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Abstract 19 

Cross-species comparative analyses of single-cell RNA sequencing (scRNA-20 

seq) data allow us to explore, at single-cell resolution, the origins of cellular 21 

diversity and the evolutionary mechanisms that shape cellular form and function. 22 

Here, we aimed to utilize a heterogeneous graph neural network to learn 23 

aligned and interpretable cell and gene embeddings for cross-species cell type 24 

assignment and gene module extraction (CAME) from scRNA-seq data. A 25 

systematic evaluation study on 649 pairs of cross-species datasets showed that 26 

CAME outperformed six benchmarking methods in terms of cell-type 27 

assignment and model robustness to insufficiency and inconsistency of 28 

sequencing depths. Comparative analyses of the major types of human and 29 

mouse brains by CAME revealed shared cell type-specific functions in 30 

homologous gene modules. Alignment of the trajectories of human and 31 

macaque spermatogenesis by CAME revealed conservative gene expression 32 

dynamics during spermatogenesis between humans and macaques. Owing to 33 

the utilization of non-one-to-one homologous gene mappings, CAME made a 34 

significant improvement on cell-type characterization cross zebrafish and other 35 

species. Overall, CAME can not only make an effective cross-species 36 

assignment of cell types on scRNA-seq data but also reveal evolutionary 37 

conservative and divergent features between species. 38 

 39 
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Introduction 44 

Single-cell RNA sequencing (scRNA-seq) has rapidly emerged as a powerful 45 

tool to characterize a large number of single-cell transcriptomes in different 46 

tissues, organs, and species [2]. It not only deepens our knowledge of cells but 47 

also provides novel insights into evolutionary and developmental biology [3]. 48 

Cross-species integration and comparison of scRNA-seq datasets allow us to 49 

explore, at single-cell resolution, the origins of cellular diversity and the 50 

evolutionary mechanisms that shape cellular form and function [3-11].  51 

Cell-type assignment (or cell typing) and data integration are both vital steps 52 

involved in these analyses. For the cell-type assignment, a traditional approach 53 

includes three steps: clustering single-cells, performing differentially expression 54 

analysis to find cluster-specific genes, and matching these genes with known 55 

markers. However, this strategy fails when different cell types are clustered into 56 

one group, and when analyzing many non-model species that lack prior 57 

knowledge of cell-type biomarkers. Several tools have been developed for this 58 

task recently. Some existing approaches like CellAssign [12] and scCATCH [13] 59 

require prior knowledge of cell type-specific markers. Some like SingleCellNet 60 

[14] and SciBet [15] were designed based on a reference dataset and can 61 

achieve the cell-type assignment without providing marker information. Besides, 62 

several methods designed for data integration can also achieve cell-type 63 

assignment by transferring labels from the reference dataset. Seurat-v3 [16] 64 

combines canonical correlation analysis and mutual nearest neighbors to 65 

perform data integration and label transfer based on ‘anchors’. Cell BLAST [17] 66 

and ItClust [18] make use of deep neural networks for both cell-type querying 67 

and cell embedding. LIGER [19] and CSMF [20] extract the common and 68 

private features of two datasets respectively by joint non-negative matrix 69 

factorization to achieve cell alignment across datasets and omics. 70 

Despite all the progress, a tool for effective and robust cross-species 71 

integration and comparison is still immature and in demand. There are several 72 

computational challenges to be overcome. First, it is hard to determine cell 73 

identities for non-model species that lack prior knowledge of cell-type 74 

biomarkers, and most of the methods may fail when generalizing to cross-75 

species label transfer. Second, many biological and technical factors, such as 76 

transcriptome variation between species, different experimental protocols, and 77 

inconsistent sequencing depths, can make cross-species data integration and 78 

comparison even more difficult. Third, homologous cell-type alignment requires 79 

quantifying the similarities of gene expression profiles, which usually vary 80 

across distinct normalizations and gene selections [3]. Fourth, cross-species 81 

cellular alignment is usually based on homologous genes and current 82 

approaches are mostly restricted to one-to-one homologies shared by both 83 

organisms [3, 5-11], where non-one-to-one homologous genes characterizing 84 

cell-type conservative features could be lost. Lastly, evolutionary divergences 85 
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are thought to be caused by transcriptional changes of groups of genes that 86 

evolve in a modular fashion and are controlled by transcription factors [21]. 87 

Extraction and comparison of gene modules between species will provide deep 88 

insights into evolutionary conservation and divergences [11, 22, 23]. 89 

To this end, we developed a heterogeneous graph neural network model to 90 

achieve the aligned and interpretable cell and gene embeddings for cross-91 

species cell-type assignment and gene module extraction (CAME). A 92 

systematic evaluation study on 649 pairs of cross-species datasets showed that 93 

CAME outperformed six benchmarking methods in terms of cell-type prediction, 94 

and model robustness to insufficiency and inconsistency of sequencing depths. 95 

Comparative analyses of the major types of human and mouse brains by CAME 96 

revealed shared cell type-specific functions in homologous gene modules. An 97 

alignment of the trajectories of human and macaque spermatogenesis by 98 

CAME revealed the conservative gene expression dynamics during 99 

spermatogenesis between humans and macaques. Owing to the utilization of 100 

non-one-to-one homologous gene mappings, CAME made a significant 101 

improvement on cell-type characterization across long-distant species. Overall, 102 

