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Highlights  

Very young children diagnosed with autism spectrum disorder already present marked 

alterations of neural oscillatory activity in response to natural speech. 

The hierarchical processing of phonemic- and syllabic-range information (theta/gamma 

coupling) is atypical in young ASD children. 

Speech reception deficit in children with ASD is indexed by abnormal bottom-up (low-

gamma) and top-down (low-beta) coordination. 

 

Summary  

Communication difficulties in autism spectrum disorder (ASD) involve a speech reception 

deficit, whose biological causes are not yet identified. This deficit could denote atypical 

neuronal ensemble activity, as reflected by neural oscillations. Atypical cross-frequency 

oscillation coupling in particular could disrupt the possibility to jointly track and predict 

dynamic acoustic stimuli, a dual process that is essential for speech comprehension. Whether 
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such oscillation anomalies can already be found in very young children with ASD, and with 

what specificity they relate to individual language reception capacity is unknown. In this 

study, neural activity was collected using EEG in 64 very young children with and without 

ASD (mean age 3) while they were exposed to naturalistic-continuous speech via an age-

appropriate cartoon. EEG power typically associated with phrase-level chunking (delta, 1-

3Hz), phonemic encoding (low-gamma, 25-35Hz) and top-down control (beta, 12-20Hz) was 

markedly reduced in ASD relative to typically developing (TD) children. Speech neural-

tracking by delta and theta oscillations was also weaker in ASD than TD children. Critically, 

children with ASD exhibited slightly atypical theta/gamma coupling (PAC) involving a 

higher-than-normal gamma frequency, and markedly atypical beta/gamma PAC. Even though 

many oscillation features were atypical in our sample of 31 very young children with ASD, 

the beta/gamma coupling anomaly was the single best predictor of individual speech 

reception difficulties. These findings suggest that early interventions targeting the 

normalization of low-gamma and low-beta activity, might help young children with ASD to 

engage more in oral interactions. 

 

Keywords Autism spectrum disorder (ASD) children, typically developing (TD) children, 

speech processing, low-frequency neural oscillations, neural tracking, phase-amplitude 

coupling (PAC) 
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Introduction 

Although autism spectrum disorders (ASD) are primarily disorders of social interactions, 

language is seldom spared. Many people with ASD have severe language impairment, and 

even high functioning ASD individuals with excellent language skills retain difficulties 

understanding speech in noisy environments and/or when exposed to multiple speakers[1-4]. 

Individuals with ASD occasionally report that during childhood, speech was wholly or partly 

unintelligible[5, 6], and that speech reception was especially laborious with consonants, 

resulting in speech mostly sounding like a sequence of vowels[7]. Furthermore, even when 

they have an excellent language level, individuals with ASD often exhibit atypical-sounding 

elocution[8-12], which presumably further denotes speech reception anomalies[13, 14]. 

 

A large stream of recent studies shows that neural oscillations, i.e., the synchronous activity 

of neuronal populations, play a critical role in speech reception, mainly to parse the speech 

flow into meaningful linguistic units: phonemes, syllables, words, phrases, etc.[15-17]. While 

the 25-35Hz low-gamma oscillation rhythm is argued to work as a basic speech sampling 

rhythm enabling the encoding of phonemic-level acoustic features[18-20], the 4-7 Hz theta 

rhythm[21, 22] can flexibly track syllable boundaries[19, 23] hence playing a key role in 

speech intelligibility[24-28]. On the other hand, the slower 1-3 Hz delta rhythm has a more 

endogenous role in prosodic processing[29-31] and phrasal chunking[32, 33], while the 12-

20Hz low-beta rhythm conveys top-down information presumably at an intermediate 

timescale between phonemes and syllables[23, 34]. Working in combination via their 

hierarchical coupling (the lower-frequency rhythm modulates the amplitude of higher-

frequency activity), these different families of neural oscillations can underpin specific 

cognitive operations[35-37]. In particular, theta/gamma phase-amplitude coupling (PAC)[19, 

38, 39] enables the hierarchical encoding of the phonemic structure within syllables, while 

beta/gamma PAC is associated with specific operations in predicting and planning speech[40-

42].  

 

In typically developing children, the ability to track the speech temporal structure develops 

very early[43-48]. The infant auditory system can already track the syllabic rhythm in nursery 

rhymes[44, 47] and native language sentences[46]. Even 1-8 days newborns can detect a 

consonant change on the sole basis of speech envelope cues[49]. Importantly, oscillation 

cross-frequency coupling (delta-theta/low-gamma), which orchestrates the encoding of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461214
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

phonemic structure within syllables[19], was found in infants younger than 11 months[47]. 

Altogether, these findings suggest that the cortical tracking of speech rhythms is present at 

birth and likely contributes to phonological learning[50]. Its early disruption could hence be a 

possible cause of speech decoding impairment in children with ASD[21, 51], and participate 

in the altered development of their social skills. 

 

Oscillation anomalies in response to speech have previously been reported in ASD, for 

example, decreased gamma responses to rapid spectrotemporal transitions associated with 

diphones[52-54], increased theta responses to repeated tones and syllables[55, 56], reduced 

beta responses to novel sounds[57, 58]. Young adults with ASD showed joint anomalies of 

neural theta (syllabic-level) and low-gamma (phonemic-level) activity, localizing 

predominantly to the auditory cortex. In this brain region, the relationship between theta and 

gamma neural activity was abnormal, suggesting that phonemic encoding was not temporally 

aligned with syllable tracking[51], a deficit that could deeply disrupt on-line speech 

reception[20]. Although the observed theta/gamma anomaly tightly correlated with the verbal 

scores of ASD participants[51], the study did not permit to conclude whether oscillation 

coupling anomalies are causally related to the speech reception deficit, in particular whether 

they are already present in very young children, when autistic symptoms usually become 

more evident, and at a development stage where typically developing children rapidly expand 

their speech expressive repertoire[59-61].  

