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Abstract5

Existing models of human walking use low-level reflexes or neural oscillators to generate movement.6

While appropriate to generate the stable, rhythmic movement patterns of steady-state walking, these7

models lack the ability to change their movement patterns or spontaneously generate new movements in8

the specific, goal-directed way characteristic of voluntary movements. Here we present a neuromuscular9

model of human locomotion that bridges this gap and combines the ability to execute goal directed10

movements with the generation of stable, rhythmic movement patterns that are required for robust11

locomotion. The model represents goals for voluntary movements of the swing leg on the task level of12

swing leg joint kinematics. Smooth movements plans towards the goal configuration are generated on the13

task level and transformed into descending motor commands that execute the planned movements, using14

internal models. The movement goals and plans are updated in real time based on sensory feedback and15

task constraints. On the spinal level, the descending commands during the swing phase are integrated16

with a generic stretch reflex for each muscle. Stance leg control solely relies on dedicated spinal reflex17

pathways. Spinal reflexes stimulate Hill-type muscles that actuate a biomechanical model with eight18

internal joints and six free-body degrees of freedom. The model is able to generate voluntary, goal-19

directed reaching movements with the swing leg and combine multiple movements in a rhythmic sequence.20

During walking, the swing leg is moved in a goal-directed manner to a target that is updated in real-time21

based on sensory feedback to maintain upright balance, while the stance leg is stabilized by low-level22

reflexes and a behavioral organization switching between swing and stance control for each leg. With23

this combination of reflexive stance leg and voluntary, goal-directed control of the swing leg, the model24

controller generates rhythmic, stable walking patterns in which the swing leg movement can be flexibly25

updated in real-time to step over or around obstacles.26

1 Introduction27

Walking is one of the most common movements humans perform every day. Walking consists of putting one28

foot in front of the other while moving the body forward. Most of the time walking does not require attention.29

But when walking in complex terrain, we are able to precisely step to suitable locations. When someone30

bumps into us, we are able to modify our normal movement pattern to maintain upright balance. In these31

situations, we are able to quickly and smoothly transition to conscious control of the usually largely reflexive32

walking movement. The motor control of walking as a movement that is usually habitual and reflexive,33

sometimes voluntary and goal-directed, and often somewhere in-between is currently not well understood.34

In this paper, we present a neuromechanical model for generating walking movements that is capable of35

covering the whole range of walking movements between these two poles.36

1.1 Human Walking as a Voluntary Movement37

Human movement shows amazing flexibility. We can perform a wide variety of tasks that require different38

movement patterns and coordination between body parts. Meaningful tasks usually require us to move a39

body part or tool to a goal position, such as the finger to a button or a screwdriver to a screw. Many tasks40

also contain additional requirements for timing or force, e.g. catching a ball in the air or hitting a nail with41

a hammer. The human nervous system routinely solves complex movements tasks in situations that it never42
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specifically encountered before, using sensory information to generate a movement plan and update it during43

execution.44

Humans are able to flexibly modify the basic pattern of their gait cycle during walking (Steele et al., 2012;45

Ackermann and van den Bogert, 2012). At a high level, a walking movement pattern can be quantified by46

variables like speed and heading direction, and the length, width, duration and frequency of steps, typically47

referred to as gait parameters (Levine et al., 2012). Humans can generally choose these parameters as48

desired. They can change direction, walk fast or slow, with narrow or wide steps and a slow or fast pace,49

etc. (Inman et al., 1981). In addition to this high-level flexibility of gait patterns, humans are also able to50

choose how exactly they perform each low-level limb movement. Stepping to a fixed location in a fixed time51

can be performed with a variety of trajectories for the swing foot. We can swing the foot higher to step52

over an obstacle, or closer to the stance leg to step around an object. We can also choose to walk with bent53

knees, with the foot rotated in or out, or tip-toe by limiting ground contact to the balls of the foot and keep54

the heels up.55

1.2 Stability and Upright Balance56

One aspect of moving a body part to a target is the ability to confine movement to only the desired body57

part, while keeping the rest of the body stable and un-moving. Pushing a button requires not only muscles58

along the arm and shoulder to move the finger to the button, but also muscles along the trunk and legs to59

stabilize the rest of the body, so that the contact force at the finger results in moving the button in rather60

than the body away (Woollacott et al., 1984). Muscle activation measurements reveal that when initiating61

such a manipulation movement while standing, muscles along the legs and trunk that stabilize the body62

activate earlier than muscles along the shoulder and arms that move the arm (Aruin et al., 1998). Stability63

is an integral part of the motor system that is integrated into the movement plan at all stages (Bouisset and64

Zattara, 1987).65

Stability is especially important for the upright body as a whole. When the body is upright during66

standing or walking, failure to stabilize it properly can lead to a fall, resulting in impact with the ground67

and serious injury. Yet for walking, “not moving” is not an option. We cannot keep parts of the body static68

relative to the environment, because locomotion of the whole body to a different place is the functional goal.69

The task for the nervous system is to generate a stable movement pattern for the whole body, transporting70

it with a relatively constant velocity from one point to another, while keeping movements in other directions71

to a minimum. To solve the main task of locomotion, the legs need to generate forces against the ground,72

initially to accelerate the body in the direction of travel and reach a steady state of motion, then to regulate73

the body movement around the steady state movement pattern and correct deviations from it. To prevent74

falls, the legs need to generate vertical forces that keep the body mass at a certain height, and also horizontal75

forces that regulate the body movement in the direction orthogonal to the direction of travel. Both of these76

requirements need to be combined into a cyclical pattern of moving one leg ahead in a step while supporting77

the body weight with the other one, then shifting weight and the role of the legs.78

1.3 Habitual Control79

Despite the flexibility to choose from a large range of walking patterns and movements, normal human80

walking is usually highly repetitive, with few variations. Humans will generally choose a walking pattern81

and then adhere to it for longer stretches of time, with gait parameters relatively stable on a time scale of82

minutes (Dean, 1965). One factor driving this long-term stability of walking patterns is energy efficiency.83

The “cost of transport” of using metabolic energy to move from one place to another depends on the walking84

speed, with large cost at high and low speeds, and lower cost at medium speeds (Ralston, 1958). Humans85

usually choose to walk near the speed where this metabolic cost of transport is minimal (Ralston, 1958;86

Browning et al., 2006; Summerside et al., 2018). A second factor affecting the choice of gait pattern is87

balance (Bauby and Kuo, 2000; Reimann et al., 2018a). Walking with increased step width increases the88

base of support during double stance, so the body is passively more stable (Donelan et al., 2004). But89

higher step width also leads to larger average displacement between the body center of mass and the stance90

foot during single stance, increasing the lever arm of the gravitational force pulling the body down, and91

thus the muscle forces required to counter gravity and keep us upright. Higher muscle forces require more92
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metabolic energy, so there is a trade-off between balance and metabolic cost, where gait patterns that are93

more stable are also less efficient Donelan et al. (2001). Balance is also actively maintained by changing94

the foot placement relative to the average gait pattern based on the current state of the body in space95

(Wang and Srinivasan, 2014; Bruijn and van Dieën, 2018; Reimann et al., 2018b). This active control of foot96

placement aggregates high-level sensory information about the body in space from the visual and vestibular97

and proprioceptive systems (Peterka, 2002) and maps it to changes in foot placement. This mode of control98

is neither reflexive in the narrow sense nor voluntary or conscious, but similar to online updating to a new99

target during a reaching movement (Scott, 2004).100

The choice of gait pattern is different across different groups of people. Older people tend to walk more101

slowly (Osoba et al., 2019; Reimann et al., 2020; Pijnappels et al., 2008). People with Parkinson’s Disease102

tend to take short, shuffling steps (Jankovic, 2008). People with Cerebral Palsy often swing their legs out103

to the side much more than typical (Sutherland and Davids, 1993). While there are reasonable explanations104

for some of these gait pattern changes, the underlying causes are often not well understood. One reason for105

this limited understanding is the complexity of the problem. Walking is a biomechanically complex motor106

pattern with many moving parts (Nielsen, 2003). The concrete choice of motor pattern depends on many107

different factors, including metabolic energy cost, avoiding muscle fatigue, stability and control of upright108

balance, and external constraints such as obstacles and the condition of the walking surface (Kirtley et al.,109