CAME can not only make an effective cross-species assignment of cell types 103 

on scRNA-seq data but also reveal evolutionary conservative and divergent 104 

features between species. 105 

Results 106 

Overview of CAME 107 

CAME takes two scRNA-seq datasets from different species, along with their 108 

homologous gene mappings as input. One dataset with cell-type labels is taken 109 

as the reference and the other whose cell types need to be assigned is the 110 

query (Figure 1A). CAME encodes these two expression matrices and the 111 

mappings of homologous genes as a heterogeneous graph, where each node 112 

acts as either a cell or a gene, while a cell-gene edge indicates a non-zero 113 

expression of the gene in that cell, and an edge between a pair of genes 114 

indicates the homology between each other. Note that one-to-many and many-115 

to-many homologies are allowed as well. Besides, CAME adopts single-cell 116 

networks pre-computed from reference and query datasets using the k-nearest-117 

neighbor (KNN) method, respectively, where a cell-cell edge indicates this pair 118 

of cells have similar transcriptomes with each other (Methods). 119 

CAME adopts a heterogeneous graph neural network to embed each node 120 

into a low-dimensional space (Methods, Figure 1B). For the initial cell 121 

embeddings, CAME takes the expression profiles followed by linear 122 

transformation with a non-linear activation function. While for the initial gene-123 

embeddings, CAME aggregates the expression profiles (called “message”) 124 

from its neighbor cells which expressed it, and then treats them with linear 125 

transformation and non-linear activation, as done for cells (Methods). Then the 126 
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initial embeddings are input to two parameter-sharing graph convolution layers 127 

with heterogeneous edges and nodes. As a result, cells with more co-expressed 128 

genes are more likely to exchange the embedding message with each other, 129 

thus be encoded with similar embeddings; the same principle applies to genes. 130 

CAME further employs a heterogeneous graph attention mechanism [25] to 131 

classify cells with embeddings of their neighbor genes as input, where each cell 132 

pays a distinct level of attention to each certain neighbor gene (Methods, 133 

Figure 1B). High attention paid by a cell to a gene implies that the gene is of 134 

relatively much importance for the cell to be characterized. 135 

We note that a reference cell could be assigned with multiple labels in 136 

different hierarchies, and a cell type in query species might correspond to 137 

multiple ones in the reference. Thus, multi-label classification can be helpful to 138 

depict the state of a cell. CAME calculates the cross-entropy between the 139 

predicted cell-type probabilities and the true labels for the reference data to 140 

obtain both the multi-class and the multi-label loss, and sums them up as the 141 

training loss. Finally, CAME minimizes it by the backpropagation algorithm 142 

(Methods). The training process of CAME is semi-supervised in an end-to-end 143 

manner. We found that the training process was quite stable, and the model 144 

tended to be well trained before 200-300 epochs (Supplementary Figure S1A). 145 

Besides, CAME introduces the adjusted mutual information (AMI) between the 146 

predicted labels and pre-clustered ones of query cells to automatically 147 

determine the model checkpoint for downstream analysis (Methods and 148 

Supplementary Figure S1A). Ablation experiments demonstrated that six key 149 

factors adopted by CAME play roles in improving the prediction performance 150 

(Supplementary Figure S1B). 151 

CAME outputs the quantitative cell-type assignment for each query cell, that 152 

is, the probabilities of cell types that exist in the reference species, which 153 

enables the identification of the unresolved cell states in the query data. For 154 

most cells with homologous cell types in the reference, CAME assigns them 155 

with a maximal probability approximating 1. While for those unobserved cell 156 

types or states, CAME would assign them to their analogs with relatively low 157 

confidences (Supplementary Figure S2). Besides, CAME gives the aligned 158 

cell and gene embeddings across species, which facilitates low-dimensional 159 

visualization and joint gene module extraction (Methods, Figure 1D).  160 

CAME showed superior accuracy and robustness for cell-type 161 

assignment compared to benchmarking methods 162 

We collected 54 scRNA-seq datasets from five tissues across seven different 163 

species including human, macaque, mouse, chick, turtle, lizard, and zebrafish 164 

(Methods, Supplementary Figure S3A and Supplementary Table S1) and 165 

found that more than a half of the homologous genes between zebrafish and 166 

other species are not one-to-one matched (Supplementary Figure S3B). 167 

Besides, the proportion of non-one-to-one homologies between highly 168 

informative gene (HIG) sets with one associated with zebrafish [26] was 169 
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significantly higher than that of other cross-species dataset pairs (60%-75% 170 

versus 15%-40%, Supplementary Figure S3C). And ablation study shows that, 171 

when excluding non-one-to-one homologies, the cell-typing accuracy of CAME 172 

suffered a significant drop (ranging from 1.5% to 8.7% for different species-173 

pairs, 6.26% on average, with p-value = 7.8e-23) on the zebrafish-associated 174 

dataset pairs (Supplementary Figure S3D and Figure S4). Therefore, we 175 

divided these pairs into two scenarios: zebrafish-excluded (139 pairs) and 176 

zebrafish-associated (510 pairs) (Methods). 177 

We compared the cell-typing performance of CAME with six benchmarking 178 

methods including two marker-based methods SciBet [15] and Scamp [44], two 179 

deep-learning methods Cell BLAST [17] and ItClust [18], one expression-based 180 

method SingleCellNet [14], and one integration-based method Seurat-v3 [16] 181 

in these two scenarios in terms of accuracy, macro-F1 score and weighted F1 182 

score (Methods). Results showed that, in both scenarios, CAME distinctly 183 

outperformed the others in most cases with statistical significance p-values 184 

< 10−16  and 10−54  using Wilcoxon signed-rank test for both zebrafish-185 

excluded and zebrafish-associated scenarios, respectively (Figure 2A and B, 186 

Supplementary Figures S5 and S6).  187 

To evaluate the robustness of CAME in the cases when the reference and 188 

query datasets have inconsistent and insufficient sequencing depths, we 189 

performed down-sampling experiments (at various sampling rates 75%, 50%, 190 

25%, 10%) for read counts on the reference, query, and both reference and 191 

query datasets. Again, CAME achieved superior performance compared to all 192 

six benchmarking methods (Figure 2C, Supplementary Figures S7 and S8). 193 

By contrast, when the down-sampling rates are extremely unbalanced, some 194 

benchmarking methods may fail. For example, at a down-sampling rate of 0.1 195 

for query datasets, Seurat detected too few anchors to abort integration for label 196 