 

In this study, we used high-density electroencephalography (EEG) to compare oscillatory 

neural processing of age-appropriate naturalistic speech in 64 very young children (1.31- 5.56 

years old) with and without ASD. Given the major developmental changes occurring in large-

scale brain networks around this age in ASD[62], exploring speech reception as soon as the 

diagnosis is established is critical. If auditory cortical oscillations and their cross-frequency 

interactions are involved in language acquisition, we expect children diagnosed with ASD to 

already exhibit oscillation anomalies, notably in the delta-theta, low-beta, and low-gamma 

bands[23, 63-65]. We further expect these anomalies to specifically predict the language 

reception status (and not other developmental traits). The precise characterization of 

oscillation anomalies that have the potential to be causally involved in speech reception 

difficulties is an indispensable first step to envisage possible targeted interventions aiming at 

normalizing (boosting or down-regulating) oscillatory activity [66-68]. 
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Results 

Sixty-four children with (mean age: 3.09 ± 0.91) and without (mean age: 2.92± 1.30) ASD 

participated in an EEG experiment, with the consent of their legal representatives and in 

accordance with local Ethics regulations (Commission Cantonale d’Ethique de la Recherche, 

Geneva, Switzerland). 

EEG and eye-gaze data were recorded while children watched an age-appropriate French 

cartoon[69-72]. Our aim was to capture speech-related neural activity in children with ASD 

compared to typically developing (TD) age matched peers while both groups were exposed to 

a naturalistic, attention grabbing social scene where one or more characters are speaking and 

interacting verbally. An acoustic characterization of the speech stimuli is shown in Figure S1. 

Visual attention to the cartoon was monitored by gaze data. Although the  visual scene was 

not explored in the same way in each group [73], children with ASD watched the cartoon 

with attention (data with poor visual attention were excluded).   

Speech-related oscillatory changes 

To analyze EEG power and possible probe differences in neural activity in response to speech 

across groups, we computed the EEG power spectrum of speech compared to baseline in 

several frequency bands of interest, i.e., delta (1-3Hz), theta (4-8Hz), low-gamma (25-35Hz) 

and beta (12-20Hz). A between-group statistical comparison (Figure 1) showed reduced delta, 

beta, and low-gamma band oscillatory activity (mostly on mid-central clusters) in children 

with ASD. In contrast, theta oscillations were comparable to their TD peers.  

Neural tracking of speech envelope using Multiple Linear 

Regression Model 

We then explored the differences between ASD and TD in the neural tracking of the cartoon 

soundtrack’s phrase- and syllable-level modulations. We used a multiple linear regression 

(MLR) model with distributed lag between -300ms and 300ms with 50ms steps (Figure 2A) 

to reconstruct the stimulus envelopes from the neural signal in both the delta and the theta 

band. We then assessed the accuracy of speech envelope reconstruction by computing the 

correlation between reconstructed stimulus envelopes and actual envelopes in each group, 

before performing a statistical comparison. Speech envelope reconstruction was significantly 
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less accurate in ASD participants using the theta band signal (unpaired t(62)=2.19, P = 0.04, 

η
2 = 0.07, Figure 2B). The effect found in the theta band was most prominent in a specific 

cluster of 12 posterior-occipital electrodes (Figure 2C). The delta-band signal from all 

electrodes permitted to reconstruct the stimulus envelopes equally well in ASD and TD 

participants (unpaired t(62)= 0.38, P = 0.71, η2 = 0.002, Figure 2B). However, we found 

reduced speech envelope reconstruction accuracy from the delta-band signal in ASD 

participants than controls, in a specific cluster of 7 parieto-occipital electrodes (Figure 2C). 

These results show that even though the overall theta power is unchanged in children with 

ASD (Figure 1), neural tracking of the speech syllabic structure by delta- and theta-range 

neural activity is altered. 

Phase amplitude coupling  

As speech is encoded hierarchically by different families of nested neural oscillations, we 

also analyzed phase-amplitude coupling (PAC) across modulating (< 15Hz) and modulated 

(16–50 Hz) frequencies using the KL-MI-Tort[74]. This approach was applied to those 

clusters showing significant between-group differences in the EEG power (all electrodes of 

clusters in the mid-central area, see Figure 1) and in the neural tracking analyses (theta-

tracking cluster Figure 2C; delta-tracking cluster Figure S2A). Before computing PAC and 

assessing PAC changes, we checked that there were clear power spectrum peaks and troughs 

at each modulating frequency band of interest[75, 76]. Despite large inter-individual 

variability in peak/trough frequencies and oscillatory power (Figure S3), average neural 

activity confirmed significant power peaks in the low-frequency and the beta/gamma range in 

both groups (Figure 3A, 3C, Figure S2A), enabling us to compute comodulograms for speech 

and baseline EEG, and to compared them using cluster-based nonparametric statistics[77].  

Although results from mid-central electrodes showed significant PAC clusters between the 3-

8 Hz (phase) and the 22-38 Hz (amplitude) frequency ranges in both groups, there was only 

minimal overlap between ASD and TD (Figure 3B). While TD showed a unique and strong 

delta-theta/low-gamma PAC on mid-central (Figure 3B) and posterior-occipital electrodes 

(Figure 3D, Figure S2A), as typically observed in non-ASD adults and older children[19, 38, 

39, 47], very young children with ASD exhibited wholly different patterns. The most 

significant difference was the extra presence of a consistent low-beta/low-gamma PAC in 

both mid-central and posterior-occipital electrodes, and and additional theta/gamma PAC in 

posterior occipital electrodes (Figure 3D, Figure S2A). In summary, compared with the TD 

group, children with ASD show atypical delta/theta-gamma coordination, and a robust low-
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beta/low-gamma coupling anomaly suggesting abnormal endogenous control of speech 

reception. 