1985; Prentice et al., 2004; Voloshina et al., 2013; Hunter et al., 2010; Matthis and Fajen, 2014; Summerside110

et al., 2018; Kung et al., 2018). While motor control of walking is largely sub-conscious, cognitive processes111

also play a role, and secondary tasks during walking have routinely been shown to affect gait parameters112

and balance control (Matthis and Fajen, 2014).113

1.4 Modeling Walking Control114

To understand the interactions between different factors that drive the choice of walking movement pattern,115

we need a computational model that includes all factors of interest (Allen and Ting, 2016; De Groote and116

Falisse, 2021). Such a model allows us to manipulate individual factors and observe the resulting changes in117

the walking pattern directly in simulation studies (Reimann et al., 2020). Existing neuromechanical models118

of walking largely focus on the generation of rhythmic movement patterns and balance control. The rhythmic119

movement patterns are either generated by neural oscillators (Taga, 1995a; Van der Noot et al., 2018) or by120

a finite state machine switching between different movement states depending on ground contact (Günther121

and Ruder, 2003; Geyer and Herr, 2010). These existing models have some degree of flexibility. Some models122

can walk at different speeds (Taga, 1995b; Song and Geyer, 2015; Van der Noot et al., 2018), change direction123

(Van der Noot et al., 2018), and step over obstacles (Taga, 1998; Song and Geyer, 2015). This can be achieved124

by re-parameterizing a model, essentially optimizing a large number of neuromechanical parameters to walk125

at a range of different speeds, and then switching between these parameter sets, or interpolating between126

them, to change speed during walking (Song and Geyer, 2015; Van der Noot et al., 2018; Di Russo et al.,127

2021). Another approach is to modulate the central neural drive of a model to oscillate faster (Taga, 1995b;128

Van der Noot et al., 2018). Similar techniques can be used to step over obstacles, either increasing the129

gain between the central oscillator and the flexor muscles of the swing leg hip and knee (Taga, 1998), or130

the target flexion angle for a reflex at the same joints, with similar effect (Song and Geyer, 2015). These131

approaches generally provide solutions for one specific problem, e.g. walking at different speeds or stepping132

over an obstacle, but do not generalize directly to related problems, such as walking at different cadences133

or stepping around an obstacle, rather than over it. Humans, in contrast, are not only capable of flexibly134

modulating gait parameters or the path of the swing foot, but can spontaneously walk in novel patterns,135

which they never used or observed before.136

Our goal is to develop a neuromechanical model of walking that shows a similar degree of flexibility as137

humans, in that it can generate any desired walking pattern. We postulate that the key limitation of current138

walking models is that they are almost completely spinal, and lack cortical motor planning and control.139

These high-level features are usually studied as part of upper extremity reaching movements (Kalaska et al.,140

1997; Sabes, 2000; d’Avella and Lacquaniti, 2013). Some researchers have pointed out the duality of steps as141

(i) part of a cyclical movement pattern of the whole body for locomotion and (ii) a reaching movement with142

the foot (Reynolds and Day, 2005b,a; Smid and den Otter, 2013; Mowbray et al., 2019; Barton et al., 2019).143

Experimental evidence indicates that stepping movements during walking are generated rhythmically using144
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low-level, reflexive structures (Mutha, 2017; Ivanenko et al., 2006; Zehr and Stein, 1999; Stein, 1991). On145

the other hand, these movements can be precisely and efficiently modulated by high-level influences when146

desired, e.g. to step to a specific target or around an obstacle (Zhang et al., 2020).147

Here we present a model extension that attempts to bridge this gap between existing neuromechanical148

models of walking and the ability to plan and execute voluntary movements with the leg. The key innovation149

in our model is an explicit movement plan for the swing leg on task level. The high-level movement plan150

is executed by transforming the planned movements into descending commands that integrate with the151

low-level, reflexive control architecture of the spinal cord, using internal models to account for dynamic152

interaction forces and properties of the muscles and spinal reflexes. For the stance leg, we use an existing153

solution of dedicated spinal reflex modules that generate the appropriate muscle activation with minimal154

high-level input (Song and Geyer, 2015). We show that this model is able to generate voluntary swing leg155

movements, and to integrate these swing leg movements into a rhythmic walking pattern, modulated by156

high-level feedback to maintain upright balance.157

2 Methods158

The model spans multiple levels, across high-level movement planning and coordination, spinal reflex arcs,159

muscle physiology and skeletal biomechanics. Figure 1 provides an overview. A finite state machine organizes160

the model and switches between swing and stance phase control for each leg. In the supraspinal layer, a161

volition module represents task-level movement goals, a planning module generates motor plans to reach162

the goal state and a balance module updates the movement plan based on real-time sensory feedback about163

the body in space. An internal model then transforms the high-level motor plan into descending motor164

commands that interface with the spinal cord to execute the planned movement. In the spinal cord, the165

swing leg is controlled by a generic stretch reflex that is modulated by the descending commands, while166

the stance leg control is purely reflexive. Reflexes stimulate Hill-type muscles that actuate a biomechanical167

model.168

The key innovation here is the integration of the volition module in the supraspinal layer that prescribes169

movement goals with the other components. While the volition module itself is relatively simple, the main170

challenge in the development of this model was to integrate the task-level movement goals with the low-level171

spinal reflex control modules so that the resulting system can combine stable, repetitive walking movements172

with voluntary, goal-directed movements that solve tasks represented in the volition module. The finite state173

machine, balance control, spinal reflexes, muscle model and biomechanics are all modeled with standard174

solutions from textbooks or the literature. Each module is described in detail below.175

2.1 High-level Control176

2.1.1 Behavioral organization177

Walking requires the sequential execution of different movements for each limb, organized in a cyclical pattern178

(Moissenet et al., 2019; Fukuchi et al., 2018). We organize the model behavior in three phases per leg, (1)179

early swing, (2) late swing and (3) stance. A finite state machine generates transitions between these phases180

based on sensory information of ground contact and internal timing. The early swing phase is initiated by181

the detection of ground contact of the contralateral leg (3 → 1). Transition to the late swing phase occurs182

after a fixed time of 0.3 s (1 → 2). The late swing phase lasts until ground contact is detected, leading to a183

transition to the stance phase (2 → 3). This system is functionally equivalent to one with four global states184

of early swing and late swing for each leg, used, e.g. by Yin et al. (2007), since ground contact detection185

of the swing leg triggers transitions. During swing, the leg is controlled in a goal-directed way based on a186

movement plan (see Section 2.1.4 below). During stance, the leg is controlled in a purely reflexive way (see187

Section 2.2.2 below).188

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.26.461864doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.26.461864
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Overview of the model architecture. In the supraspinal layer, a balance control equation defines target joint angles
for the swing leg at mid-swing and heel-strike. The target joint angles can be modified to perform volitional, goal-directed
movements. A movement plan towards these target joint configurations is generated by minimal jerk trajectories that can
be updated during execution. An internal inverse model comprising biomechanics, muscle moment arms, muscle activation
properties and the spinal stretch reflex produces descending commands that realize the planned movement. The descending
commands are integrated with the stretch reflex in the spinal layer. Stance leg control is realized with five dedicated reflex
modules Song and Geyer (2015). Reflex outputs are the applied to the biomechanical model that provides feedback to the
controller. A finite state machine organizes switches between early swing phase, late swing phase and stance phase.
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2.1.2 Volition189

A goal for a voluntary movement of the swing limb is a desired configuration of the limb kinematics, repre-190

sented by a vector of desired joint angles θ̃i.
1 In principle, this goal configuration can be anything, and we191

will probe the generation of movements to randomly chosen configurations (see Section 3.1). For walking,192

the goal configuration for each movement phase must be appropriate to generate a stable gait pattern, and193

we use evolutionary optimization to find suitable configurations. During individual steps, the goal config-194

urations can be modified to address specific tasks, such as obstacle avoidance (see Section 3.2 or balance195

control (see Section 2.1.3).196

2.1.3 Balance Control197

Maintaining balance requires the integration of state feedback about the body in space into the movement198

plan. We use position and velocity feedback of the trunk center to update the desired target orientation of199

the thigh in space. Following Yin et al. (2007), we use the control law200

φ̃thigh = φ0 + cdd̂+ cv v̂, (1)

where φthigh is the desired orientation of the swing leg thigh, φ0 is a constant offset, d̂ = d(t − ∆t) are201

the time-delayed horizontal displacement from the center of pressure (CoP) to the trunk segment center,202

v̂ = v(t − ∆t) the time-delayed rate of change of that displacement and cd and cv are feedback gains.203