transfer and Scmap failed to find enough genes since the median expression 197 

in the selected features is 0 in each cell cluster. All these results demonstrate 198 

that CAME is robust to the insufficient and inconsistent sequencing depths 199 

between reference and query pairs. 200 

CAME could robustly align homologous cell types across species and 201 

multiple references 202 

In addition to the accurate cross-species cell-type assignment, CAME is also 203 

capable of aligning homologous cell types from different species, even when 204 

crossing distant species. For example, when aligning cell types between mouse 205 

[29] and turtle [10], CAME successfully distinguished and aligned each major 206 

type, like inhibitory and excitatory neurons, while the alignments by FastMNN, 207 

Harmony, and Seurat were incapable. CAME also separated the neural 208 

progenitor cells from excitatory neurons, while LIGER merged these two groups. 209 

The visualization plots using Uniform Manifold Approximation and Projection 210 

(UMAP) [31] of cell embeddings of Cell BLAST tend to lose some relations 211 

between cell types, e.g., the inhibitory and excitatory neurons are not linearly 212 
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separable on the 2D plot (Figure 3A, and Supplementary Figure S9). 213 

When handling multiple references and batch information is unavailable, 214 

most integration methods will suffer from batch effects. In this situation, owing 215 

to the semi-supervised manner, CAME can ignore the batch effects of reference 216 

data. In contrast, other integration tools may suffer from diverse sources of 217 

noises if the potential batch effects (such as noises from different individuals) 218 

are not considered. For instance, when aligning human and mouse pancreas 219 

cell types with human reference composed of eight batches, cells of the same 220 

type but from different batches were still separated from each other. Besides, 221 

the query cells tended to be “attracted” by reference cells of the same protocol 222 

(Figure 3B). Even when the batch labels are given, for some of the 223 

benchmarking methods (e.g., LIGER [19] and Seurat-v3 [16]), the reference 224 

batch effects still existed after data integration (Supplementary Figure S10). 225 

CAME could accurately assign cell types in mouse brains and reveal cell-226 

type-specific gene modules 227 

We applied CAME to assign the major types of single cells from the primary 228 

visual cortex and the anterior lateral motor cortex of mice [29], and used human 229 

brain cells as the reference dataset [7], containing the cells from the hindbrain 230 

that is not included in the mouse dataset. CAME achieved an accuracy of about 231 

98%, so as Seurat and SciBet, superior to other benchmarking methods (94% 232 

by ItClust, 93% by Cell BLAST, 92% by SingleCellNet, and only 55% by Scmap). 233 

CAME also got a higher macro-F1 score (0.55) than that of Seurat (0.44) and 234 

SciBet (0.46), indicating that CAME also accurately classified the small groups. 235 

Specifically, those non-neuronal types accounting for a small proportion of 236 

mouse cells were accurately assigned, including endothelial cells (accounting 237 

for 0.6% of human cells and 0.85% of mouse cells) and its subclass, brain 238 

pericytes (0.61% of human cells and 0.14% of mouse cells). The macrophages 239 

(0.56% in mice) were classified as microglial cells (2.1% of human cells) that 240 

are biologically similar to this type. Both oligodendrocyte precursor cells (OPC) 241 

and oligodendrocytes in mice were originally assigned as oligodendrocytes 242 

(0.75% of mouse cells) by the authors, but they were distinguished from each 243 

other in the reference of the human data (Figure 4A). The identities of OPCs 244 

were also verified by examining the expression of typical marker genes in each 245 

cell type (Figure 4B). Besides, we found that the genes with top attentions from 246 

each cell type showed high cell-type specificities, though these genes were 247 

quite different across species (Supplementary Figure S11A).  248 

Similar results were found when comparing four subtypes of the inhibitory 249 

neurons (VIP+, SST+, LAMP5+, PVALB+) between humans and mice. CAME 250 

still achieved a cell-typing accuracy of 98.3% and 95.5% for human-to-mouse 251 

and mouse-to-human label transfers, respectively, which are consistently 252 

higher than that of the benchmarking methods (93.4% and 92.0% for SciBet, 253 

84.3% and 51.3% for SingleCellNet, 98.0% and 78.9% for Cell BLAST, 97.3% 254 

and 87.3% for ItClust, 69.5% and 78.9% for Scmap, 94.2% and 87.2% for 255 
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Seurat) (Supplementary Figure S12A and B), although deferentially 256 

expressed genes (DEGs) for each homologous subtype seems not 257 

transferrable across species (Supplementary Figure S12C and D). The 258 

UMAP plots of cell embeddings showed that these major homologous cell-types 259 

were well aligned with each other. This suggested that the major types of brain 260 

cells in humans and mice are well conserved (Supplementary Figure S9). 261 

CAME also gave interpretable gene embeddings and enabled us to explore 262 

both intra- and inter-species relationships between genes. The UMAP plots of 263 

gene embeddings showed that the relative positions of human and mouse 264 

homologous genes were very consistent (Figure 5C). We further demonstrated 265 

the averaged gene expression profile on the UMAP plots of gene embeddings, 266 

where each point represents a gene (Figure 4C and Supplementary Figure 267 

S11B). It is worth noting that the neighbor genes tend to be co-expressed in the 268 