Prediction of clinical variables from oscillatory neural features 

Among all the oscillatory features that were found atypical in children with ASD, not all of 

them have the potential to specifically account for individual traits and, in particular, 

language abilities. We, therefore, assessed whether the group differences observed at the 

neurophysiological level could first predict the ASD severity, and more importantly, whether 

they could predict the speech reception scores obtained by the children in the MSEL, which 

cognitive scales measure overall developmental functioning. Conversely, we also sought to 

find out whether some of the oscillatory anomalies detected in power, tracking, and PAC 

analyses, could be more generally involved in several cognitive components (verbal 

production, visual processing, and fine motor skills).  

Predicting ASD severity (ADOS severity level) 

We first used nested LDA classification to determine which neurophysiological feature(s), 

i.e., EEG power, speech-tracking values, and PAC, best predicted the ASD symptom severity 

level, i.e., low, moderate, and high. Classification using all scalp electrodes showed that theta 

power (accuracy: 55.8%), low-gamma power (accuracy: 51.7%), delta-tracking (accuracy: 

48.3%) were good predictors of autism severity (empirical chance level: 46.387%, Figure 

4A). 

In addition, low-beta/low-gamma PAC was a good predictor of autism severity in both 

clusters (accuracy 49.2% in the mid-central cluster and 51.7% in the posterior-occipital 

cluster, Figure 4B, Figure S2B, empirical chance level: 46.387%). These results demonstrate 

that theta power, gamma power, delta tracking, beta/gamma coupling contain critical 

information about autism severity. 

Predicting speech reception level 

We then used Lasso, with a nested cross-validation approach, to determine whether 

individual language skills could be predicted from oscillatory features and which features 

accounted most selectively for individual language development status. The analyses were 

run separately in each group. Although different in TD and ASD groups, band-specific EEG 

power accounted for none of the cognitive components of MSEL in any group, except 

language expression in TD children for the gamma power and language reception in children 

with ASD for the delta power (Figure 5A). Conversely, neural tracking, which was also 
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markedly different across groups, was predictive of several cognitive components in ASD 

(language reception and expression, fine motor skills) in the delta range, and of all but 

receptive language in the theta range (Figure 5B), suggesting the role of these oscillatory 

features in ASD goes beyond the sole domain of speech reception. In the TD group, neural 

tracking accounted for none of the scores, despite a trend for theta-tracking to predict both 

language reception and expression. In TD, the R2 values were very low for all cognitive 

aspects in the delta range, and for motor and visual in the theta range (Figure 5B), showing 

that theta-tracking was more specifically involved in language development than delta, as 

expected from previous studies in adults[78, 79].  

The most relevant feature for predicting language reception development was phase-

amplitude coupling. As expected from studies in typical adults[38, 39] and from 

neurocomputational models[19], theta/gamma coupling selectively explained language 

reception in both central and posterior-occipital clusters of electrodes in our group of very 

young TD children (Figure 5C, Figure S5). In the ASD group, the (atypical) beta/gamma 

PAC selectively predicted language reception (Figure 5C). The post-hoc analysis of the 

dependency of language reception on beta/gamma PAC indicates that the stronger the 

anomaly, the worse speech reception (see Figure 5D). For displaying purposes, after 

confirming the performance of the algorithm, we used the whole data to run the 

hyperparameter optimization, and finally, we got the best estimator, then we retrained 

algorithm y=f(x). We, therefore, obtained a fitted model y = 17.45·fp+0.43·fa-5.71·MI-142.19, 

in which y represents language reception, fp and fa represent the frequency of phase and 

amplitude respectively, and MI refers to PAC value (Figure 5D). Overall, PAC was the most 

specific predictor of language reception in ASD and TD children: the presence of 

theta/gamma PAC predicts good speech reception in TD children confirming many previous 

observations[19, 38, 39, 47, 50], whereas the added presence of atypical beta/gamma PAC 

signals poor reception in ASD. Importantly, PAC features were much more sensitive than 

power and neural tracking to predict individual language reception scores. 

 

Discussion 

This study aimed to determine whether speech-related oscillatory anomalies in ASD are 

already present in early childhood, around the time of ASD diagnosis. Given the 

computational role neural oscillations play in chunking the syllable stream, encoding 

phonemic information, and predicting speech timing and linguistic content, we also sought to 
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determine whether and which of these anomalies most specifically account for speech 

reception difficulties in ASD. Establishing causality, or at least specific relevance of 

oscillation anomalies with respect to speech development, is critical, as early targeted neural 

interventions could subsequently be envisaged to normalize speech reception, as recently 

demonstrated in other neurodevelopmental language disorders[66, 80, 81]. Exploring EEG in 

64 children between 1.31 and 5.56-years-old, we found marked anomalies of speech-induced 

cortical activity in the group with ASD, including decreased expression of delta, low-gamma, 

and beta frequencies. While theta power appeared as pronounced in ASD and TD children, 

delta-theta neural tracking was significantly reduced in ASD. Our most important results 

were observed in relation to oscillation cross-frequency coupling, which reflect the 

coordination computations at different timescales. As expected from previous studies in 

adults[19, 38, 39, 51], we clearly detected the classical theta/gamma coupling in very young 

(about 3-years-old) TD children and found this feature to specifically predict their individual 

language reception scores. This result represents an important finding as PAC is not a simple 

marker of speech reception ability but reflects a key computational component of speech 

processing, namely the hierarchical relationship between phonemes and syllables. This 

typical theta/low-gamma PAC was altered in children with ASD, appearing over a higher 

gamma range and a more occipital location. Critically, theta/gamma coupling was 

accompanied with a non-typical low-beta/low-gamma PAC in the ASD group, which, among 

all the abnormal oscillatory features reported here, was the only one from which we could 

specifically predict language reception scores in children with ASD: the stronger the 

beta/low-gamma coupling, the worse speech reception. This other key finding suggests that 

the speech processing computational scales are markedly different in ASD and that the 

endogenous-exogenous processing ratio is higher in children with ASD. 