Equation 1 is applied independently for the sagittal and frontal plane orientation of the thigh. We then204

calculate target joint angles for each DoFs of the hip joint205

θ̃hip = φ̃thigh − φtrunk (2)

by subtracting the trunk orientation θtrunk,world from desired thigh orientation, again separately in the frontal206

and sagittal planes. Note that if the target joint angle for the knee in the late swing phase is close to zero,207

the thigh angle will correspond closely to the swing leg angle in space, which is relevant for balance.208

2.1.4 Movement Planning209

The swing leg is controlled in a goal-directed way according to a task-level motor plan. The task-level goal210

is a kinematic configuration of the swing leg, defined by the swing leg joint angles, combined with a target211

time at which the goal configuration should be reached. Goal configurations and target times are different212

for early and late swing phase and can be updated to maintain whole-body balance (see Section 2.1.3 above)213

or to generate specific voluntary movements. The leg will typically be far away from the goal configuration214

at the onset of each movement phase, and there is an infinite number of possible movement trajectories that215

will fulfill the task constraints. Human movements are generally smooth and avoid unnecessary spikes in216

force and acceleration, and a standard way to plan such movements are minimum jerk trajectories (Hogan,217

1984).218

For a given combination of initial state219

X0 =
(
θ0, θ̇0, θ̈0

)
(3)

and goal state220

Xtgt =
(
θ̃,

˜̇
θ,

˜̈
θ
)
, (4)

of joint angles, velocities and accelerations for a single joint angle θ, and a movement duration T , the221

minimum jerk trajectory is a 5th-order polynomial222

x(t) =
5∑
k=0

akt
k, (5)

1The tilde in θ̃i indicates that this is a desired state of the joint angle, in contrast to the actual joint angle θi. We will use
this convention of the tilde to denote desired states throughout the rest of the text.
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with parameters ak that fulfill the constraints223 (
x(0), ẋ(0), ẍ(0)

)
= X0,

(
x(T ), ẋ(T ), ẍ(T )

)
= Xtgt, (6)

which can be computed analytically depending on T , X0 and Xtgt. We use a version of the minimal jerk224

approach that allows changes in target states and time before the movement is complete. For every moment225

in time t, we regard the current state estimate226

Xt =
(
θ̂(t),

̂̇
θ(t),

̂̈
θ(t)

)
=
(
θ(t), θ̇(t), θ̈(t)

)
, (7)

as the initial state of a new movement and compute parameters ak(t) such that in the remaining time (T−t),227

the movement reaches the target state Xtgt. From the resulting parameters ak(t), we compute the jerks228

j(t) =
...
x t(t

′) =
d3xt(t

′)

dt′3
. (8)

For very small remaining movement times T − t < 0.03 s, we stop updating the motor plan. Integrating229

these jerks over time yields a desired joint acceleration230

˜̈
θswing(t) = a(t) =

∫
j(t′)dt′ (9)

to be realized with descending motor commands. The tilde indicates that this is a planned, or desired,231

joint acceleration, in contrast to the actually realized joint acceleration that will be a combination of active232

and passive muscle-tendon forces, gravity, ground reaction forces and interaction torques. We will keep this233

convention to use a tilde to indicate planned or desired values for a variable from here on. By applying this234

procedure of updating the planned trajectory based on the estimated state during the entire movement, we235

are able to adapt the initial minimal jerk trajectory to account for any external or internal perturbation and236

correct the resulting errors.237

We use this procedure to generate a minimum jerk trajectory for each degree of freedom in the swing leg238

that moves the leg to the target configuration in the given time. The target joint angles for early swing and239

late swing are part of the parameters set that is determined by evolutionary optimization (see Section 2.4240

below).241

2.1.5 Transformation into Descending Motor Commands242

The motor plan is represented by a minimum-jerk trajectory that moves the joint configuration to the desired243

state in the remaining time (see Section 2.1.4 above). At each point in time, this planned trajectory defines a244

vector of desired joint accelerations
˜̈
θswing for the swing leg. Executing the motor plan means realizing these245

planned joint accelerations. Here we describe how this vector of desired joint accelerations is transformed246

into a descending motor command that executes the motor plan. We solve this problem using inverse models247

of the biomechanics, muscle force dynamics and spinal reflex arcs, with simplifying assumptions.248

Inverse Dynamics. The biomechanical Equation of Motion (17) relates joint accelerations to joint torques.249

We augment the planned vector of joint accelerations for the four degrees of freedom in the swing leg by250

zeros (Siciliano and Khatib, 2008) in the components for the stance leg and the six free-body degrees of251

freedom of the trunk to get a vector of joint acceleration for the full 14-DoF model252

˜̈
θfull =

 06×1
˜̈
θswing

04×1

 (10)

and use an Equation (17) to get a planned joint torque vector253

τ̃full = M(θ̂)
˜̈
θfull + C(θ̂,

̂̇
θ) + G(θ̂), (11)
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where θ̂(t) = θ(t+ δθ) and
̂̇
θ(t) = θ̇(t+ δθ̇) are time-delayed sensor estimates of the body configuration and254

rate of change. We then take the swing leg components τ̃swing of255

τ̃full =

 τ̃trunkτ̃swing

τ̃stance

 (12)

as the desired joint torques for the swing leg that will execute the motor plan. We implement Equation 11256

using the Inverse Dynamics block in Simulink.257

Muscle Moment Arm Inversion. In order to obtain a set of muscle forces F̃ that generate the desired258

joint torques τ̃ , we use the Moore-Penrose pseudo-inverse (Murray et al., 1994) of the moment arm matrix259

C to get260

F̃ (1) = C+(θ)τ̃ . (13)

The resulting force vector F̃ (1), however, can contain negative forces, which cannot physically be generated261

by muscles. Instead of using a computationally intensive solution like the non-negative least squares (Lawson262

and Hanson, 1995), we use an iterative approximation. We separate the negative part of the resulting forces263

F̃
(1)
− , consisting of the muscle forces with negative signs from the positive part of the forces F̃

(1)
+ and compute264

the joint torques produced only by the negative forces τ
(1)
− = C(θ)F

(1)
− . We then apply Equation 13 again on265

these torques, getting F̃ (2) = −C+(θ)τ
(1)
− , which will also contain both positive and negative forces. Iterating266

this procedure leads to progressively smaller remaining negative forces F̃
(i)
− . We apply this procedure for a267

total number of 7 iterations and sum up all positive forces to obtain F̃ =
∑7
i=1 F̃

(i)
+ as a force vector that268

will approximately generate the joint torques τ̃ .269

Inverse Muscle Model. The force generated by a muscle depends on its activation level and its current270

length and velocity. We compute the activation needed to generate the desired muscle force F̃ by inverting271

the muscle model, with some simplifications. We neglect the low pass filtering of the muscle activation272

which models the excitation-contraction coupling, setting S̃ = Ã. We approximate the total muscle force Fse273

with the force of the contractile element Fse, neglecting the contributions of the passive buffer and parallel274

elements. This is reasonable because the buffer and the parallel element are active only when muscles are275

extensively stretched or compressed, which is usually not the case during walking.276

We then invert Equation 19 to calculate the neural stimulation S̃ needed to generate the desired muscle277

force as278

S̃ =
F̃

Fmaxflfv
. (14)

All terms here are 22-dimensional vectors, with one component per muscle, and the operations are executed279

element-wise.280

Spinal Stretch Reflex Modulation. The descending commands from the high-level motor areas have281

to interface with the reflex arcs in the spinal cord to generate muscle activation levels that will execute the282

planned movement. Described in detail in Section 2.2 below, we assume that the descending command both283

(i) directly creates muscle activation leading to contraction and (ii) shifts the reference point of the spinal284

stretch reflex to a new location corresponding to the contracted state. We solve Equation 16, which models285

this behavior, to calculate a descending motor command286

u =
S̃ + h

Kl
− lce. (15)

Note that while we neglected the velocity term in the stretch reflex Kv(v̂ce + u̇) here, it is this velocity-287

dependent term that will initially create the direct muscle activation, determined by u̇. This descending288

motor command u will interact with the spinal stretch reflex to generate the desired muscle activation S̃289

that executes the motor plan.290
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2.2 Spinal Control291

