the early 
stimulus period (Fig. 8e). Behavioral impairments (computed as the normalized difference 
between performance in non-optogenetic trials and chance) were weaker during the subsequent 
task periods, indicating that parietal cortex is most important for early processing of auditory 
stimuli. As expected, impairments were strongest in EMX mice where all PyNs were affected 
(gray trace). Surprisingly, however, only inactivating PT neurons resulted in a robust 
impairment, while behavioral effects were much weaker for IT or CStr neurons (blue versus 
green/orange traces). This suggests that the subcortical PT projection pathways in the parietal 
cortex have a larger causal impact on sensory processing than intracortical IT or CStr 
projections, pointing to a role for PT neurons that extends beyond preparation and execution of 
movements. 

In frontal cortex, inactivation strongly impaired task performance in EMX mice, especially 
during the delay period, consistent with a role for frontal cortex in sensory integration and 
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working memory (Fig. 8f, gray trace)20,41,45. IT and CStr inactivation resulted in comparable 
behavioral impairments during the stimulus and delay periods (green and orange traces). Choice 
impairments in IT mice are therefore not solely due to the disruption of intracortical processing20 
but also involve alterations of CStr neurons. Inactivating PT neurons equally impaired animal 
performance during the stimulus and delay period but showed stronger effects during the final 
response period. Response impairments were similar for EMX and PT mice, suggesting that PT 
neurons are the main contributor for the execution of lick responses. 

These results show that multiple PyN types in frontal cortex are involved in the formation and 
maintenance of choices, despite clear differences in their respective tuning. However only PT 
neurons are required for subsequent motor execution. 

 
Figure 8. Temporally restricted, PyN-specific inactivation of parietal and frontal cortex disrupts decisions. 
a) Schematic of injection scheme to induce stGtACR2 expression in EMX, IT or PT neurons. Injections were 
performed in frontal and parietal cortex of EMX-Cre, Fezf2-Cre or PlexinD1-Cre mice. V1 injections were 
performed in a subset of control EMX mice. b) Retrograde CAV2-Cre virus injections in the striatum were 
combined with cortical injections of Cre-dependent stGtACR2 to selectively target CStr neurons. c) Behavioral 
performance of EMX mice during inactivation of V1, frontal or parietal cortex. Both frontal and parietal inhibition 
reduced task performance. Circles indicate individual mice, error bars show the s.e.m. d) Schematic of optogenetic 
inactivation paradigm. 0.5-s long optogenetic inhibition was performed during the first or last part of the stimulus 
period, the subsequent delay or the response period. Light power ramped down after 0.3 seconds. e) Behavioral 
impairment during inhibition of different PyN types in parietal cortex. Strongest effects are seen in EMX mice 
(gray) but also PT mice (blue). Impairments are weaker in IT (green) and CStr (orange) mice. Circles show mean 
impairments, error bars 95% confidence intervals. f) Behavioral impairment during inhibition of different PyN types 
in frontal cortex. Conventions as in e). 

Discussion 
We measured and manipulated the activity of specific PyN types to assess if they are largely 
functionally distinct or instead follow similar cortex-wide dynamics. Cortex-wide activity 
patterns were clearly PyN-type-specific, demonstrating that they reflect distinct neural dynamics 
at multiple spatial scales. PyN type specificity was also evident for functional signals during 
auditory decision-making: each PyN type exhibited unique stimulus- and choice-related response 
patterns with pronounced differences in cortical localization and spatial specificity. These 
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response patterns were not observed when imaging from all PyNs unselectively. Optogenetic 
inactivation confirmed that PyN types in parietal and frontal cortex have distinct functional roles, 
highlighting the importance of subcortical projection pathways for sensory processing and choice 
formation. Taken together, our results suggest that different PyN types form parallel subnetworks 
throughout the cortex, are functionally-distinct, and perform separate roles during auditory 
decision-making. 