 

Low-gamma power predicts language expression in TD but not 

children with ASD 

Our results showed decreased low-gamma activity in ASD relative to TD children, notably on 

mid-central electrodes, a scalp location that strongly captures auditory cortex activity[82, 83]. 

Previous studies already reported reduced gamma activity in response to pure tones[52, 53, 

84],  presumably denoting a basic functional anomaly of auditory cortex. Gamma activity 

usually reflects the excitation-inhibition balance[85] within brain circuits, which is a core 

parameter in neural development. Reduced low-gamma power in ASD could be hence seen as 
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a probe of atypical maturation of auditory neural circuitry. At the computational level, low-

gamma activity is associated with phonemic encoding[18, 19] and its nesting within theta 

activity with the encoding of phonemic information within syllabic frames so that syllable-

level representations can interface at the right time with other (higher) processing stages[86]. 

Here we found that low-gamma activity was the only feature that specifically predicted 

language expression in TD children, a logical finding as language expression is tightly related 

to the transformation of phonetic into articulatory features at the same timescale[87-91]. 

 

Abnormal theta-range speech tracking and theta/gamma 

coordination 

Although we globally found a similar level of theta activity in both groups, theta-range 

tracking was reduced in children with ASD, meaning that theta activity although present did 

not typically follow the speech temporal structure. An equivalent level of global theta power 

in TD and ASD is consistent with previous studies[55, 56, 92]. However, that the speech 

envelope was less accurately reconstructed from the EEG in ASD than in TD children 

indicates that theta activity in ASD is more weakly engaged in syllable tracking[19, 21, 23, 

93, 94]. This anomaly likely disrupts the alignment of neuronal excitability with syllabic 

onset, weakens the coordination with oscillations on other frequency bands, notably the low-

gamma one, and ultimately hampers phonemic information encoding within syllables[18-20, 

38, 39]. Accordingly, we found anomalies of the classical theta/gamma PAC in children with 

ASD: higher gamma frequencies and the occipital location are not compatible with a role in 

phonemic sampling within left auditory regions classically as reported in healthy 

individuals[17, 95-97]. These results however, are only in partial agreement with the more 

severe anomalies of theta/gamma coupling, a fully inverted coupling relationship, that were 

previously observed using simultaneous fMRI-EEG in adults with ASD[51]. Longitudinal 

studies are needed to determine whether theta/gamma coupling further deteriorates during 

childhood development and adolescence. 

 

Theta-tracking of visual input 

Abnormal theta tracking of speech syllable modulations might be associated or even follow 

from a stronger theta synchronization with the visual input. The posterior-occipital theta-

tracking topography in children with ASD (Figure 2) could suggest that they track more 
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visual motion than auditory modulations, a functional anomaly that could possibly underpin 

atypical audio-visual integration[98-107]. This conjecture was partly confirmed by the direct 

comparison of visual and speech tracking (Figure S4), showing an imbalance in the visual vs. 

auditory tracking in the ASD group, with a predominant tracking od visual motion. In 

addition, the PAC frequency was higher than expected for speech processing, indicating that 

it is most likely local visual information, rather than auditory, that is modulated at theta 

rhythm. Overall, these results demonstrate a weak engagement of the auditory system in 

speech processing in very young children with ASD, and show that visual motion processing 

dominates when they watch a natural audio-visual scene involving moving and talking 

characters, as previously reported in adults/children[99-102]. 

 

Reduced delta-power but not delta-range speech tracking is a 

specific predictor of language reception in ASD 

Our results also show reduced delta power and delta-range speech tracking in children with 

ASD. Delta-range activity signals phrase-level chunks, which do not necessarily have a 

physical/acoustic counterpart in the speech stimulus[79]. Delta activity is known to reflect a 

more endogenous processes than theta-range syllable tracking[64], which are argued to 

pertain to syntactic grouping[32, 63, 108, 109] or prosody processing[29, 30]. That reduced 

delta activity predicted speech reception in ASD might hence denote altered syntactic phrasal 

chunking and is compatible with previous observations suggesting both weaker 

linguistic[110] and intonation processing[111]. Although our results align well with these 

previous observations and hypotheses, delta-range speech tracking did not only predict 

speech reception scores but also expressive language, and fine motor skills. Logically, the 

more endogenous delta tracking deficit has a more global impact on the cognitive profile of 

children with ASD, and could hence also be a parameter that could possibly be adjusted using 

adapted neurostimulation methods. 

 

Beta/gamma cross-frequency coupling: a speech reception 

singularity in young children with ASD 

During continuous speech perception, top-down predictive mechanisms are also important, in 

particular in order to make sense of acoustic signals that might be unclear or ambiguous, or 

simply to follow the speaker’s speech rate. Typically, predictive mechanisms are signaled by 
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the low-beta band[112, 113], which we also found to be weaker in ASD than TD children 

around the mid-central region. The beta frequency band is argued to mediate top-down 

information passing[42, 114, 115], allowing for precise temporal[65] but also content-

specific predictions[42]. In speech processing, this frequency band could provide top-down 

integration constants that are intermediate between theta-syllabic and gamma-phonemic 

ranges[23, 34]. By occurring in alternation with bottom-up gamma phases[112], beta activity 

phases could stabilize representations in the face of the ever-changing acoustic input. Weaker 

beta activity in ASD might, therefore, reflect a reduced deployment of predictive 

mechanisms, altering both the ability to predict when acoustic signals can be expected and 

what content they carry. This interpretation is globally in line with alterations of phasic 

predictive learning in a mouse model of autism[116] and more generally with the hypothesis 

of impaired predictive coding in ASD[117, 118].  