Spinal control consists of reflexive neural feedback loops, i.e. feedback laws that generate neural activation292

proportional to low-level proprioceptive signals about muscle length, velocity or force, modulated by descend-293

ing commands on a slower time-scale. We treat control of the leg during swing separately from the control294

of the leg during stance. While the swing leg is controlled by a combination of descending commands and295

a generic stretch reflex, the stance leg is controlled by specialized reflex modules that implement a specific296

function.297

2.2.1 Swing Leg298

During swing, the neural stimulation for each muscle is generated by a generic stretch reflex299

S = [Kl(l̂ce + u) +Kv(v̂ce + u̇)− h]+, (16)

where l̂ce and v̂ce are proprioceptive signals from muscle spindles that estimate the stretch and stretch rate300

of change of the muscle contractile element, Kl and Kv are gain factors, h is the resting level activation of301

the α-motorneuron and u and u̇ are the descending motor command and its rate of change.302

Note that the descending command u acts as a threshold for the reflex loop and the rate of change u̇303

is used for relative damping. When the descending command u increases to contract the muscle, both u304

and u̇ will increase initially, generating a stimulation burst that is mostly driven by the rate of change u̇.305

While formulated as a single stretch reflex with relative damping here, this is functionally equivalent to a306

formulation where the α-motorneuron activation level is determined by a sum of a spinal stretch reflex and307

a descending motor command, as used in other models (Feldman, 1986; Gribble et al., 1998; Günther and308

Ruder, 2003; Kistemaker et al., 2007; Buhrmann and Di Paolo, 2014).309

This principle of modulating a generic stretch reflex with a descending motor command leads to the flex-310

ibility to execute motor plans for goal-directed movements via appropriately chosen descending commands,311

combined with the robustness of a stretch reflex that provides a level of postural stability to the muscle-joint312

system in situations where it is not part of a goal-directed movement.313

2.2.2 Stance Leg314

During stance, the leg is controlled by purely spinal mechanisms, without modulation by descending motor315

commands and without the flexibility to execute goal-directed movements. Proprioceptive information from316

different muscles and joints is mapped to proportional muscle activation in a set of dedicated neural control317

laws that implement specific functions, organized in five modules following Song and Geyer (2015). Briefly,318

the modules (1) generate compliant, spring-like leg behavior, (2) prevent knee overextension, (3) keep the319

trunk upright, (4) compensate interaction torques from swing leg movements and (5) dorsiflex the ankle320

joint to prevent hyperextension. Please refer to Song and Geyer (2015) for details.321

2.3 Muscoskeletal Mechanics322

2.3.1 Body Model323

The body model represents a person of 180 cm height and 80 kg weight. It is composed of seven body324

segments, eight degrees of freedom (DoF) and 22 muscle-tendon units (MTU). Body segments comprise two325

thighs, shanks and feet, and a trunk segment that represents the entire upper body, including head and arms326

(Song and Geyer, 2015). Revolute joints link the body segments with two DoFs at each hip (pitch and roll),327

one DoF at the knees (pitch) and one DoF at the ankles (pitch). The equation of motion328

τ = M(θ)θ̈ + C(θ, θ̇) + G(θ) + Text (17)

relates joint torques τ , gravitational torques G and external torques Text to joint accelerations θ̈, where M329

represents the mass matrix and C the velocity dependent terms. Joint accelerations θ̈ and torques τ are330

14-dimensional vectors, with the eight internal DoFs and six free-body DoFs for translation and orientation331

of the trunk segment. Note that the six free-body DoFs of the trunk are un-actuated. Geometry and inertia332

of the body segments are adopted from Song and Geyer (2015).333
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Each leg is actuated by eleven Hill-type MTUs that are either mono- or biarticulary (see Section 2.3.2334

below for details). Nine MTUs actuate the three pitch joints (hip, knee, ankle) and two MTUs actuate335

the hip roll joint. Pitch joint muscles model the lumped hip flexors, glutei, hamstrings, rectus femoris,336

vasti, biceps femoris short head, gastrocnemius, soleus and tibialis anterior. Roll joint muscles represent the337

lumped hip adductors and hip abductors. Muscles forces translate into joint torques via state-dependent338

moment arms that are adopted from Song and Geyer (2015), via339

τ = CF, (18)

where F is the 22-dimensional vector of muscle forces and C is the 14× 22 matrix of moment arms.340

2.3.2 Muscle-Tendon Units341

Each muscle tendon unit (MTU) is composed of a parallel element (PE), a buffer element (BE), a contractile342

element (CE) and a serial elastic element (SE). We provide an overview here and refer the reader to Geyer343

and Herr (2010) for details. The contractile element is the actual active muscle element. It is innervated by344

the α-motorneurons and exerts the force345

Fce = AFmaxfl(lce)fv(vce). (19)

Here, Fmax is the maximum isometric force, fl(lce) and fv(vce) are the force-length and force-velocity relation-346

ships and A is the muscle activation level. The serial element models the tendon and applies the generated347

forces Fse to the body. The parallel element passively prevents the muscle from being stretched extensively348

and exerts a force Fpe(lce) after the muscle lengths exceeds a certain maximal length. In contrast, The buffer349

element is a passive element that prevents the muscle from being compressed too much. It generates the350

force Fbe(lce) only after the muscle length shortens below a certain minimal length. Muscle activation A is351

modeled as a first-order low-pass filtered copy of the neural stimulation S representing the α-motorneuron352

output353

A = S − τA
dA

dt
(20)

where τA is a time constant Gribble et al. (1998). The total force Fmtu generated by a MTU is given by354

Fmtu = Fse = Fce + Fpe − Fbe. (21)

2.3.3 Ground Contact Forces355

Ground contacts at each foot are modeled with four contact points, two at the heel and two at the front356

of the foot, with a lateral displacement of 5 cm between the two points at the heel and 10 cm at the front.357

We compute ground reaction forces by using the inbuilt MATLAB Spatial Contact Force block. Contact358

parameters are chosen to simulate an asphalt surface.359

2.4 Parameters and Tuning360

The model contains a large number of parameters for different components of the model. Some of these361

parameters are constrained by the neurophysiological literature and set to constant values based on estimates.362

To determine the other parameters, we use an evolutionary optimization algorithm similar to the one used363

inSong and Geyer (2015), based on the covariance-matrix adaptation technique (Hansen, 2006), using the364

cost function365

J =

{
2c0 − xfall if fall

c0 + dsteady else
(22)

The first part of the cost function generates basic walking without falling and the second part generates366

steady locomotion. The constant c0 = 103 is a normalization factor and dsteady measures the “steadyness”367

of the gait. We calculate dsteady as368

dsteady =

n∑
j=n−2

limb∑
i=1

[
pi(HSj)− pi(HSj−1)

]
, (23)
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Parameter value (s)
dθ 0.01
dθ̇ 0.01
dθ̈ 0.01

dmuscle length 0.01
dmuscle velocity 0.01
dbalance control 0.1

du 0.0025
du̇ 0.0025
dl 0.0025
dv 0.0025

Table 1: Time Delays.

with pi being the relative Cartesian position of the i-th limb and HSj being the jth-last left heelstrike.369

We optimize a total amount of 52 parameters. The same set of parameters is used for all experiments370

described in the results section.371

3 Results372

The model generates stable walking behavior with a movement speed of about 1.3 m/s. The walking pattern373

roughly matches human data. Figure 2 compares joint angle trajectories across one gait cycle averaged over374

a 100 s walk to human walking data from a public data set (Fukuchi et al., 2018). The human data is from375

N=24 healthy young participants (10 female, age 27.6 ± 4.4 years, height 171.1 ± 10.5 cm, and mass 68.4376

± 12.2 kg) walking overground at their self-selected, comfortable speed. Panel A shows hip flexion angle for377

the model (blue) with human data (orange). The overall shape of the model trajectory matches human data.378

At about 90 % of the gait cycle, the model flexes the hip more strongly than the average experimental data.379