For each PyN type, we observed unique cortex-wide activity patterns that were not found in 
unspecific EMX mice. By reducing cortical dynamics to a small set of spatiotemporal 
components33,46,47, we directly compared spatial activity patterns and found that virtually all 
spatial components were also PyN-type-specific. Differences between PyNs are therefore not 
limited to a specific subset of cortical activity patterns but rather appear to be a general rule 
throughout cortex. This has important implications for studies of cortex-wide neural dynamics, 
which are often based on indirect measures of neural activity, such as hemodynamic signals48,49, 
or pooled activity from all PyNs22,25,50,51. Earlier work revealed intricate circuit motifs and 
functional modules that span the entire cortex46,50–53 and largely follow intracortical connectivity 
patterns54,55. Our results strongly suggest that additional circuit motifs could be discovered when 
isolating the activity from different PyN types, especially subcortical projection types, such as 
PT or CStr neurons. Furthermore, most PyN-specific LocaNMF components consisted of 
spatially precise subregions that were smaller than Allen CCF areas. Detailed analysis of PyN-
specific activity might therefore reveal more detailed structure than can be observed with 
nonspecific measures. For future studies, a particularly interesting approach to achieve this 
would be to combine large-scale measures of multiple PyN types with multi-color widefield 
imaging24,56. This would make it possible to directly observe interactions between PyN-specific 
cortical dynamics. 

To isolate sensory activity, we used an encoding model and found clear responses in sensory, 
parietal and frontal cortex40,41,57,58. Consistent with our clustering results, these functional signals 
were unique for each PyN type and were either only partially represented in EMX mice or not 
observed at all. This functional segregation is in line with results from individual sensory areas, 
such as primary somatosensory18,59 and visual cortex19, and further suggests that different PyN 
types have separate roles during sensory processing. A recent study also found sensory responses 
in parietal cortex and established a causal role for the parietal area A in auditory decision-
making58. In line with this, we also observed side-specific responses in area A for EMX and IT 
neurons. Surprisingly, sensory responses in PT and CStr neurons were located more medially 
and also differed in their side-specificity, suggesting that they might have distinct functional 
roles. To test this hypothesis, we performed PyN-specific parietal inactivations. Inactivation of 
parietal PT neurons during the stimulus presentation strongly disrupted eventual decisions. IT 
inactivation, by contrast, caused only weak behavioral effects. This argues against models in 
which task-relevant sensory information is directly transmitted from parietal to frontal cortex 
during decision formation40,58,60 and instead highlights the importance of subcortical projection 
pathways via PT neurons61–63. A likely subcortical target is the SC, which receives inputs from 
PT neurons18,26 and has been implicated with somatosensory18 and visual61,63 perception, and 
decision-making38,62,64. Parietal CStr neurons were not required for sensory perception and may 
thus serve a different function, such as tracking task history65. 

Using a decoder analysis, we found that activity in the frontal cortex predicted animal’s left and 
right choices. This is consistent with earlier work20,40,45,66 but seems at odds with recent cortex-
wide studies that found prominent movement-related activity but almost no choice-selectivity in 
cortex38,67. A potential reason could be that choice-related activity was indeed much weaker than 
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movement signals and could therefore be obscured by movement signals if they are not separated 
in time37. Another possibility is that cortical circuits were more important for our specific task, 
because it included accumulation of sensory evidence and working memory67,68. This hypothesis 
is consistent with the ramping of choice signals we observed in PT neurons, which might reflect 
the activity of Thalamus-projecting PT neurons during working memory13. Interestingly, choice 
signals in IT mice gradually declined, reflecting the choice-specific inhibition of CStr neurons. 
In both IT and CStr mice, choice-specific inhibition was only seen in ALM which is implicated 
in movement generation13,45. A potential reason for the suppression of CStr projections could 
therefore be to prevent competing motor behaviors by the basal ganglia that may interfere with 
an appropriate licking response. In agreement with our imaging results, frontal inactivation 
strongly impaired animal behavior during the stimulus and delay period, suggesting an important 
role for the translation of sensory inputs into behavior21,67,69–71. Impairments were largely similar 
for all frontal PyN types, which appear to be equally required for choice formation and retention. 
Frontal PyNs may thus be more reliant on each other to maintain accurate function than in 
sensory areas18,19,72. As the only exception, PT neurons were more important during the response 
period, consistent with a specific role of brainstem-projecting PT neurons for motor execution13. 