The key finding of this report is the atypical low-beta/low-gamma PAC found in children 

with ASD in conjunction with weaker beta power. A PAC anomaly involving the low-beta 

phase might follow from the reduced global beta power in ASD, possibly allowing low-

gamma and gamma bursts to occur more strongly within beta troughs. Reduced beta gating 

could result in letting pass neural activity that is unrelated to the predicted speech structure, 

possibly leading to a feeling of being overwhelmed by unformatted acoustic inputs to which 

no linguistic value or meaning can be attributed. This interpretation aligns well with the 

auditory avoidance that is clinically described[110, 119, 120].  

 

Cross-frequency oscillation features: a potential endophenotype 

for targeted interventions 

As cortical oscillations arise from excitatory-inhibitory interactions within and across specific 

cortical laminae[121], auditory oscillation anomalies represent a plausible functional 

counterpart to structural disorganization and disruption of cortical inhibition previously 

shown in ASD[122]. A recent study directly relates neural oscillations with the expression of 

a number of genes, several of which are involved in ASD[123], e.g., LNX1, DGKI, KCNQ5, 

DCX, SHANK2, etc. Speech reception difficulties in ASD could, therefore, directly result 

from structural anomalies induced by mutations of genes[124-126] controlling neuronal 

interactions, notably at the synaptic level[125, 127]. 
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Disruptions of synchronous neural activity in the cortex[128, 129] and other brain structures, 

such as the cerebellum and hippocampus[130-136], could lead to fragmented speech 

processing, abstraction difficulties in the auditory modality, and difficulties to map atypical 

auditory representations into appropriately timed articulatory sequences. Here, we found that 

among many neural oscillation anomalies, the most promising feature lies in cross-frequency 

coupling patterns, particularly the theta/gamma coupling that has an abnormal topography in 

ASD and the low-beta/low-gamma coupling that is wholly atypical. These two anomalies 

could be an ideal entry point for targeted brain stimulation interventions aiming at down-

regulating the abnormal low-beta/low-gamma coupling, and re-localizing the typical auditory 

theta/low-gamma coupling to left auditory regions. The next step in this line of research will 

be to test whether a simple theta/gamma stimulation at the exact right frequencies (5Hz by 30 

Hz) using, e.g., mild transcranial alternating current stimulation could indeed both disrupt 

low-beta/low-gamma and relocate theta/low-gamma activity to auditory regions. In 

combination with a close monitoring of behavior and EEG activity, such a trial would also 

allow us to firmly establish causality between auditory oscillatory activity and the speech 

reception ability in children with ASD. 

 

Conclusion  

Among all speech-related oscillatory alterations we report here in very young children 

diagnosed with ASD, cross-frequency features are those that predicted most closely 

individual language reception abilities. Cross-frequency coupling features hence appear as a 

promising language development endophenotype, bridging the gap from genetics to behavior, 

enabling accurate predictions of language development, and offering a precise entry point for 

specific interventions targeting the normalization of oscillatory functions. 
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Figure legends 
Figure 1 Comparison of frequency-power in 31 children with ASD and 33 TD peers.  

Children with ASD had reduced delta, beta, and low-gamma power and comparable theta 

power relative to their TD peers. Asterisks in topographies indicate group differences after 

cluster correction (cluster-based non-parameters permutation tests, cluster corrected P = 

0.05).  

Figure 2  Neural speech-tracking results.  

(A) Schematics of the Multiple Linear Regression (MLR) model approach. The filtered EEG 

signal and stimulus envelope were entered into the MLR. For the cross-validation procedure, 

envelopes of speech and EEG signal of 9 folds with time-lag shifting were used to fit an 

MLR for each participant, which was then used to predict the envelope of the 10-th speech 

fold. The resulting model was tested by correlating the predicted envelope with the actual 

speech envelope in the test segment.  

(B and C) Correlation coefficients between the reconstructed and real envelope, in all 

channels together (B) and each single-channel separately (C). Correlation coefficients were 

significantly reduced in ASD relative to TD in the delta and theta bands. 

Error bars in B represent standard error, asterisks in C show group differences from non-

parameter cluster-based permutation tests, *P <0.05. See also Figure S4. 

Figure 3  Phase-amplitude coupling.  

(A and C) Speech-induced oscillatory power is characterized by a strong power peak in low-

frequency bands (1-10 Hz) in both groups and a marked power trough in the low-beta band 

(10-15 Hz) in the ASD group over (A) central-electrodes selected from EEG power group 

differences and (C) posterior-occipital-electrodes selected from neural tracking group 

differences.  

(B and D) Phase-amplitude comodulograms produced by statistically comparing modulation 

index (MI)-values in the speech and baseline periods over central-electrodes (B) and 

posterior-occipital-electrodes (D). Dotted lines represent significant differences in phase-

amplitude coupling. For exact cluster locations, see topographies on A and C. For a quick 

appraisal of fp and fa ranges in each group, see the rightmost panel (fp : frequency of phase;  

fa : frequency of amplitude,  nonparametric cluster-based statistics, cluster-corrected P < 

0.05). See also Figure S2A. 

Figure 4  Predicting ASD severity from EEG oscillatory activity.  

(A)prediction accuracy of ASD symptom severity using the EEG power, neural tracking 
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based on all electrodes) 

(B)prediction accuracy of ASD symptom severity using the phase-amplitude coupling 

(cluster-based) 

The red line shows the chance level determined by an inverse binomial distribution. For the 

exact location of clusters, see topographies on top of panel B. 

Figure 5 Predicting development level in young children from EEG oscillatory activity 

using a regularized linear model (Lasso). 

 (A and B) Low-gamma power significantly predicts Language expression in TD (A), delta-

/theta-tracking significantly predict all tested cognitive components but language reception 

for theta tracking in ASD, and none in TD (B).  (C) Theta/low-gamma PAC specifically 

predicted language reception in TD (C), whereas beta/low-gamma specifically predicted 

language reception in young children with ASD (C, left panel). R2 values represent the 

proportion of the variance that is explained by the features for each target variable. (D) 

Language reception prediction from beta-gamma coupling (r=-0.33, P = 0.04). 