The model movements are also less smooth than the experimental data. Panel B shows the knee flexion380

angle. Again, the model generally follows the human pattern. During the stance phase, the model exhibits381

two sharp peaks while human data shows one wider peak in contrast. During swing, humans extend their leg382

a little earlier then the model does. Panel C shows the hip adduction angle. Here, the overall shape of the383

model data differs from human data. The model trajectory is less smooth and has less overall range of motion384

throughout the gait cycle. Note, however, that the hip adduction in humans is quite variable, and despite385

the structural differences, the model data lies within the confidence interval of human data during a large386

part of the gait cycle. Panel D shows the ankle flexion angle. The overall pattern of the model trajectories387

differs significantly from the human data. The ankle dorsiflexion peak is slightly after mid-stance, much388

earlier than in the human data. In swing, the model shows consistently higher dorsiflexion than humans.389

In order to investigate the robustness of the models walking behavior, we exposed it to external per-390

turbations in the form of force pulses of increasing strengths applied at the center of the trunk segment391

in different directions. Perturbations started at foot contact, lasted for 0.2 s, and were directed forward,392

backward, medially or laterally. Force amplitude was ramped up until the model failed to maintain balance393

after the perturbation, starting at 50 N and increasing in steps of 50 N. After the model fell, we decreased394

the step size to 5 N from the previous value, until it fell again. The maximal force the model was able to395

withstand without falling was 340 N for lateral, 305 N for medial, 165 N for forward and 130 N for backward396

pushes.397

3.1 Swing Leg Movement398

We evaluate the ability of the model to plan and execute voluntary movements with the swing leg in three399

simulation studies. For each movement type, we demonstrate that the control of voluntary movement works400

and the limb follows the movement trajectory as planned. To isolate the swing leg and remove balance control401

as a factor for these stimulation studies, we passively stabilized the trunk segment by fixing its position in402
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Figure 2: Comparison with human data. Averaged hip pitch, hip roll, knee and ankle joint angle trajectories for human
data (orange) and model data (blue). The model data are averaged over 100 seconds of steady state walking. Human
data are taken from Fukuchi et al. (2018). Solid lines are means and shaded areas are 95% confidence intervals, across
participants for the human data and across gait cycles for the model.
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Figure 3: Swing leg ankle paths for a sequence of twelve center-out-return movements with passively stabilized trunk. The
dashed lines show the planned paths and the blue lines show the realized ankle paths.

space.403

In the first simulation study, we show that the model can perform individual reaching movements with404

the foot. The model performs a sequence of center-out reaching movements with the foot to twelve different405

target locations, followed by a return movement to the center location. Target locations were defined as406

positions for the ankle and transformed into joint space using the inverse kinematics solution in the MATLAB407

RigidBodyTree toolbox. The movement plan in joint space from the current to the target configuration was408

then generated as described in Section 2.1.4 above. The specific target locations were chosen to cover a large409

portion of the workspace, without being too close to the limits, resulting in path lengths between roughly410

0.20–0.55 m. Each single movement segment had a duration of 0.5 s. Figure 3 shows the resulting movement411

paths of the ankle position in workspace for this sequence of reaching movements. The ankle always reaches412

the target positions reasonably well. The largest deviation from the planned path is at the start of the first413

movement, to the top right target, which is due to the muscles being initialized without tension. The paths414

match the reference paths with an overall root-mean-squared error of 0.003 m between the planned and the415

actual ankle position.416

In the second simulation study,417

the model performs repetitive goal-directed movements between two points in joint space over 10 s,418

following sinusoid profiles with 1 Hz for each joint. Figure 4 shows the resulting joint angle trajectories419

(solid lines) and the planned trajectories for each joint (dashed lines). The real joint angle trajectories are420

a good fit of the planned movement, with only the ankle joint showing more than minimal deviation of the421

real trajectories from the movement plan.422

In a third simulation study, we explore the flexibility of the model to generate goal-directed reaching423

movements with the foot between randomly chosen points in the joint space at a wide range of different424

speeds. For each movement, the target configuration was drawn from a uniform distribution over the interval425

from 15–85% of the joint range of motion for each joint. This margin was chosen relatively large, to prevent426

extreme body configurations. For ten different movement times ranging from 0.1 – 0.6 s, we simulated 100427

randomized movements each. We quantified performance as the root mean squared error between the actual428

and the planned trajectory. Figure 5 shows the average error for the different movement speeds in joint429

space. The error is high for very fast movements. For normal movement times of 0.25 seconds and above,430
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Figure 4: Example movement trajectories of the swing leg with a passively stabilized trunk. The dashed black lines show
the planned movement trajectory and the blue lines show the realized joint angle trajectories.
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Figure 5: Joint-space error for single movements with different movement times. Each curve shows the root-mean-squared
error the respective joint.

the error drops below 1◦ for the hip and knee joints. For the ankle joint, the error reaches a minimum of431

≈ 2◦ at the 0.3 second duration and then increases again.432

3.2 Obstacle Avoidance433

We use an obstacle avoidance task to assess the ability of the model to integrate flexible swing leg movements434

control of upright balance during walking. We test two different avoidance strategies, (1) lifting the swing435

leg to step over an obstacle and (2) shifting the swing leg sideways to step around an obstacle. To avoid an436

obstacle, we adjust the movement plan for the early swing phase by updating the target joint angles θ̃i for437

the early swing phase based on the obstacle position and size. We used a linear mapping438

θ̃i = αiho + ci, (24)

to determine the target joint angles, where ho is the obstacle extension, i.e. the height for sagittal and the439

width for medial-lateral avoidance, including a security margin. The joint index i ranges over the ankle, knee440

and hip flexion degrees of freedom for sagittal and the hip abduction joint for medial-lateral avoidance, and ci441

is a constant offset. We determined these parameters in an ad-hoc manner based on a few sample movements442

with hand-fitted values. After mid-swing, foot placement and balance recovery recovery is controlled by the443

usual balance-control strategy described in Section 2.1.3. We tested obstacle avoidance in both directions444

on obstacles of different sizes. An example of the model stepping over an obstacle is shown on the right in445

Figure 1.446
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Figure 6: Avoiding obstacle during steady-state walking. Panel A shows the change from the normal trajectory without
obstacle in the vertical direction when stepping over obstacles of varying height. Panel B shows the change from the
normal trajectory without obstacle in the medial-lateral direction when stepping around obstacles of varying width, in
either direction. Both panels show the movement from left heel-strike to push-off of the stance foot.

For sagittal avoidance, we simulated obstacles of 15cm, 20cm and 25 cm height. All three obstacles are447

successfully avoided and the model returns to the original gait within the subsequent step. Panel A in Figure448

6 shows the difference between the balls of the foot relative to the normal movement with no obstacle, in449

the vertical direction, for these movements. The peaks of these difference plots show that in each movement450

the balls of the foot are successfully shifted upwards by the obstacle height, plus a safety margin. Note that451

these vertical positions are differences from the normal foot movement trajectory and the absolute vertical452

position of the foot is higher, around ≈ 10 cm at mid-swing.453

For medial-lateral avoidance, we simulated obstacles of 5 cm and 10 cm width, and both lateral and454

medial avoidance. Panel B in Figure 6 shows the differences between the balls of the foot relative to the455

normal movement with no obstacle, in the medial-lateral direction, for these movements. Similar to the456

sagittal avoidance, the peaks show that the movements are successfully shifted sideways by the desired457

amount corresponding to the width of the obstacle, plus a safety margin.458

3.3 Direction and Speed Control459

The model has a limited degree of flexibility to walk at different movement speeds and change direction.460

To change speed, we change the average trunk lean angle by varying the target orientation of the trunk461

in the spinal reflex module for upright trunk stabilization (see Section 2.2.2 and Song and Geyer (2015)).462

Generally, increasing the trunk forward lean makes the model walk faster. To explore this relationship, we463

simulated 40 s of the model walking with 13 different random values for target orientation of the trunk,464

drawn from a uniform distribution between 6–8.5◦. Figure 7 plots the resulting walking speed of the model465

in Panel A. Walking speed depends roughly linearly on the trunk, as shown by the linear fit (R2 = 0.9157).466

Panel B in Figure 7 shows how the stepping cadence varies depending on trunk lean for the same walking467
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Figure 7: Velocity and cadence control. Panel A shows the relationship between the reference parameter for trunk lean
and the resulting movement speed for 13 movements (blue dots) and the linear fit (red line). Panel B shows the effect of
the trunk lean change on the walking cadence.

simulations. Interestingly, higher walking speeds are associated with lower cadences. This is opposite to what468

is observed in humans, where cadence tends to increase with walking speed in normal walking (Nilsson and469