same cell types, such as those in excitatory, inhibitory neurons, 269 

oligodendrocytes, and OPCs (Figure 4D). There were more cell type-specific 270 

genes in human oligodendrocytes than in mice, indicating the evolutionary 271 

divergence between humans and mice. A population of genes was only 272 

detected in the human dataset, and most of them were associated with Purkinje 273 

cells and cerebellum granule cells, which were not detected in the mouse 274 

dataset due to their sources from different brain regions. These genes were 275 

arranged where there were few mouse genes around (Figure 4F, and 276 

Supplementary Figure S11B).  277 

The aligned gene embeddings across species can facilitate us to jointly 278 

extract cell type-specific gene modules with different degrees of conservancies 279 

between species, and each module corresponds to a cell type like OPCs, or 280 

related cell types like endothelial cells and its subtypes  (Figure 4E and 281 

Methods). As expected, based on gene ontology (GO) [33, 34] enrichment 282 

analysis, we found that the functions associated with most homologous gene 283 

modules were generally consistent with each other (Supplementary Table S2). 284 

For example, both the human and mouse genes in module 2 (which was 285 

associated with inhibitory neurons) tended to relate functions like “forebrain 286 

neuron differentiation” and “learning or memory”. Both the human and mouse 287 

genes in module 6 (corresponding human microglia and mouse macrophage) 288 

were related to functions like “positive regulation of cytokine production”, and 289 

“leukocyte migration”. By contrast, the function “ventral spinal cord 290 

development” was only enriched in human module 3 but not in mice, 291 

considering their gene members were quite different; though they were both 292 

associated with the function “cell differentiation in hindbrain” and “cerebellar 293 

cortex formation”. 294 

CAME could reveal conservative expression dynamics during 295 

spermatogenesis between human and macaque 296 

Comparison of continuous biological processes between two species is of much 297 

interest in evolutionary biology. We applied CAME to two scRNA-seq datasets 298 
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from human and macaque testicular single cells [9] with the former as the 299 

reference one. CAME achieved a very distinct cell-typing accuracy of 95.0% 300 

(86.0% for SciBet, 89.2% for SingleCellNet, 76.1% for Cell BLAST, 53.4% for 301 

ItClust, 87.3% for Scmap, 89.1% for Seurat), and a precise alignment of the 302 

homologous cell types of human and macaque with each other (Figure 5A and 303 

B). Besides, the labeled spermatogonia, spermatocyte, round spermatid, and 304 

elongating cells are correctly merged along the underlying differentiation 305 

trajectory. This suggested that CAME could well decipher the conserved four-306 

stage spermatogenesis processes of humans and macaques. 307 

Very interestingly, the continuously dynamic changing process of 308 

spermatogenesis can also be revealed by the UMAP plot of gene embeddings 309 

(Figure 5C). As illustrated, CAME extracted four sets of genes, including some 310 

typical marker ones [32], that are highly co-expressed in the four main stages 311 

of spermatogenesis and form well-organized expression dynamics, suggesting 312 

the order of critical gene activations during spermatogenesis (Figure 5C). By 313 

joint extraction of gene modules, we found that the four stages of 314 

spermatogenesis were quite conservative from the aspect of gene modules 315 

(Figure 5D and E). For example, modules 3, 4, and 0 were highly expressed 316 

in spermatogonia and spermatocyte respectively for both humans and 317 

macaques. And round spermatids and elongating spermatids shared modules 318 

2, 1, and 5 in different degrees. Typically, both human and macaque module 4 319 

was associated with functions like “RNA splicing”, and module 1 was associated 320 

with “sperm motility” and “spermatid development/differentiation”, which were 321 

typical characteristics of elongating spermatids (Supplementary Table S3). 322 

Conclusions 323 

Cross-species comparative and integrative analysis at single-cell resolution has 324 

deepened our understanding of the origin and evolutionary mechanisms of 325 

cellular states. Exploring the conservative and divergent characteristics of 326 

homologous cell states between human and other model and non-model 327 

species, for example, can help us to determine the animal model for studying 328 

human disease [5-7].  329 

However, in addition to technical noises, the systematic shift of gene 330 

expressions associated with distinct species and the uncertainty of the 331 

orthologous genes make it much more difficult than within-species data 332 

integration. Moreover, existing approaches for cross-species integration were 333 

mainly based on one-to-one homologous genes. However, when it is needed 334 

to align cell types across long distant species, especially when a large number 335 

of gene duplications were involved during the evolution process [27,28], 336 

considering only the one-to-one homologous genes will inevitably lose a lot of 337 

important information. Even so, cells of homologous types are thought to have 338 

similar expression patterns, that is, they may co-express a cell type-specific 339 

combination of genes. These genes may not be easy to be identified as the 340 
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marker genes with high expression levels but can act as “bridges” between cells 341 

that co-expressed them. Besides, the gene-homology mappings can bridge the 342 

gene nodes of two species, where the non-one-to-one homologies can also be 343 

used. 344 

Thus, we take the gene expression matrix as a bipartite graph with cell and 345 

gene nodes and utilize the gene homologies to form a multipartite graph. Based 346 

on this, we proposed CAME to utilize a cell-gene heterogeneous graph neural 347 

network to facilitate the “message-passing” from one species to the other. 348 

CAME can achieve the alignment of both cells and genes from different species. 349 