Our PyN-specific imaging largely relied on mice where GCaMP-expression was restricted to 
specific neural subpopulations. A possible concern is hereby the extent to which different PyN-
types might still be mixed together. Indeed, many layer-specific mouse lines often combine PyN-
types with diverse projection targets13,17,58,59. Moreover, transgenes in most PyN driver lines are 
inserted at random integration sites, which can lead to unstable expression patterns across 
cortical areas or mixtures of cell types due to interactions with surrounding genetic elements26,73. 
In contrast, we used temporally inducible knock-in lines which closely reflect endogenous gene 
expression during brain development, resulting in more even and specific expression in cortex26. 
To further separate PyN types that contain neurons with different projection targets, such as IT 
neurons that project to both cortex and striatum, we additionally developed a novel retrograde 
labeling strategy that allowed us to monitor the cortex-wide activity of a PyN type based on 
projection target. Since the definition of a PyN type may depend on the question at hand, both 
the genetic and retrograde approaches will be useful for future studies that aim to study cortex-
wide activity of PyN-types in different behavioral contexts. 

Our work offers a new perspective on cortex-wide dynamics by viewing them through the lens of 
different PyN types and strongly supports the view that cortical circuits perform parallel 
computations, even within the same cortical layer13,18,19. We defined cell types either by 
developmental lineage or projection target because a unifying definition remains elusive. 
Subcortical areas are targeted by genetically-distinct PyNs12,26 and broader PyN types, such as 
PT neurons, contain subtypes with different projection targets13. Future studies may therefore 
combine retrograde labeling and transgenic lines to target PyN subtypes with even higher 
specificity26 and resolve the functional heterogeneity that is often encountered when studying 
cortical decision circuits without the right tools. 
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Methods 

Mouse lines 

All surgical and behavioral procedures conformed to the guidelines established by the National 
Institutes of Health and were approved by the Institutional Animal Care and Use Committee of 
Cold Spring Harbor Laboratory. Experiments were conducted with male mice between the ages of 
8 to 25 weeks. No statistical methods were used to pre-determine sample sizes but our sample sizes 
are similar to those reported in previous publications22,25. All mouse strains were acquired from 
the Jackson Laboratory, the Allen Brain Institute, or generated at Cold Spring Harbor Laboratory. 
Transgenic strains crossed to generate double- and triple-transgenic mice used for imaging: Emx-
Cre (JAX 005628), LSL-tTA (JAX 008600), Ai93D (JAX 024103), Ai162 (JAX 031562), G6s2 
(JAX 024742) and H2B-eGFP (JAX 006069). EMX mice, used for calcium imaging, were bred as 
Ai93D;Emx-Cre;LSL-tTA. To avoid potential aberrant cortical activity patterns, EMX mice were 
on a doxycycline-containing diet (DOX), preventing GCaMP6 expression until they were 6 weeks 
or older22,25. To obtain PT- and IT-specific transgenic lines, we used two inducible knock-in mouse 
lines (Fezf2-2A-CreER and PlexinD1-2A-CreER) that were generated by inserting a 2A-CreER 
or 2A-Flp cassette in-frame before the STOP codon of the targeted gene. Both strains have been 
extensively characterized to reflect endogenous gene expression patterns that are closely linked to 
specific excitatory neuron types and induce robust and uniform expression throughout the cortex26. 
They are available from Jackson Laboratory (Fezf2-2A-CreER, JAX 036296 and PlexinD1-2A-
CreER, JAX 036295). For widefield imaging, each strain was mated with Ai162 reporter mice to 
induce expression of GCaMP6s in Fezf2- or PlexinD1-positive neurons. Additionally, we crossed 
Ai162 with G6s2 (tetO-GCaMP6s, JAX 024742) to create the hybrid reporter strain Ai162;G6s2, 
with Cre-dependent tTA expression as well as two copies of GCaMP6s under tetO control. This 
hybrid reporter line is not affected by leaky reporter gene expression seen in Ai162 homozygotes 
and expresses GCaMP6s at higher levels than Ai162 hemizygotes. To express GCaMP6s for 
widefield imaging in corticostriatal projection neurons, we performed striatal injections of 
retrograde viral vector using the hybrid Ai162;G6s2 reporter line (see section: viral injections). 