Thorstensson, 1987). We interpret this as an indicator that the speed variations are not actively controlled,470

but rather emerge from the interaction of the trunk lean with balance control. Increased trunk lean leads to471

larger gravitational acceleration and higher speeds, which results in the balance control module increasing472

the target for the swing leg angle (Equation 1). This generates longer steps and decreases cadence.473

Although the model has no rotational degree of freedom at the hip, it is possible to change the direction474

of movement in a limited fashion. Similar to speed control, we achieve this by exploiting an interaction475

between movement direction and balance control. Temporarily adding a constant value to the hip roll target476

angle causes a weak destabilization of the model. This destabilization in turn induces a rotational slight477

slipping of the stance foot during weight acceptance that results in the body turning. We use this effect in an478

ad-hoc control law for movement direction that adds this constant offset to the hip roll target angle when the479

horizontal orientation of the trunk segment lies outside a desired interval around the target direction. We480

demonstrate this direction control scheme by simulating four walks with different target orientations of 0◦,481

15◦, 30◦ and 45◦, all starting at 0◦ and simulated for 100 s. Figure 8 shows the resulting walking patterns.482

For all four target orientations, the model approximately turns to the target orientation after about 20 m483

walking. However, this mode of direction control is not very stable and has clear limitations. The 15 deg484

and 30 deg movements turn away from the target orientation at about 16 meters of walking even though485

they reached the target orientation relatively fast after 12 m.486

4 Discussion487

We presented a musculoskeletal model of human locomotion that combines stable walking behaviour with488

the flexibility to generate voluntary movements with the swing leg according to a kinematic motor plan489

and to adapt the gait pattern. The model combines biomechanics, muscle physiology, spinal reflex loops490

and supraspinal neural processes in a physiologically plausible way. The supraspinal layer organizes the491

behavioural sequence, generates a movement plan on the task level and transforms the movement plan into492
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descending motor commands that interface with the spinal cord. The spinal layer combines the descending493

motor commands for the swing leg with stretch reflex arcs for each muscle by shifting the muscle activation494

thresholds of the reflexes based on the descending command. Stance leg control is exclusively spinal, con-495

sisting of five dedicated reflex modules that each implement a specific function, following (Song and Geyer,496

2015). The model generates stable walking patterns and can flexibly move the swing leg according to a497

kinematic plan to avoid obstacles. It can withstand external perturbations and change walking speed and498

movement direction to a limited degree.499

4.1 Motor Plans and Voluntary Movements500

The main innovation of the model we presented here is the ability to plan and execute voluntary movements501

with the swing leg, and to integrate these flexible swing leg movements into a stable gait cycle. Neurosci-502

entists generally differentiate actions into two categories of volitional and reflexive actions (Balleine, 2019).503

Volitional actions are understood to be goal-directed, model-based and prospective, whereas reflexive actions504

are habitual, model-free, and retrospective (Dolan and Dayan, 2013). Volitional actions are caused by a de-505

sire to reach a certain state in the future, whereas habitual or reflexive actions are caused by a stimulus in the506

past. While most of this work is at the intersection between neuroscience and psychology and investigates507

decisions, it intersects the field of motor planning and control.508

Walking is largely considered a reflexive movement, although it requires some executive control (Clark,509

2015). Decerebrated cats are able to walk without their brains, with only a tonic stimulation of their spinal510

cords (Whelan, 1996). Models of bipedal locomotion show that reflexes are sufficient to generate stable511

walking patterns in principle (Günther and Ruder, 2003; Geyer and Herr, 2010; Song and Geyer, 2015). The512

only high-level modulation required in these models is for balance control. Precise, goal-directed movements,513

on the other hand, generally require cortical control. When receiving a motor cortex lesion, rodents and514

primates initially lose the ability to perform goal-directed reaching movements (Whishaw, 2000; Darling515

et al., 2011). Lesioned animals tend to recover some or large parts of the lost motor function over weeks516

or months after the lesion, either by local reorganization and neural plasticity (Darling et al., 2011) or by517

developing compensatory movements (Gharbawie and Whishaw, 2006). Even for goal-directed movement,518

the brain might not be critical. Kawai et al. (2015) showed that when rats learn a complex sequential lever519

press movement, they can still execute the learned movement after a lesion to the motor cortex. When520

receiving the motor cortex lesion before training, however, the rats were unable to perform or learn the lever521

press movement. Walking can be performed reflexively in steady-state on even or mildly uneven ground.522

More stringent constraints, such as walking over stepping stones or across a field cluttered with obstacles,523

require precise movements based on sensory information with a goal of getting the foot precisely onto a524

stepping stone, or around an obstacle Patla et al. (1991); Chou et al. (2001).525

Existing models of walking are mostly reflex-based (Günther and Ruder, 2003; Geyer and Herr, 2010; Song526

and Geyer, 2015; Ong et al., 2019; Di Russo et al., 2021). The walking movement pattern can be modified to527

some degree in various models to change speed or step over obstacles, but these modifications are designed528

for and limited to a specific target behavior. Taga (1998) shows shows that a walking model driven by a529

neural oscillator can adjust step length by adjusting timing and magnitude of the hip flexor activity, and530

increase toe clearance by superposing an additional descending motor command to the knee flexor muscles531

over the rhythmic activity. The model can step over obstacles placed at arbitrary positions by combining532

modulation of step length and toe clearance, but it lacks the control to move the foot along a specific path.533

Song and Geyer (2015) show that a model that is almost exclusively controlled by low-level reflexes can be534

generate stable walking movements in 3d. They achieve balance by modulating the reflex parameters slightly535

based on high-level information about the body in space. The model is robust in rugged terrain and has a536

certain degree of adaptability in that it can be made to walk at different speeds and change toe clearance537

to step over an obstacle. Adaptation is achieved by re-tuning the reflexes that map sensory information to538

muscle activation to a new cost function using evolutionary optimization Hansen (2006). Effectively, the539

model learns each behavior individually. Van der Noot et al. (2018) showed that it is possible to generalize540

between different sets of learned behaviors by interpolating between parameter sets, which generally results541

in an intermediate behavior. The mechanism can be used to combine the purely reflexive walking generation542

in this class of model with a degree of central control, that maps a low-dimensional task parameter like543

walking speed onto a high-dimensional set of reflex parameters that will generate a walking pattern with544
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the desired walking speed. But the movements generated by these models are still largely habitual, in that545

muscle activation is generated reflexively based on the current state of the system, rather than a desired546

future state and a motor plan for how to get to that state – they still lack the flexibility to plan and execute547

voluntary movements.548

In the work presented here, we developed a model that combines reflexive control of the stance leg with549

precise, goal-directed movements of the swing leg to generate walking movements that can be flexibly adapted550

to solve a task. Swing leg movements are planned on task level in the form of minimum jerk trajectories551

for kinematic task variables. The motor plan is represented as a trajectory that moves the task variable to552

a desired value in a specified time. For instance, swinging the leg forward is a planned movement of the553

thigh segment angle in the sagittal plane from a negative value at push-off to the positive value required554

for a successful heel-strike of the next step. This motor plan is updated during the movement to account555

for deviations from the planned trajectory of the task variable (see Section 2.1.4), and also to incorporate556

changes in the goal value required to maintain balance (see Section 2.1.3). To execute this motor plan,557

an inverse model of the spinal stretch reflex, muscle properties and biomechanics is used to calculate a558

descending motor command.559

Our model has the flexibility to execute any movement plan as a volitional, goal-directed action. It can560

track random kinematic trajectories with high precision (see Section 3.1) when passively stabilized at the561

trunk. When moving freely, it can utilize this flexibility to move the leg over and around obstacles during562

swing. This flexibility is new for a walking model.563

The model combines this flexibility with the ability to execute habitual movements, represented by sub-564

cortical reflexes that directly map sensory information to muscle activation. Stance leg control is completely565

reflexive, while swing leg control combines the flexibility of goal-directed movements with the robustness of566

spinal stretch reflexes. The coordination of these two different types of behavior is organized by state-based567

switches. The neural mechanisms that implement this ability to smoothly swap be between different types568

of movement and sequentially combine habitual, reflexive with volitional, goal-directed behavior are thought569

to be located in the basal ganglia (Lanciego et al., 2012). Impairments to these structures, for instance570

from cell loss associated with Parkinson’s Disease, leads to reduced ability to switch between reflexive and571

goal-directed behavior, e.g. a reduced ability to voluntarily initiate gait from a standing posture, or the572

freezing of gait in some people with PD, which predominantly occurs in situations where environmental573

constraints require a goal-directed, planned modulation of a steady-state gait pattern, such as navigating574

through a doorway or over an obstacle (Peterson and Horak, 2016; Warabi et al., 2018). A mechanistic575

understanding of how impairments in neural function lead to specific motor deficits would require a model576

that encompasses both volitional and habitual movements, the neural mechanisms switching between them,577

and the integration with the spinal reflexes, muscle physiology and biomechanics that ultimately generate578

the movement. The model described here represents a first step towards such a mechanistic understanding.579