As a result, CAME can not only achieve accurate and robust cell-type 350 

assignment, but also reveal biological insights into the conservative and 351 

divergent characteristics between species. When handling multiple references, 352 

most integration approaches have to perform pairwise alignment for individual 353 

batches, where the order of pairwise alignment can affect the results and the 354 

computational complexity rises quadratically with the number of batches. 355 

Others like Harmony [30] and Cell BLAST [17] are capable to align multiple 356 

datasets simultaneously. We demonstrated that CAME can remove batch 357 

effects for multiple references even when batch labels are not provided. This is 358 

an important characteristic for integrating various datasets and constructing a 359 

unified cell-typing reference. 360 

It should be noticed that the heterogeneous graph neural network structure 361 

of CAME can also be applied to the scenario of within-species data integration, 362 

or when we consider only the one-to-one homologous genes. The only 363 

adjustment is to replace each gene-gene edge with a single gene node. 364 

Moreover, this strategy can be applied for multi-omics label transfer and data 365 

integration. In summary, we believe that CAME will serve as a powerful tool for 366 

integrative and comparative analysis across species as well as multi-omics 367 

integration.  368 

  369 
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Methods 370 

Build a heterogeneous cell-gene graph 371 

Let’s denote a gene expression matrix with 𝑁  cells and 𝑀  genes as 𝑿 =372 

(𝑋1, 𝑋2, … , 𝑋𝑁)
𝑇 ∈ ℝ𝑁×𝑀 , where each row 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, … 𝑥𝑖𝑀) ∈ ℝ𝑀  with an 373 

element 𝑥𝑖𝑗  representing the (normalized) expression value of a cell 𝑖  in a 374 

gene 𝑗 . We take 𝑿(𝑅) ∈ ℝ𝑁𝑅×𝑀𝑅  and 𝑿(𝑄) ∈ ℝ𝑁𝑄×𝑀𝑄  as the reference and 375 

query datasets respectively, 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑁𝑅
) ∈ ℝ𝑁𝑅 as the cell-type labels 376 

of the reference dataset and a set of gene pairs {(𝑔𝑖, 𝑔𝑗)}𝑖𝑗  to indicate the 377 

homology between two species. Note that 𝑀𝑅 is not necessarily equal to 𝑀𝑄. 378 

The reference and query expression matrices and the homology together are 379 

represented as a heterogeneous cell-gene graph with each node acting as a 380 

cell or a gene (Figure 1A). A cell-gene edge in the graph indicates that this cell 381 

has non-zero expression of the gene, a gene-gene edge indicates a homology 382 

between each other, and a cell-cell edge indicates the expression profiles of 383 

these two cells are similar to each other. In other words, in this graph, there are 384 

two types of nodes, cell and gene, and six types of edges (relations) including 385 

“a cell expresses a gene”, “a gene is expressed by a cell”, “cell-cell similarity”, 386 

“gene-gene homology”, “cell self-loop” and “gene self-loop”.  387 

Design a heterogeneous graph neural network 388 

CAME adopts a heterogeneous graph neural network, which was motivated by 389 

a relational graph convolutional network [24] for a graph of homogeneous 390 

nodes but heterogeneous edges. We denote the convolution weights for these 391 

six edge types as 𝑊𝑐𝑔, 𝑊𝑔𝑐, 𝑊𝑐𝑐, 𝑊𝑔𝑔, 𝑊𝑐 and 𝑊𝑔, respectively (Figure 1B). 392 

For each cell 𝑖, its initial embedding (the 0-th layer) is calculated as: 393 

ℎ𝑐𝑖
(0) = 𝜎(𝑊𝑐

(0)𝑥𝑐𝑖 + 𝑏𝑐
(0)), 394 

where 𝜎 is the ReLU activation function; 𝑥𝑐𝑖 is the gene expressions in the 395 

cell 𝑖 (one-to-one homologous genes are taken as the common input features) 396 

and 𝑏𝑐
(0) ∈ ℝ𝑑(0)  is the learnable bias vector. The genes, however, lack the 397 

initial embeddings in the 0-th layer and can be aggregated from their neighbor 398 

cells as follows: 399 

ℎ𝑔𝑗
(0) = 𝜎 (∑

1

𝑧𝑔𝑗,𝑐
𝑊𝑐𝑔

(0)𝑥𝑐𝑖𝑖∈𝒩𝑔𝑗
𝑐 + 𝑏𝑔

(0)), 400 

where 𝒩𝑔𝑗
𝑐  is the set of cells that have expressed the gene 𝑗, and 𝑧𝑔𝑗,𝑐 = |𝒩𝑔𝑗

𝑐 | 401 
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is the normalization factor. This approach keeps the number of model 402 

parameters stay constant to the number of genes, which differs from the 403 

commonly used initialization that assigns a learnable embedding for those 404 

nodes without input features, where the increasing number of model 405 

parameters might lead to an overfitted model. It can also allow inductive 406 

learning for the genes not involved in the training process. 407 

While in each hidden layer 𝑙 ≥ 1, the node features for the cell 𝑖 and the 408 

gene 𝑗 can be calculated as: 409 

ℎ𝑐𝑖
(𝑙) = 𝜎 (∑

1

𝑧𝑐𝑖,𝑔
𝑊𝑔𝑐

(𝑙)ℎ𝑔𝑗
(𝑙−1)

𝑗∈𝒩𝑐𝑖

𝑔 + ∑
1

𝑧𝑐𝑖,𝑐
𝑊𝑐𝑐

(𝑙)ℎ𝑐𝑘
(𝑙−1)