General surgical procedures 

All surgeries were performed under 1-2% isoflurane in oxygen anesthesia. After induction of 
anesthesia, 1.2 mg/kg of meloxicam was injected subcutaneously and sterile lidocaine ointment 
was applied topically to the skin incision site. After making a midline cranial incision, the skin 
was retracted laterally and fixed in position with tissue adhesive (Vetbond, 3M). We then built an 
outer wall using dental cement (C&B Metabond, Parkell; Ortho-Jet, Lang Dental) along the lateral 
edge of the dorsal cranium (frontal and parietal bones) to maximize the area of exposed skull. A 
custom titanium skull post was then attached to the dental cement. For skull clearing, debris and 
periosteum were thoroughly cleaned from the skull followed by the application of a thin layer of 
cyanoacrylate (Zap-A-Gap CA+, Pacer technology).  

Viral injections 

After induction with isoflurane anesthesia, animals were placed in a stereotaxic frame (David Kopf 
Instruments). The skull was leveled along both the rostral-caudal and medio-lateral axis, allowing 
precise and reproducible targeting. All injections were made using a programmable nanoliter 
injector (Nanoject III, Drummond Scientific, PA). Retrograde targeting of pan-corticostriatal 
projection neurons were performed in C57BL/6J mice (3-4 weeks of age) through bilateral 
stereotaxic injections of CAV-2-Cre into the dorsal striatum at three striatal targets per hemisphere 
spanning the rostro-caudal axis. The coordinates relative to bregma (in mm) are (1) RC +0.75, ML 
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±1.8, DV 3.0; (2) RC 0, ML ±2.2, DV 3.1; (3) RC -0.75, ML ±2.9, DV 3.1. For each striatal target, 
a minimal craniotomy was created using a small dental burr followed by injection of 1.8×109 
purified particles (pp) of CAV-2-Cre using pipettes with long taper tips pulled from borosilicate 
capillaries (3.5” Drummond # 3-000-203-G/X, Drummond Scientific, PA).  

For cell type-specific optogenetic silencing experiments, we performed bilateral frontal and 
parietal cortex injections (coordinates relative to bregma (in mm): frontal cortex: RC 2.5, ML ±1.5; 
parietal cortex: RC -1.7, ML ±2.5) of Cre-dependent stGtACR2 (AAV1-hSyn-SIO-stGtACR2-
FusionRed, Upenn Vector Core). Injections were made in Fezf2-2A-CreER, PlexinD1-2A-CreER, 
and EMX-Cre (6-8 weeks old) reporter mice to induce expression of stGtACR2 in different PyN 
types. In mice with ligand-activated Cre recombinase activity, intraperitoneal tamoxifen was 
administered one week after viral injections. Injections (4×108 vg per injection) were made at two 
depths (300 and 600 µm) per cortical target. In two EMX-Cre mice, bilateral injections were 
performed in the frontal and visual cortex (RC -4, ML ±2.5). To express stGtACR2 in 
corticostriatal projection neurons, C57BL/6J mice were injected in two stages. A mixture of 
AAV1-SIO-hSyn1-stGtACR2-FusionRed and AAV-DJ-hCAR (a gift from the laboratory of 
Adam Kepecs) was injected into the cortex of 3–4-week-old mice, followed by bilateral striatal 
CAV-2-Cre injections 6 weeks later (as described above).  

Optical fiber implantation  

For optogenetic silencing, we used the soma-targeted anion-conducting channelrhodopsin 
stGtACR2 in target neuronal populations44. Optical fibers (NA = 0.36, ø = 0.4mm, FT400UMT, 
Thorlabs) were glued into metal or ceramic ferrules (ø = 1.25mm, Thorlabs) and secured above 
the cortex following viral injections at each target. In Fezf2 and PlexinD1 mice, ferrule-enclosed 
fibers were implanted immediately following cortical AAV injection. In CStr mice, fiber 
implantation immediately followed striatal CAV-2-Cre injections. Optical fibers were implanted 
extradural to the site of cortical injections and interfaced with a thinned layer of skull using 
cyanoacrylate. Upon curing of the cyanoacrylate, the fiber was secured to the skull using light-
cured glass ionomer (Vitrebond, 3M). Additional layers of dental cement as well as dental acrylic 
(Lang Dental Jet Repair Acrylic; Part#1223MEH) were applied to reinforce the implants for 
durability and long-term stability. After all layers were cured, an outer coating of cyanoacrylate as 
well as nail polish were applied. 