Asterisks indicate the significant R2, P<0.05; β refers to low-beta, γ refers to low-gamma. For 

exact locations of clusters, see topographies on top of each panel in C. The missing bars 

indicate the R2 is close to zero. See also Figure S5 

 

Tables 
 

Table 1. Participants’ demographic information and group comparison of behavioral tests. 
  

    Group 

  
ASD (N=31, 6 females) TD (N=33, 11 females)   

 

  
Mean SD Mean SD t(df) p 

Age (in years) 
 

3.09 0.91 2.92 1.30 0.62(62) 0.54 

Mullen Scales of 
Early Learning 

Visual Reception 87.18 26.37 126.13 27.28 -5.53(56) 8.79E-7 

Fine Motor 82.42 21.29 103.22 12.01 -4.54(56) 3.06E-5 

Expressive Language 58.52 31.69 104.77 24.08 -6.16(55) 9.18E-8 

Receptive Language 62.12 33.37 117.62 18.98 -7.71(56) 2.33E-10 

 
• Mullen Scales of Early Learning (assessment of cognitive and motor strengths and weakness in children). 

o Visual Reception & Fine Motor measure the child's nonverbal ability in order to estimate the 
overall developmental level.  

o Expressive language & Receptive Language measure the child's ability to process linguistic input 
and to use the language productively. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.27.461214doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461214
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

STAR Methods  

Inclusion procedure 

Sixty-four children (mean age: 3.00±1.12, seventeen females) with and without ASD drawn 

from the Geneva Autism Cohort[137, 138] underwent a large battery of tests, including EEG 

recordings while they watches movies (French-cartoon for young children: TROTRO[69-

72]). All children were recruited via specialized clinical centers or announcements in the 

community. The study was approved by the Ethics Committee of the Faculty of Medicine of 

the University of Geneva Hospital in accordance with the Declaration of Helsinki. A phone 

interview and a medical, developmental history questionnaire were completed before the 

initial visit of all participants; for the typically developing children, the following were 

considered exclusion criteria: any suspicion of altered development, a history of neurological 

or psychological disorder, and family history of ASD in first-degree relatives. Parents gave 

their informed consent prior to inclusion in the study. For all ASD children, the clinical 

diagnosis was formally corroborated using the Autism Diagnosis Observation Schedule-

Generic (ADOS-G)[139] or the Autism Diagnosis Observation Schedule, second edition 

(ADOS-2)[140].  Data from 31 children with ASD (mean age: 3.09 ± 0.91) and 33 age-

matched typically developing peers (mean age: 2.92± 1.30) were retained for data analyses 

(age difference: unpaired t(62) = 0.62, P = 0.54, see Table 1 and Supplementary Table1 for 

participant characteristics). Table 1 described the clinical characteristics of the ASD and the 

TD samples. Children with and without ASD were significantly impaired relative to their 

control peers across all used behavioral assessments, including language reception, language 

expression, visual reception, and fine motor. 

 

Cognitive skills measure 

Developmental functioning was assessed using the Mullen Scales of Early Learning 

(MSEL)[141], which comprise five subscales, namely gross motor, visual reception, fine 

motor, receptive language, and expressive language scales. The four latter scales are so-called 

“cognitive scales” and are used to derive an Early Learning Composite score as a measure of 

overall developmental functioning. The subscales of visual reception and fine motor skills 

measure nonverbal ability, while receptive language and expressive language measure the 

ability to process linguistic input and use the language productively. The child receives a “1” 

for correct response and “0” for incorrect response to age-adapted items. The subtest raw 
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scores were converted into age-adjusted normalized developmental quotient (DQ) scores, 

obtained by dividing the age-equivalent scores by the child’s chronological age and 

multiplying the result by 100.   

 

Symptom severity 

Three symptom severity levels, i.e., low, moderate, high, were based on ADOS-G[139] or the 

ADOS-2[140] calibrated severity scores (Supplementary Table1), which varied from 3 to 10 

distributed into three severity grades, 3-4 low-level; 5-7 moderate-level; 8-10 high-level. 

 

Stimuli and Procedure 

We explored cortical speech processing during a passive, naturalistic task with a relatively 

low cognitive demand suitable for young children. Participants watched the four French 

TROTRO[69-72] cartoon videos, each lasting about 2.5 minutes. The video presentation was 

controlled by Tobii Studio (Tobii® Technology, Sweden). Screen size was height × width: 

1200 pixels (29◦38’) × 1920 pixels (45◦53’), with a 60 Hz refresh rate. Participants were 

seated approximately 60 cm away from the screen. The cartoon soundtrack was delivered via 

loudspeakers at a sound level adjusted for each participant. The soundtrack sampling rate was 

44.1 kHz. We removed background noise, e.g., birds’ singing, music, from the original movie 

soundtrack using Audacity® v.2.2.1 editing software. We then extracted the stimulus 

envelopes using the absolute value of the analytic signal[142]. The speech envelope was 

down-sampled to 1000 Hz, low-pass filtered using a zero-phase fourth-order Butterworth 

filter set at 40 Hz (Figure S1A). An envelope spectral decomposition was performed using 

the Fast Fourier-transform (Figure S1B). We found dominant frequencies between 1 Hz and 7 

Hz, with peaks at 1.17, 3.32, and 4.69 Hz, overlapping with the syllable rate range (4 to 6 

syllables/sec, Figure S1C) as determined by averaging peaks within the 150ms minimum-

peak-distance that was associated with the averaged French-syllable duration[143]. The 

spectrogram of the example sentence: “je veux ta bougie rigolote en échange” (I want your 

funny candle in exchange), shown in Figure 1D, was calculated using the Matlab function 

“spectrogram” (The MathWorks, Natick MA). Considering visual and auditory stimuli were 

embedded in natural, constantly changing, engaging videos, the visual motion envelope was 

also extracted from the stimulus video. Exemplary excerpts of visual motion are shown in 

Figure S1E,1F. To compute the average motion envelope across all pixels, we followed a 

method previously described in the literature[48, 144, 145]. Each video frame was converted 
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to greyscale, and the difference in luminance between two consecutive frames was computed. 