𝑘∈𝒩𝑐𝑖
𝑐 +𝑊𝑐

(𝑙)ℎ𝑐𝑖
(𝑙−1) + 𝑏𝑐

(𝑙)), 410 

and 411 

ℎ𝑔𝑗
(𝑙) = 𝜎(∑

1

𝑧𝑔𝑗,𝑐
𝑊𝑐𝑔

(𝑙)ℎ𝑐𝑖
(𝑙−1)

𝑖∈𝒩𝑔𝑗
𝑐 + ∑

1

𝑧𝑔𝑗,𝑔
𝑊𝑔𝑔

(𝑙)ℎ𝑔𝑘
(𝑙−1)

𝑘∈𝒩𝑔𝑗

𝑔 +𝑊𝑔
(𝑙)ℎ𝑔𝑗

(𝑙−1) + 𝑏𝑔
(𝑙)), 412 

respectively. Note that we treat the edges between homologous genes and the 413 

self-loop on each gene identically, i.e., 𝑊𝑔𝑔
(𝑙) = 𝑊𝑔

(𝑙)
 . To boost the ‘message’ 414 

flow between reference and query nodes, we adopt a recurrent convolution, 415 

where the parameters are shared across the hidden layers, that is, 𝑊𝑔𝑐
(𝑙) =416 

𝑊𝑔𝑐,𝑊𝑐𝑔
(𝑙) = 𝑊𝑐𝑔,𝑊𝑔𝑔

(𝑙) = 𝑊𝑔
(𝑙) = 𝑊𝑔,𝑊𝑐

(𝑙) = 𝑊𝑐  and 𝑏𝑐
(𝑙) = 𝑏𝑐, 𝑏𝑔

(𝑙) = 𝑏𝑔  for 1 ≤417 

𝑙 ≤ 𝐿, where 𝐿 is the total number of the hidden layers. We recommend to set 418 

𝐿 as 2 or 3 in practice, and the default setting is 2. We also adopt the layer 419 

normalization for all the hidden states to facilitate fast training convergence and 420 

high performance (Supplementary Figure S1). 421 

When it comes to the cell-type classifier, we adopt the attention mechanism 422 

for graph convolution [25], where each cell pays distinct attention to its neighbor 423 

genes. Specifically, for each cell 𝑖 , the output states ℎ𝑐𝑖
𝑜𝑢𝑡  for cell-type 424 

identification is aggregated from their neighbor genes: 425 

ℎ𝑐𝑖
𝑜𝑢𝑡 = ∑ 𝛼𝑖𝑗𝑊𝑔

𝑜𝑢𝑡ℎ𝑔𝑗
(𝐿)

𝑗∈𝒩𝑐𝑖

𝑔 + 𝑏𝑜𝑢𝑡, 426 

where 𝛼𝑖𝑗 is the attention that the cell 𝑖 pays to the gene 𝑗, calculated as: 427 

𝛼𝑖𝑗 = softmax(𝑒𝑖𝑗) =
exp(𝑒𝑖𝑗)

∑ exp(𝑒𝑖𝑘)𝑘∈𝒩𝑐𝑖

𝑔
, 428 

with  429 

𝑒𝑖𝑗 = 𝑙𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑎𝑇 [𝑊𝑐
𝑜𝑢𝑡ℎ𝑐𝑖

(𝐿) ∥ 𝑊𝑔
𝑜𝑢𝑡ℎ𝑔𝑗

(𝐿)]). 430 
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In addition, we use multi-head attention to enhance the model capacity and 431 

robustness, where there are several attention-heads with their own parameters, 432 

and their outputs are merged by taking averages: 433 

ℎ𝑐𝑖
𝑜𝑢𝑡 =

1

𝐾
∑ ℎ𝑐𝑖

𝑜𝑢𝑡,𝑘𝐾
𝑘=1 =

1

𝐾
∑ (∑ 𝛼𝑖𝑗𝑊𝑔

𝑜𝑢𝑡,𝑘ℎ𝑔𝑗
(𝐿)

𝑗∈𝒩𝑐𝑖

𝑔 + 𝑏𝑜𝑢𝑡,𝑘)𝐾
𝑘=1 , 434 

where 𝐾 is the total number of attention-heads, set as 8 by default. 435 

Finally, the output layer states for cell-type classification were normalized in 436 

two different ways: (1) the softmax function over cell types for multi-class 437 

classification: 438 

𝑌′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻𝑜𝑢𝑡),  𝐻𝑜𝑢𝑡 = (ℎ𝑐1
𝑜𝑢𝑡, … , ℎ𝑐𝑁

𝑜𝑢𝑡)
𝑇
, 439 

where 𝑌′ ∈ ℝ𝑁×𝑇 and each row is the predicted probabilities over the 𝑇 cell 440 

types for a cell; (2) the sigmoid function for multi-label classification: 441 

𝑌′′ = sigmoid(𝐻𝑜𝑢𝑡) =
1

1+exp⁡(𝐻𝑜𝑢𝑡)
, 442 

where 𝑌′′ ∈ ℝ𝑁×𝑇 and each element 𝑌𝑖𝑡
′′ is the predicted probability of the cell 443 

type 𝑡 for the cell 𝑖.  444 

The classification loss and label smoothing 445 

The classification loss for cells in reference datasets is calculated by the 446 

weighted cross-entropy loss combined with 𝐿2 regularization as below: 447 

𝐿𝑐(𝑿𝑅 , 𝑌𝑅) =
1

𝑁𝑅
∑[∑𝑤𝑡𝑌𝑖𝑡 ln(𝑌𝑖𝑡′)