Behavioral training 

The behavioral setup was controlled with a microcontroller-based (Arduino Due) finite state 
machine (Bpod r0.5, Sanworks) using custom Matlab code (2015b, Mathworks) running on a 
Linux PC. Servo motors (Turnigy TGY-306G-HV) and touch sensors were controlled by 
microcontrollers (Teensy 3.2, PJRC) running custom code. Forty-five mice were trained on a 
delayed, spatial discrimination task. Mice initiated trials by placing their forepaws on at least one 
of the two handles, which were mounted on servo motors that rotated out of reach during the inter-
trial period. Upon trial initiation, animals placed their forepaws on the handles and, after a variable 
duration of 0.25-0.75 seconds of continuous contact, the auditory stimulus was presented. Auditory 
stimuli consisted of a sequence of Poisson-distributed, 3-ms long auditory click sounds35, 
presented from either a left and/or right speaker for a variable duration between 1 and 1.5 seconds. 
The stimulus period was followed by a variable delay of up to 1 second, then the servo motors 
moved two lick spouts into close proximity of the animal’s mouth. If the animal licked twice on 
the side where more clicks were presented, a drop of water reward was dispensed. The amount of 
water rewarded per trial (typically 1.5 to 3 µl) is constant within a single session but may be 
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adjusted daily based on the animal’s body weight. After one spout has been licked twice, the 
contralateral spout moved out of reach to force the animal to commit to its decision. 

All trained mice were housed in groups of two or more under reverse light cycle (12- hour dark 
and 12-hour light) and trained during their active dark cycle. Animals were trained over the course 
of approximately 30-60 days. After 2-3 days of restricted water access, animals began habituation 
to head fixation and received water from spouts in the behavior chamber. During these sessions, 
unilateral auditory stimuli were presented followed by a droplet of water dispensed freely from the 
ipsilateral water spout. After several habituation sessions, animals were then required to touch the 
handles to trigger stimulus presentation. Once mice could reliably reach for the handles, the 
required touch duration was progressively increased up to 0.75 seconds. During the next stage of 
training, self-performed trials, where both spouts moved within reach of the animal following 
stimulus presentation, were progressively introduced. An animal was considered trained when its 
detection performance across two or more sessions was above 80%. 

Behavioral monitoring 

Data was collected from multiple sensors in the behavioral setup to measure different aspects of 
animal movement. Touch sensors using a grounding circuit on handles and lick spouts detected 
contact with the animal’s forepaws and tongue, respectively. A piezo sensor (1740, Adafruit LLC) 
below the animal’s trunk was used to for monitoring body and hindlimb movements. Two 
webcams (C920 and B920, Logitech) were used for video recording of animal movements. 
Cameras were positioned to capture the animal’s face (side view) and the ventral surface of the 
body (ventral view).  

Widefield imaging 

Widefield imaging was done as reported previously23,32,74 using an inverted tandem-lens 
macroscope in combination with an sCMOS camera (Edge 5.5, PCO) running at 30 fps. The top 
lens had a focal length of 105 mm (DC-Nikkor, Nikon) and the bottom lens 85 mm (85M-S, 
Rokinon). The field of view was 12.5 x 10.5 mm2 and the imaging resolution was 640 x 540 pixels 
after 4x spatial binning, resulting in a spatial resolution of ~20 µm per pixel. To capture GCaMP 
fluorescence, a 525 nm band-pass filter (#86-963, Edmund optics) was placed in front of the 
camera. Using excitation light at two different wavelengths, we isolated Ca2+-dependent 
fluorescence and corrected for intrinsic signals (e.g., hemodynamic responses)22,25. Excitation light 
was projected on the cortical surface using a 495 nm long-pass dichroic mirror (T495lpxr, Chroma) 
placed between the two macro lenses. The excitation light was generated by a collimated blue LED 
(470 nm, M470L3, Thorlabs) and a collimated violet LED (405 nm, M405L3, Thorlabs) that were 
coupled into the same excitation path using a dichroic mirror (#87-063, Edmund optics). We 
alternated illumination between the two LEDs from frame to frame, resulting in one set of frames 
with blue and the other with violet excitation at 15 fps each. Excitation of GCaMP at 405 nm 
results in non-calcium dependent fluorescence75, allowing us to isolate the true calcium-dependent 
signal by rescaling and subtracting frames with violet illumination from the preceding frames with 
blue illumination. All subsequent analysis was based on this differential signal. The imaging data 
was then rigidly aligned to the Allen common coordinate framework (CCF), using four anatomical 
landmarks: the left, center and right points where anterior cortex meets the olfactory bulbs, and 
the medial point at the base of retrosplenial cortex. Retinotopic visual mapping experiments31,76 
confirmed accurate CCF alignment and showed high correspondence between functionally 
identified visual areas and the CCF across PyN types (Fig. 1c). 