Then all pixels with a change larger than 10 (a threshold used to compensate for the noise of 

the video recording) were considered for computing the motion envelope as the average 

change value per video frame. These were done once for the length of the entire video, and 

the subsequent analysis retained only the portion of the video containing speech. On average, 

the change in luminance-derived motion envelope from one frame to the next was 0.88 units 

per frame (range 0–70.50, median=0.25). The motion envelope was then interpolated to the 

EEG sampling frequency of 1000 Hz. In all envelopes, time periods in which EEG data were 

excluded as a result of artifact rejection during preprocessing were zero-replaced. Finally, 

EEG data and visual motion envelopes corresponding to the speech parts of the soundtrack 

were aligned and available for the linear model analysis. 

 

Eye-tracking acquisition and Pre-processing 

Eye-gaze data were collected using a Tobii TX300 eye tracker (https://www.tobiipro.com), 

sampled at 300Hz. The cartoon frames subtended a visual angle of 26◦47’ × 45◦53’ (height × 

width). A five-point calibration procedure consisting of child-friendly animations was 

performed using an inbuilt program in the Tobii system. Upon verification, the calibration 

procedure was repeated if the eye-tracking device failed to detect the participant’s gaze 

position accurately. The lighting conditions in the testing room were constant for all 

acquisitions. Participants younger than four years old sat on their parents’ lap to make them 

feel comfortable and minimize head and body movements. All participants watched all four 

cartoon videos in the same order.  

 

EEG acquisition and Pre-processing 

EEG data were acquired using a Hydrocel Geodesic Sensor Net (HCGSN, Electrical 

Geodesics, USA) EEG system with 129 scalp electrodes at a 1000 Hz sampling rate. The 

reference electrode was located on the vertex (Cz), and a real-time band-pass filtered at 0-100 

Hz was applied to the incoming signal. The first two cartoon videos were presented in a first 

block, and the last two cartoon videos in a second block, with a ∼five-minute “dynamic 

image” task[146] in between cartoon videos and a 10-minutes break between blocks. At the 

end of the first block, the impedances were tested, and, if needed, the electrodes’ conductance 

was adjusted by applying conductive gel or paste to keep impedances below 40 kOhm.  

The signal pre-processing was conducted using the EEGlab v2019 toolbox within the 
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MATLAB environment[147] and Cartool  (cartoolcommunity.unige.ch). First, the dataset 

was down-sampled to the montage of 110-channels by excluding cheek and neck electrodes 

that are often contaminated by muscle artifacts. Then, a zero-phase 4th order Butterworth 

bandpass filter between 0.1 and 70 Hz was applied to the EEG signals, as well as a notch 

filter at 50 Hz to remove power line interference. Each participant’s data was then visually 

inspected to exclude periods contaminated by movement artifacts. An independent 

component analysis (ICA) was computed on the dataset to identify and remove components 

with eye blinks, saccades, electrical line noise, and heartbeat artifacts. The dimensionality of 

component was equivalent to the number of electrode arrays. Subsequently, a spherical spline 

interpolation was used to interpolate the channels contaminated by noise via the ICA-

computed data. Finally, the Cartool spatial filter[148] was applied, and a common average 

reference was recalculated on the cleaned data. A trial was defined based on the beginning 

and end of each speech chunk in the cartoon, leading to a total of 50 trials with an average 

duration of 1.69 seconds. The detected artifacts periods were replaced by NaNs (not a 

number). 

 

EEG power analysis  

To identify the oscillatory responses to speech, a Morlet wavelet transformation was 

performed from 5 s before to 5 s after each speech chunk (making sure the epoch would not 

include any artifacts) period between 0.1 and 50 Hz with 5 cycles for Gaussian taper at each 

EEG electrode[149]. Then time-course between 1s pre-onset to 1s post-onset were selected 

(based on those speech chunks with the shortest duration) trial-by-trial, and the power was 

averaged across trials and normalized by decibel conversion (dB) over a -1000 ms to 0 ms 

baseline period, allowing for between-group comparisons. EEG power in the different 

frequency bands of interest were defined as the mean power value across 0-1000 ms post-

stimulus onset. We compared ASD and TD groups in four frequency bands that are relevant 

for speech processing, i.e., theta (4-8Hz), delta (1-3Hz), beta (12-20Hz), and low-gamma (25-

35Hz).  

 

Speech envelope prediction from EEG power modulation: 

Multiple linear regression model (MLR) with distributed lags 

To probe differences between ASD and TD in oscillatory speech tracking, a multiple linear 
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regression (MLR) model with a distributed lag between -300ms and 300ms with 50ms steps 

(Figure 2A) was used to reconstruct the stimulus envelopes from the neural responses. The 

EEG signals were lagged to compensate for possible differences in temporal alignment 

between the brain response and stimulus, a widely used method in the literature[150-153]. A 

multiple linear regression model was trained on the resulting set using a 10-fold cross-

validation approach. First, all speech chunks were divided into ten consecutive segments. In 

each fold, one segment was left out for testing and the remaining segments were used for 

training. This process was repeated 10 times, ensuring that each segment was only used once 

for testing. On each fold, a multiple linear model was used to find a linear combination 

among the brain signals that best predicted the time course of the speech envelope. The 

resulting model was tested by correlating the predicted envelope with the actual speech 

envelope in the test segment. The final result, representing the oscillation tracking index, was 

obtained by averaging the correlation coefficient values in each fold.  