4.2 Integration of High-level Control and Spinal Reflexes580

For the swing leg control, our model uses a general stretch reflex that increases neural stimulation of the581

muscle based on the sensory information from muscle spindles and Golgi tendon organs about the length,582

velocity and force of the muscle (see Equation 16 and Latash, 2008). The descending command u shifts583

the set-point of this muscle-length feedback loop, and u̇ does the same for the velocity feedback. Similar584

equations have been used in various neuromechanical models of motor control, mostly of the upper limb585

(Feldman, 1986; Günther and Ruder, 2003; Kistemaker et al., 2007; Buhrmann and Di Paolo, 2014), but also586

in standing (Reimann and Schöner, 2017) and walking (Günther and Ruder, 2003).587

Technically, the formula we use is very similar to the equation used in the equilibrium point hypothesis588

approach to motor control (Feldman, 1986). This approach postulates that the spinal cord reflex modules589

simplify the control problem for the high-level areas, so that in order to move a limb to a desired position,590

the high-level controller only has to specify an equilibrium point corresponding to that position, and the low-591

level spinal reflexes generate the details of the actual movement (Feldman, 1986; Buhrmann and Di Paolo,592

2014). Modifications use different patterns of the descending command trajectory, like ramps or N-shapes593

(Latash and Gottlieb, 1991; Gribble et al., 1998). While more complex, these still adhere to the underlying594

concept that the structure of the descending command is simple and the spinal cord accounts for most of595

the complex details of the resulting movement pattern.596
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Despite the technical similarity in the stretch reflex, our model differs in the concept behind the equi-597

librium point hypothesis that the descending commands are simple. We found that considerable complexity598

is required to successfully generate movements that are both precise and flexible. One source of complexity599

are the highly non-linear inertial, gravitational and interaction forces that arise during locomotion. In a600

previous model of balance control in standing that with a similar control approach of shifting thresholds for601

stretch reflexes, we found that an internal model of the mass distribution and muscle moment arms across602

the joints and body segments was sufficient to maintain balance (Reimann and Schöner, 2017). Specifically,603

the model did not include gravitational or velocity dependent interaction forces. Still, the inertial forces604

alone are sufficiently complex to break the direct correspondence between task-level motor plan and muscle-605

level control, suggesting that an intermediate step is required to translate the high-level motor plan into606

descending commands.607

In the system presented here, we implemented this intermediate step transforming the high-level motor608

plan into low-level descending commands with an internal model of the body biomechanics, muscle properties,609

and the stretch reflex. We do not claim that this is part of our model neurophysiologically plausible. Rather,610

we see it as a necessary connection between two systems with well-documented neurophysiological functions.611

There is good evidence that the higher motor areas in the brain plan and monitor movements using a task-612

level representation, e.g. the position or velocity of the hand when reaching to a target (Georgopoulos and613

Grillner, 1989; Schwartz and Moran, 1999; Churchland et al., 2012; Hodgson and Hogan, 2000). There is614

similarly good evidence for low-level reflex arcs in the spinal cord, mapping proprioceptive signals directly615

to α-motorneuron activation (Sharbafi and Seyfarth, 2017; Kiehn, 2016). How the high-level movement plan616

is integrated with the low-level reflexes is currently not well understood (Albert et al., 2020; Ambike et al.,617

2015; Stollenmaier et al., 2020).618

In the present model, we used analytical inversion of the model equations and real-time re-planning for619

online updating to implement a module that functionally solves this problem of connecting the task-level620

motor plan with low-level motor areas in the spinal cord. We assume that this functionality is implemented621

neurally in the actual nervous system, solving the same problem but with a very different internal structure.622

There is some conceptual overlap with this notion and the equilibrium-point hypothesis, namely that there is623

a high-level motor control area that plans and generates movement on task level and then hands the details624

of execution over to more low-level structures. In walking, the present model shows, this transformation is625

of considerable complexity and needs to be addressed to generate movement patterns that actually walk.626

4.3 Rhythmic Pattern Generation627

In human walking, muscle forces, neural activity and ground reaction forces interact to generate rhythmic628

movement patterns. Existing approaches to model the dynamics of this combined system fall broadly in two629

categories, where the rhythmic neural pattern driving the motor system is either generated centrally Taga630

(1995a), or emerges from the interaction between the body and the ground, fed back into the nervous system631

via sensory organs Song and Geyer (2015); Geyer and Herr (2010); Ong et al. (2019); Geijtenbeek et al.632

(2013); Wang et al. (2012). In the first approach, a dedicated neural structure, often called a central pattern633

generator (CPG), transforms a tonic neural activation into a rhythmic activation pattern between multiple634

neurons. CPGs are well-documented in insects (Guertin, 2013; Mantziaris et al., 2020). Evidence for CPGs635

has been found in cats, where a decerebrated cat can still walk when receiving tonic electrical stimulation at636

certain sites in the spinal cord (Whelan, 1996). Taga (1995a) uses this approach to model human movement.637

In this model, a bank of neural oscillators drives the activation of the agonist-antagonist muscles spanning the638

leg joints, with one oscillator per joint. The structure of the neural oscillators broadly follows older models639

of spinal stepping generators (Miller and Scott, 1977; Kawahara and Mori, 1982), consisting of two neurons,640

one activating the agonist and one the antagonist muscle of a joint. Such systems have stable oscillation641

patterns even in the absence of external inputs (Matsuoka, 1985), though in Taga’s model both input and642

output are modulated depending on sensory data and the behavioral state, e.g. stance vs. swing. This model643

generates stable and robust walking patterns in the sagittal plane and can adapt to uneven terrain and644

additional loads (Taga, 1995b). Walking speed can be increased by adding tonic input and cadence can be645

controlled to a limited degree via entrainment by adding a rhythmic input.646

In a second category of models, the rhythmic activity does not arise from neural oscillators, but from the647

interaction between neural control and the environment. In this class of models, muscle force generated by648
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reflexes that drive a limb to a desired configuration, e.g. the swing leg forward after pushing off the ground.649

Different reflexes are turned on and off depending on sensory information, such as the leg switching from650

swing to stance once contact between the foot and the ground is detected. Organized appropriately, such651

interaction between reflexes, behavioral switches and environmental contacts generates stable oscillatory652

patterns. van der Linde (1999) showcase this principle in a biomechanically simple passive walker model653

with two legs actuated by spring-damper systems, where stable walking patterns emerge passively from the654

biomechanics, but the stiffness of the damped-spring muscles is increased at certain points in the cycle,655

based on sensory information, to replace the energy lost to damping back into the system. Günther and656

Ruder (2003) use more realistic biomechanics with hip, knee and ankle joints that are actuated by Hill-657

type muscles, with muscle activation determined by generic stretch reflexes. Rhythmic patterns arise from658

switching between different set-points for the stretch reflexes, triggered by state feedback. Another model by659

Geyer and Herr (2010) has similar biomechanics, but uses a selection of reflex modules to activate muscles.660

Each reflex module is designed to fulfill a specific function, activating a small set of muscles based on varied661

sensory input ranging from muscle length and velocity to forces and joint angles. Song and Geyer (2015)662

extended this model to 3d, and Van der Noot et al. (2018) combined it with a neural CPG.663

The model presented here partially follows the tradition of combining reflexes with behavioral switches to664

generate rhythmic movement patterns. As some other models, our model shows a limited degree of flexibility665

in pattern this generation, in that the resulting movement speed can be varied depending on the hip extensor666

force (Taga, 1995b), the choice of control parameter set (Song and Geyer, 2015; Van der Noot et al., 2018), or667

in our case the trunk forward lean angle reference (see Section 3.3 above). Taga (1995b) shows that cadence668

can be modulated as well by entraining the pattern generator to an external signal. The range in which669

cadence can be modulated in Taga’s model is relatively limited, spanning roughly 95–120 steps per minute.670