Optogenetic inactivation 
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Photostimulation was performed using light from a 470 nm high-power LED (M470F3, Thorlabs) 
with a power density of 10 mW/mm2. Stimuli consisted of a square wave stimulus that ramped 
down in power for 200 milliseconds, to avoid an excitatory post-illumination rebound due to 
sudden release of inhibition77. To prevent animals’ visual detection of photostimulation, either 
through external leakage from light-insulated mating sleeves or transmission to the retina across 
the brain, an external LED with matching wavelength placed at the center of the animal’s visual 
field was flashed throughout the duration of every trial. Photoinhibition was performed in 20% of 
total trials and randomly interleaved between light-off trials. During each session, only bilateral 
frontal, parietal or visual cortex inhibition was performed. Once an animal was habituated and able 
to complete detection behavior trials with > 90% accuracy, optogenetic inactivation trials were 
introduced. During these initial sessions, optogenetic inhibition was performed from the beginning 
of the stimulus epoch until the end of the delay epoch. Additionally, we performed 0.5-second 
inhibition during four pre-defined epochs of the detection behavior trials: (1) first half of the 
stimulus, (2) second half of the stimulus, (3) delay, (4) response. 

Immunohistology, microscopy and image analysis 

For a given animal, after all experiments were concluded, we performed transcardial perfusion 
with PBS followed by fixation with 4% PFA in 0.1 M PB. Brains were post-fixed in 4% PFA for 
an additional 12-18 hours at 4°. Prior to sectioning, brains were rinsed three times in PBS and 
embedded in 4% agarose-PBS. Slices 50 µm in thickness were made using a vibrating microtome 
(Leica, VT100S). Sections were then suspended in blocking solution (10% Normal Goat Serum 
and 0.1% Triton-X100 in 1X PBS) for 1 hour followed by overnight incubation at 4 °C with the 
primary antibody. Next, sections were washed with PBS, incubated for 1 h at room temperature 
with the secondary antibody at 1:500 dilution. For visualization of GCaMP6s, we used primary 
goat polyclonal anti-GFP antibody (Abcam) and secondary donkey anti-goat Alexa Fluor 488 
(Abcam). Sections were then dry-mounted on slides using Vectashield (Vector Labs, H1000) prior 
to imaging. Imaging was performed using upright fluorescence macroscope and microscope 
(Olympus BX61). Images were acquired using Ocular Scientific Image Acquisition Software 
(Teledyne Imaging) and visualization and analysis were performed using ImageJ/FIJI software 
packages. 

Preprocessing of neural data 

We first performed motion correction on each imaging frame, using a rigid-body image 
registration method implemented in the frequency domain78 that aligned each frame to the median 
over all frames in the first trial. To reduce the computational cost of subsequent analyses, we then 
computed the 200 highest-variance components using singular value decomposition (SVD). These 
components accounted for at least 95% of the total variance in each recording, whereas computing 
500 components accounted for little additional variance (~0.15%). SVD reduces the raw imaging 
data Y to a matrix of ‘spatial components’ U (of size pixels by components), ‘temporal 
components’ VT (of size components by frames) and singular values S (of size components by 
components) to scale temporal components to the original data. So the resulting decomposition 
has the form Y = USVT. All subsequent analysis in the time domain (such as the encoder and 
decoder models described below) were then performed on the product SVT and the respective 
results were later multiplied with U, to recover results for the original pixel space. To avoid slow 
drift in the imaging data, SVT was high-pass filtered above 0.1 Hz using a zero-phase, second-
order Butterworth filter. 

To compute trial averages and perform choice decoder analysis (see below), imaging data in 
individual trials were aligned to the four trial periods, each marked by a specific event. This was 
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required because the duration of different trial events was randomized to reduce temporal 
correlations, e.g. between trial initiation, the stimulus presentation and subsequent lick responses. 
The first period (Initiate) was aligned to the time when animal initiated a trial by touching the 
handles, the second (Stimulus) was aligned to the stimulus onset, the third (Delay) to the end of 
the stimulus sequence, and the fourth (Response) to the time when spouts were moved in to allow 
a lick response. After alignment, the total trial duration was 2 seconds and durations of respective 
trial episodes were 0.5 (Initiate), 1 (Stimulus), 0.2 (Delay), and 0.3 seconds (Response). 