𝑇

𝑡=1

+∑𝑤𝑡𝑌𝑖𝑡 ln(𝑌𝑖𝑡
′′)

𝑇

𝑡=1

]

𝑁𝑅

𝑖=1

+ λ‖𝜃‖2
2 448 

=⁡
1

𝑁𝑅
∑ ∑ 𝑤𝑡𝑌𝑖𝑡 ln(𝑌𝑖𝑡

′𝑌𝑖𝑡
′′)

𝑇

𝑡=1

𝑁𝑅
𝑖=1 + λ‖𝜃‖2

2, 449 

where 𝑤𝑡 is the class-weight for cell-type⁡ 𝑡 satisfying ∑ 𝑤𝑡
𝑇
𝑡=1 = 1. To avoid 450 

the model being dominated by the major populations and ignoring those rare 451 

types, we set 𝑤𝑡 ∝
1

√𝑁𝑡
  and 𝑁𝑡  is the number of cells of cell type 𝑡  in the 452 

reference dataset. 𝜃  represents all the learnable parameters and λ1  is the 453 

penalization coefficient that controls the power of 𝐿2  regularization, and the 454 

default value of λ1 is 0.01. 455 

To prevent the model from being overconfident and improve the stability and 456 

generalization of the model, we utilize label smoothing [35]. We minimize the 457 

cross-entropy between the modified targets 𝑌𝐿𝑆 ∈ ℝ𝑁𝑅×𝑇  and the model 458 

outputs 𝑌′, where 𝑌𝑖𝑡
𝐿𝑆 = 𝑌𝑖𝑡(1 − 𝛼) + 𝛼/𝐾, and the final objective function is 459 

as below: 460 
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𝐿𝑠𝑐 = (1 − 𝜖)𝐿𝑐 +
𝜖

𝑇
∑

1

𝑁𝑅
∑ln(𝑌𝑖𝑡

′𝑌𝑖𝑡
′′)

𝑁𝑅

𝑖=1

𝑇

𝑡=1

, 461 

where 𝜖  controls the degree of smoothness, set as 0.1 by default. Finally, 462 

CAME adopts Adam optimizer [36] with a learning rate of 0.001 for training. 463 

Checkpoint selection 464 

When training the heterogeneous graph neural network, we would like to 465 

choose the epoch where the classification result of query datasets achieves the 466 

highest accuracy. However, in practice, the exact type labels of the query cells 467 

are unknown, hindering us from choosing the best model. We put forward a 468 

metric to approximate the accuracy. Specifically, we first cluster the query cells 469 

to get the pseudo-labels 𝑌𝑐𝑙𝑢𝑠𝑡𝑒𝑟  for the query cells and introduce adjusted 470 

mutual information (AMI) [37] to account for the chance between the model-471 

predicted cell-type labels and the pseudo-labels of the query cells to help 472 

decide when to stop. AMI is defined as 473 

𝐴𝑀𝐼(𝑌𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝑌′) =
𝑀𝐼(𝑌𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑌′)−𝐸[𝑀𝐼(𝑌𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ,𝑌′)]

𝑚𝑒𝑎𝑛{𝐻(𝑌𝑐𝑙𝑢𝑠𝑡𝑒𝑟),𝐻(𝑌′)}−𝐸[𝑀𝐼(𝑌𝑐𝑙𝑢𝑠𝑡𝑒𝑟,𝑌′)]
, 474 

where 𝐻(𝑋) is the entropy of 𝑋, 𝑀𝐼(𝑋, 𝑌) is the mutual information between 475 

variables 𝑋  and 𝑌 . 𝐸[𝑀𝐼(𝑌𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , 𝑌′)]  is the expected mutual information 476 

based on a “permutation model” [38], in which cluster labels are generated 477 

randomly subject to having a fixed number of clusters and points in each cluster. 478 

We think that a well-trained model is expected to preserve the intrinsic data 479 

structure so that the predicted labels should be highly consistent with the 480 

pseudo-labels to some extent. We run the model with 400 epochs and choose 481 

the checkpoint with the largest AMI. The clustering process will be described in 482 

the section “pre-clustering of the query cells” in detail.  483 

Training using the mini-batches on sub-graphs 484 

When training CAME on the graphics processing unit (GPU), the size of a 485 

dataset will be limited by the GPU memory. For example, training CAME on 486 

100,000 cells could take about 13.75GB of memory, which exceeds the graphic 487 

memory of most GPUs. To handle this issue, we utilized a mini-batch training 488 

process by using the graph segmentation technique. Specifically, we first 489 

randomly divided all the cells (including cells in reference and query) into 490 

several groups, taken as mini-batches. For each mini-batch, we created a node-491 

induced subgraph for a given group of cells, which contains all the cells in this 492 

group and all the genes expressed by these cells. Then, we iterated all 493 

subgraphs and feed the subgraphs to the graph neural network one by one. All 494 

the parameters will be updated for each mini-batch training process. We 495 

performed extensive experiments by using mini-batch training process and 496 

found it is suitable to choose batch-size as 8192 or more, for that it achieved 497 

the comparable accuracy compared with the whole graph training 498 
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(Supplementary Figure S14A) and the cost of GPU memory stays constant 499 