More recently, Di Russo et al. (2021) showed that in a reflex model, modulation of a relatively small set of671

reflex parameters is sufficient to generate a wide range of walking patterns with cadences between 61–118672

steps per minute, speeds between 0.48 and 1.71 m/s and step lengths between 0.43 and 0.88 m. While Taga673

(1995b) varied cadence and speed together, Di Russo et al. (2021) showed some independence, successfully674

modulating step length at a constant step duration, though failing to modulate step duration at a constant675

step length.676

When humans walk at a certain speed, they will generally use a certain combination of cadence and step677

length to achieve that speed that is largely invariant across repetitions (Inman et al., 1981). But humans678

are also capable of walking at different combinations of cadence and step length for a given speed (Nilsson679

and Thorstensson, 1987), as required e.g. when marching in-step. None of the currently existing models, our680

own included, is capable of this degree of flexibility. It can be argued that walking with a highly unusual681

combination of cadence and step length is more of a volitional action than normal walking, and requires682

motor planning and cortical control, which is largely absent in the existing models of human walking.683

4.4 Scope and Possible Extensions684

We presented a neuromuscular model of human locomotion that combines flexible central control of the swing685

leg with fast and robust reflexive control of the stance leg. Swing leg movements are realized as goal directed686

reaching movements and can easily adapt to required task constraints. Stance leg control, on the other hand,687

is achieved by five spinal reflex modules that (1) generate compliant, spring-like leg behavior, (2) prevent knee688

overextension, (3) balance the trunk, (4) compensate swing leg interactions and (5) plantarflex the ankle.689

This purely spinal control of the stance leg has the advantage that the leg can reactively compensate for690

unpredictable ground reaction forces on a fast time scale, without the need for central integration of different691

sensory systems, which is time consuming (Peterka, 2002; Carver et al., 2006; van der Kooij and Peterka,692

2011). The presented model is limited such that the central controller has no direct access to the stance leg.693

Adaptations to desired stance leg motion patterns are only possible when reflex gain parameters are changed,694

requiring the re-optimization of the model parameters. Gaining high-level control over the stance leg could695

be achieved by superposing the existing reflex modules with additional descending control commands that696

realize desired gait adaptations while the functional reflex modules remain intact. The superposition of reflex697

modules and central control has been shown in a model of quite standing (Suzuki and Geyer, 2018) where698

human sway signatures could be reproduced by combining muscle reflexes and virtual model control. We are699

currently working on extending the model in this direction to investigate if the superposition of descending700
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and reflexive control can be applied to the stance phase of locomotion.701

Lateral balance control has been recently found to be governed by three biomechanical control mech-702

anisms: The foot placement mechanism, the push-off-modulation and the ankle roll mechanism (Reimann703

et al., 2018a). The foot placement mechanism describes an active shift of the lateral foot placement loca-704

tion at footfall after a perturbation (Hof, 2008; Bruijn and van Dieën, 2018). Shifting the footfall position705

changes the gravitational torque acting on the body through the new stance leg during the following step.706

This change in gravitational torque compensates for the perturbation. Push-off modulation is a change in the707

ankle flexion angle of the trailing leg during double stance, starting in late single stance (Kim and Collins,708

2015, 2017; Reimann et al., 2018a). An increase in the ankle plantarflexion, for instance, generates a push-off709

force that shifts the body weight between the two stance legs, in a direction that is largely forward, but also710

to the side (Reimann et al., 2018b). The lateral component of the body weight shift compensates for lateral711

perturbations. The ankle roll mechanism is an active ankle inversion/eversion torque at the stance leg in712

single stance (Hof and Duysens, 2018; Reimann et al., 2018b), activating lateral ankle muscles to pull the foot713

segment and the rest of the body together. The foot segment rolls on the ground and shifts the CoP com-714

pensating for the perturbation. In the presented model, balance control solely relies on the foot-placement715

mechanism. This demonstrates that both push-off modulation and ankle roll mechanism are functionally716

not necessary for stable locomotion (Townsend, 1985). However, the two mechanisms are found to play a717

functional role in human walking increasing lateral stability especially in dedicated phases of the gait cycle.718

Simulations from simple SLIP models showed that using the ankle mechanism, when available, substantially719

reduces the amount of foot placement modulation required to maintain balance (Reimann et al., 2017).720

Adding the push off modulation and ankle roll mechanisms into the current model might improve balance721

in the model, leading to increased robustness against perturbations, and also lead to a better representation722

of human behavior by the model.723

Human locomotion involves the coordination of multiple muscles spanning the different joints along the724

legs. Usually there are more muscles than biomechanical degrees of freedom, implying that there are different725

combinations of muscle forces that will lead to the same torques acting on the joints. Control requires726

selecting a particular solution out of this abundance of choice (Bernstein, 1967; Latash, 2012; Siciliano and727

Khatib, 2008). From a biomechanics perspective, specific muscles appear to be particularly appropriate for728

solving specific motor tasks. For instance, Hof (2001) showed that mono-articular muscles along the leg729

produce a force on the body center that is directed in the lengthwise direction along the limb, while the730

force from bi-articular muscles generates a significant transverse component. It is therefore biomechanically731

reasonable to compensate vertically acting gravitational forces with mono-articular muscles, while using bi-732

articular muscles when horizontal forces are required. E.g., the gastrocnemius muscle is mostly active during733

push-off, to propel the body mass forward, since this is one of the few situations where the combination of734

knee flexion and ankle plantarflexion generated by this muscle is functionally useful. Consistent with this735

general approach, neural evidence for the use of subgroups of muscles for balance control has been found736

by Sarmadi et al. (2019). Sarmadi et al. (2019) showed that sagittal trunk stabilization during standing is737

mainly realized with biarticular hip muscles indicating that specific muscle groups might be dedicated to738

specific motor tasks. The use of muscle subgroup is generally considered as muscle synergies that have been739

found in walking (Chvatal and Ting, 2013; Ivanenko et al., 2006, 2004) and reaching (d’Avella and Lacquaniti,740

2013). But how are these muscle synergies generated by the CNS? Spinal reflex circuits, as implemented741

in the stance leg in our model and several other models, map a sensory signal to a specific combination of742

muscles related to a functional motor task, e.g. stabilizing the knee. Even though multiple muscles affect743

one single joint, fixed reflex circuits define a unique combination of muscles that are recruited together. Such744

fixed reflex pathways, however, strongly restrict the ability of the limb to perform movements that are not745

captured by the pre-defined reflex, as discussed above. Specific co-activation patterns between muscles could746

also be realized by supra-spinal patterns, using specialized neural networks that learn an optimal solution747

to a specific task or sub-task that is encountered repeatedly with high frequency, such as swinging the leg748

forward during walking. In the present model we solved the mapping from joint torques to muscle forces in749

an ad-hoc manner using an iteration approach (see Section 2.1.5). Whether different solutions might provide750

functional benefits like improved stability or accuracy of voluntary movements requires further study.751
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A Parameters772

Parameter value unit
τA 0.01 s
h 0.65 -
Kl 5 -
Kv 0.03 -

Table 2: Muscle and Reflex Parameters
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Parameter value unit
φ0 0.44 rad

cd,early 0.47 rad/m
cd,late 0.30 rad/m
cv,early 0.17 rad/(m/s)
cv,late 0.2 rad/(m/s)
φ0,lat 0 rad

cd,early,lat 0.13 rad/m
cd,late,lat 0.30 rad/m
cv,early,lat 0.31 rad/(m/s)
cv,late,lat 0.34 rad/(m/s)

Table 3: Balance Control Parameters

Parameter value unit
αhip -1.5832 rad/m
αknee -3.6941 rad/m
αankle 0 rad/m
αhiproll -1.2 rad/m
chip 2.3899 rad
cknee 2.3085 rad
cankle 1.25 rad
chiproll 0 rad

Table 4: Obstacle Avoidance Parameters

Parameter value unit
µstatic 0.9 -
µdynamic 0.8 -
Stiffness 58860 N/m

Table 5: Ground Contact Parameters
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