Spatial clustering and classification 

To obtain more interpretable spatial components and assess the dimensionality of cortical activity 
in different PyN types, we used semi-nonnegative matrix factorization (sNMF). As with SVD, 
sNMF also creates spatial and temporal components for each session and for each mouse but 
enforces that spatial components are strictly positive. We used the LocaNMF toolbox by Saxena 
et al33 (https://github.com/ikinsella/locaNMF) to transform the spatial and temporal components 
U and SVT into two corresponding matrices A and C, where A is a matrix of non-negative spatial 
components (of size pixels by components) and C the corresponding temporal components (of size 
components by frames). In addition to regular sNMF, the LocaNMF toolbox can be initialized 
with spatial constraints that are based on the Allen CCF. To obtain spatially restricted localized 
LocaNMF components, we therefore constructed a map of larger seed regions obtained by merging 
several smaller areas in the Allen CCF together (Fig. 2D). This region map is then used to enforce 
that each component in A is sparse outside the boundary of a given region. The amount of possible 
overlap between regions is specified by a localization threshold which specifies the percentage of 
a given component that is constrained to be inside a single region’s boundary. To obtain dense 
spatial components that were mostly driven by the local correlations between pixels and could also 
lie at the border between seed regions we used a localization threshold of 50%. To obtain 
unconstrained sNMF spatial components, we also used the LocaNMF toolbox but only provided a 
single region that spanned the entire cortex. This resulted in cortex-wide components, similar to 
vanilla sNMF, while ensuring that all other analysis steps were done equally for sNMF and 
LocaNMF components. In both cases, we computed components in A and C that at least explained 
99% of the variance of Y (with Y=AC) after the initial SVD. 

The compare spatial sNMF and LocaNMF components from different PyN types, we embedded 
them in a 2-dimensional space, using Uniform Manifold Approximation and Projection (UMAP) 
analysis (Fig. 2b,f). UMAP analysis was performed with the UMAP toolbox by McInnes et al.34 
(https://github.com/lmcinnes/umap). For each recording, the first 20 spatial components in A 
(either from sNMF or region-constrained LocaNMF) were downsampled by a factor of 2, 
smoothed with a 2-D gaussian filter (5 x 5 pixels, 2 pixel standard deviation) and peak-normalized. 
Components from all recordings and animals were then combined into a larger matrix (of size 
pixels by components) and we used UMAP to project the first (pixel) dimension into two, 
maximally separating non-linear dimensions. Each point in the two dimensional space (Fig. 2b,f) 
therefore reflects a single component from one animal in a given imaging session. 

To identify PyN types based on individual components, we tested each of the first 20 components 
in each session 10 times (200 repetitions per session). In every repetition, 500 components were 
randomly selected from all mice (except the one from which the current component was taken) 
and we assigned the PyN type based on the majority type in the 10 nearest neighbors of the current 
component in UMAP space. Classifier accuracy for each session (Fig. 2c,g) was then computed as 
the mean probability over all repetitions to accurately identify the PyN type. The same procedure 
was used for either sNMF or locaNMF components. 
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Linear encoding model 

The linear encoding model was based on a combination of task- and movement-related variables, 
as described previously32. Each variable consisted of multiple regressors that were combined into 
a larger design matrix. Binary regressors contained a single pulse the occurrence of specific events, 
such as the stimulus onset, and additional regression copies that were shifted forward or backward 
in time to account for changes in cortical activity before or after the respective event. For auditory 
stimuli, the time-shifted copies spanned all frames from the onset of the auditory sequence until 
the end of the trial. Individual click sounds were also captured by an additional regressor set that 
spanned the 2 seconds after click onset. For motor events like licking or whisking, the time-shifted 
copies spanned the frames from 1 s before until 2 s after each event. Lastly, for some variables 
such as the previous choice, the time-shifted copies spanned the whole trial. Other variables were 
analog, such as measures from the piezo sensor or the pupil diameter, and also contained the 200 
highest temporal components of video information from both cameras (using SVD as described 
above). This ensured that the model could account for animal movements and accurately isolate 
task-related activity. Movement and task variables were additionally decorrelated due to the 
variable durations of the initiation, stimulus and delay period. The model was fit using ridge 
regression and the regularization penalty was estimated separately for each column of the widefield 
data using marginal maximum likelihood estimation79. Ridge regression was chosen to allow for 
similar contributions from different correlated variables. 