We deployed the approach separately in the two frequency bands implicated in speech 

tracking, i.e., theta and delta, and computed the amplitude of specific bands to obtain the 

oscillation tracking index. The amplitude was the absolute value of the Hilbert transform in 

band-specific filtered EEG, i.e., 4-8 Hz for theta and 1-3 Hz for delta. 

 

Phase-amplitude coupling 

The time-courses from electrode clusters selected from the EEG power and neural tracking 

analyses were examined for phase-amplitude coupling changes (PAC). The first step was to 

obtain estimates of low-frequency phase (fp) and high-frequency amplitude (fa) by applying 

the Hilbert transform of each bandpass Butterworth filtered trial[154]. Considering the filters 

for extracting fa must be wide enough to capture the center frequency ± the modulating fp to 

detect PAC[75, 76], we decided to use a variable bandwidth, defined as center frequency ± 

the modulating center frequency, to improve PAC detection. The fp bandwidth was kept 

narrow (center frequency ± 1Hz) to extract sinusoidal waveforms. Furthermore, changes in 

the modulation power spectrum between speech and baseline periods was visually inspected 

in each participant to confirm that oscillation peaks/troughs were present at each modulating 

frequency-band of interest fp. For instance, if the interested modulating frequency band was 4-

8 Hz, we confirmed that participants presented a real peak in the power spectrum at 4-8 Hz. 

Next, the coupling between fp and fa was quantified using the Kullback–Leibler modulation 

index[74]. The KL-MI-Tort approach estimates PAC by quantifying the amount of deviation 
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in amplitude-phase distributions. This involves breaking fp into 18 bins, and calculating the 

mean amplitude within each phase bin, normalized by the average value across all bins. 

Although the number of phase bins chosen is arbitrary, the specific number (9, 18, or 36) 

does not seem to influence PAC estimation[155]. The modulation index is calculated by 

comparing the amplitude-phase distribution (P) against the null hypothesis of a uniformly 

amplitude-phase distribution (Q).  

�� �
���,��

��	 �����
      (1) 

Mathematically, this is computed using the Kullback–Leibler distance (D), related to 

Shannon’s entropy. 

���,�	 � ∑ �����	 · log�
�����

�����
	�

����      (2) 

Using KL-MI-Tort, we calculated PAC between phases 2-15 Hz (in 1 Hz steps) and 

amplitudes 16-50 Hz (in 2 Hz steps) for the time-period 0–1000 ms following speech onset 

and a 1000 ms prestimulus baseline period. MI-values were calculated separately for each 

trial and averaged to obtain a single MI-value per amplitude and phase. To normalize MI 

values, this was repeated using surrogate data, created by shuffling trial and phase-carrying 

information (200 surrogates). 

 

Predicting Clinical Variables from Oscillatory Features 

In order to show the relationship between the brain activity and the neurophysiological 

variables, we tested whether autism severity was predicted by using only band-specific power 

per electrode (i.e., delta, theta, beta, and low-gamma power), or only neural tracking values 

per electrode, or only phase-amplitude coupling matrixes per cluster (i.e., maximum MI-

value and corresponding phase-frequency, amplitude-frequency). For this, we trained a 

Linear Discriminant Analysis (LDA) classifier using a 10-fold nested cross-validation 

procedure, which separates the data in test and training sets. The training set was further 

separated using a 5-fold cross-validation approach for parameter search (Grid search). The 

LDA classifier was trained using a diagonal shared covariance matrix. The cross-validation 

process ensured that the training and testing data sets were not overlapping, avoiding 

misleading results due to overfitting. The input to the classifier was the band-specific EEG 

power, neural-tracking, and PAC for each participant, and the label to be predicted was 

symptom severity (i.e., low, moderate, and high). All empirical thresholds were obtained 

through cumulative binomial distribution[156].  
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Then, we probed the relationship between the neural and cognitive skills using a regularized 

linear model per frequency band (i.e., delta, theta, beta, and low-gamma power), per neural 

tracking per electrode, and per PAC matrix (i.e., maximum MI-value and corresponding 

phase-frequency, amplitude-frequency) to determine which critical oscillation (or 

combination of oscillations) was the best predictor of cognitive skills within group, e.g., the 

higher the tracking value, the higher the speech reception. The linear model was based on 

Lasso regression which requires finding the best hyper-parameters within high dimensional 

data[157]. We also used a 10-fold nested cross-validation approach to improve model 

selection. The training set was further separated using a 5-fold cross-validation approach for 

parameter search (Grid search). The results were presented as averaged R2 values, which 

indicate the prediction power of a given feature, i.e., higher R2s signal higher prediction 

accuracy. 

Statistical analysis 

Between-group statistical comparisons of band-specific EEG power and neural tracking were 

done using cluster-based nonparametric permutation tests with Monte Carlo 

randomization[77] using the FieldTrip toolbox[158]; http://fieldtriptoolbox.org). For details, 

between-groups differences (ASD vs. TD) were assessed with unpaired t-statistics. First, 

clusters of significant group differences were obtained by considering at least two adjacent 

electrodes whose t-value exceeded a 5% significance threshold (ASD vs. TD, unpaired t-test, 

uncorrected for multiple comparisons). The maximum t-value within each cluster was carried 

forward. Next, a null distribution was obtained by randomizing the group label 1,000 times 

and calculating the largest cluster-level t-value for each permutation. The maximum t-value 

within each original cluster was then compared against this null distribution, with values 

exceeding a threshold of p < 0.05 deemed significant. Besides, between-group differences of 

neural tracking were tested by means of unpaired t-test for all-electrodes analyses.  

To assess changes in the comodulograms of PAC between the speech and baseline periods, 

then we repeated the nonparametric cluster-based statistics[77], except the first step that 

uncorrected dependent-samples t-test was performed (speech vs. baseline), and all MI-values 

exceeding a 5% significance threshold were grouped into clusters.  
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