Variance analysis 

Explained variance (cvR2) was obtained using 10-fold cross-validation. To assess unique 
explained variance by individual variables (ΔR2), we created reduced models in which all 
regressors of a specific variable were shuffled in time. The difference in explained variance 
between the full and the reduced model yielded the unique contribution ΔR2 of that model variable 
that could not be explained by other variables in the model. The same approach was used to 
compute unique contributions for groups of variables, i.e., ‘Movements’ and ‘Task’. Here, all 
variables that corresponded to a given group were shuffled at once.  

Decoding model 

To predict animal’s left/right choices from widefield data, we trained logistic regression decoders 
with an L1 penalty on the temporal component matrix SVT in each session. When decoding choice, 
we randomly removed trials until there was an equal amount of correct and incorrect trials where 
mice chose the left and the right side. By balancing left/right choice sides and correct/incorrect 
trials, we ensured that the decoder would not predict choices due to corresponding sensory 
information or would be influenced by potential side biases. The logistic regression model was 
implemented in Matlab using the ‘fitclinear’ function and run repeatedly for each time point in 
individual trials after re-aligning them to trial periods as described above. In each session, all 
decoder runs were performed with the same amount of trials (at least 250 trials) and we used 10-
fold cross-validation to compute decoder accuracy at each time point in the trial. Beta weights 
were averaged from all models created during cross-validation and convolved with the spatial 
component matrix U to create cortical maps of decoder weights.  
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Number of mice per experimental group 
Optogenetics 
Cell type Number of mice 
Emx 5 
CStr 5 
Fezf2 8 
PlexinD1 8 
Widefield  
Emx 4 
CStr 6 
Fezf2 5 
PlexinD1 4 

 
Key resources table 
Reagent/resource Source Identifier 
Antibodies 
Goat polyclonal anti-GFP Abcam ab6673 
Donkey Anti-Goat Alexa Fluor 488 Abcam ab150129 
Viral strains 
CAV-2-Cre Plateforme de 

Vectorologie de 
Montpellier 

N/A 

AAV1-hSyn1-SIO-stGtACR2-FusionRed Penn Vector Core 105677-
AAV1 

AAV-DJ-hCAR Laboratory of Adam 
Kepecs 

 

Experimental Models 
Mouse: Emx1-IRES-Cre: Emx1tm1(cre)Krj The Jackson Laboratory JAX#005628 
Mouse: ROSA:LNL:tTA: 
Gt(ROSA)26Sortm1(tTA)Roos 

The Jackson Laboratory JAX#008600 

Mouse: Camk2α-tTA: Tg(Camk2a-tTA)1Mmay The Jackson Laboratory JAX#003010 
Mouse: Ai93(TITL-GCaMP6f)-D (Ai93D): 
Igs7tm93.1(tetO-GCaMP6f)Hze 

The Jackson Laboratory JAX#024103 

Mouse: Ai162(TIT2L-GC6s-ICL-tTA2)-D 
(Ai162D): Igs7tm162.1(tetO-GCaMP6s,CAG-tTA2)Hze 

H. Zeng, Allen Institute 
for Brain Science 

JAX#031562 

Mouse: TRE-GCaMP6s (G6s2): Tg(tetO-
GCaMP6s)2Niell 

The Jackson Laboratory JAX#024742 

Mouse: H2B-eGFP: Tg(HIST1H2BB/EGFP)1Pa The Jackson Laboratory JAX#006069 
Mouse: Fezf2-2A-CreER: Fezf2tm1.1(cre/ERT2)Zjh The Jackson Laboratory JAX#036296 
Mouse: PlexinD1-2A-CreER: Plxnd1tm2.1(flpo)Zjh The Jackson Laboratory JAX#036295 
Software 
MATLAB 2018B Mathworks  
Python 3.6.10 Python Software 

Foundation 
 

Other 
Bpod State Machine r0.5 Sanworks N/A 
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