(2.4GB) for datasets at different scales (Supplementary Figure S14B). Such 500 

low consumption of graphic memory means you can use CAME on almost all 501 

graphics cards. It is worth noting that the runtime of the batch-training process 502 

will be largely increased (Supplementary Figure S14B) since we cannot feed 503 

forward the whole graph on a single epoch. 504 

Preprocessing of the single-cell datasets 505 

For each scRNA-seq dataset, we first normalized the counts of each cell by its 506 

library size with a scale factor multiplied (10,000 by default) and log-507 

transformed with a pseudo-count added for the downstream analysis.  508 

Gene selection  509 

Highly variable genes (HVGs) and deferentially expressed genes (DEGs) are 510 

generally thought to be highly informative and the latter is especially useful for 511 

cell-type characterization. Therefore, we used both HVGs and DEGs and 512 

extended them using homologous mappings to form the highly informative gene 513 

(HIG) sets for constructing the heterogeneous graph. We adopted the same 514 

approach as used in Seurat-v2 [39] with ScanPy [40] built-in function 515 

highly_variable_genes() to identify HVGs, separately from both reference and 516 

query data. Specifically speaking, it calculated the average expression and 517 

dispersion (variance/mean) for each gene and placed these genes into several 518 

bins based on the (log-transformed) average expression. The normalized 519 

dispersions were then obtained by scaling with the mean and standard 520 

deviation of the dispersions within each bin. We selected the top 2000 genes 521 

with the highest dispersions as HVGs of that dataset. We computed the DEGs 522 

separately for reference and query dataset by Student’s t-test, which is done 523 

through rank_genes_groups() function from the ScanPy package [40]. For 524 

reference data, cells are grouped by their cell-type labels, while for the query 525 

data, cells are grouped by their pseudo-labels, i.e., the pre-clustering labels. 526 

Genes used as the cell-node features should be shared between species (or 527 

datasets). For both reference and query datasets, we first took the top 50 DEGs 528 

for each cell group and retained genes with one-to-one homology in the other 529 

species. We then took the union of the resulting two sets of genes for input. The 530 

resulting number of genes used for defining cell-node features ranges from 240 531 

to 400 for distant species pairs (human to zebrafish for example) and from 400 532 

to 900 for the others. 533 

We combined both HVGs and DEGs from reference and query data to decide 534 

the node genes used for training the graph neural network. Specifically, we first 535 

took the union of the HVGs and DEGs for each dataset, denoted as 𝒢𝑟 and 𝒢𝑞 536 

for reference and query respectively. Then we extracted the genes that have 537 

homologies in 𝒢𝑟 from the query data, and the homologous genes for 𝒢𝑞 from 538 

the reference data denoted as 𝒢𝑟
(ℎ𝑜𝑚𝑜)

 and 𝒢𝑞
(ℎ𝑜𝑚𝑜)

 respectively. Finally, we 539 
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determined 𝒢𝑟 ∪ 𝒢𝑞
(ℎ𝑜𝑚𝑜)

, the union of 𝒢𝑟 and 𝒢𝑞
(ℎ𝑜𝑚𝑜)

, as the node genes for 540 

the reference species and 𝒢𝑟
(ℎ𝑜𝑚𝑜) ∪ 𝒢𝑞  as the node genes for the query 541 

species. The tables containing gene homology information for each species pair 542 

were downloaded from the BioMart web server 543 

(http://www.ensembl.org/biomart/martview) [41]. 544 

Construction of the single-cell graphs based on KNNs 545 

The normalized expression matrices were centralized and scaled within each 546 

dataset, followed by principal component analysis (PCA) to reduce the 547 

dimensionality. We searched approximate KNNs for each cell based on the top 548 

30 PCs with the highest explained variances. We adopted 𝑘 = 5 neighbors for 549 

each cell to make the graph sparse enough for computational efficiency. These 550 

neighbor connections provided “cell-cell” edges as a part of the heterogeneous 551 

graph. 552 

Pre-clustering of the query cells 553 

To facilitate model selection, we pre-clustered the query cells using a graph-554 

based clustering method, that is, performing community detection using the 555 

Leiden algorithm [42] on the single-cell KNN graph. We constructed the KNN 556 

graph in almost the same way as described above, except that the number of 557 

neighbors 𝑘 was set as 20 and the clustering resolution is set as 0.4 by default. 558 

Unifying cell-type labels across datasets 559 

For data downloaded from the Cell BLAST web server [17], the cell-type labels 560 

were already unified by Cell Ontology [43], a structured vocabulary for cell types. 561 

While for unifying annotations from the other datasets, we directly referred to 562 

Cell Ontology and manually adjusted the annotations. The annotations were 563 

used as ground truth. 564 

Gene module extraction 565 

To extract cell type-specific gene modules shared between species, we took all 566 

the gene embeddings (of both species) on the last hidden layer and performed 567 

KNN searching for each gene. Like clustering cells, we performed Leiden 568 

community detection on the KNN graph of genes. The clustering resolution was 569 

set as 0.8 by default. 570 

Calculating weights between gene modules 571 

The weights 𝑆𝑖𝑗 between homologous gene modules 𝑀𝑜𝑑𝑖 and 𝑀𝑜𝑑𝑗 on the 572 

abstracted graph were calculated as follows: 573 

𝑆𝑖𝑗 =
∑ 𝑠𝑖𝑚(ℎ𝑔1 ,ℎ𝑔2)(𝑔1∈𝑀𝑜𝑑𝑖)∧(𝑔2∈𝑀𝑜𝑑𝑗)

max(|𝑀𝑜𝑑𝑖|,|𝑀𝑜𝑑𝑗|)
, 574 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.25.461790doi: bioRxiv preprint 

http://www.ensembl.org/biomart/martview
https://doi.org/10.1101/2021.09.25.461790
http://creativecommons.org/licenses/by-nc-nd/4.0/


where ℎ𝑔  is the embedding vector of gene 𝑔  and 𝑠𝑖𝑚(⋅,⋅)  is the similarity 575 

function, cosine similarity by default. |𝑀𝑜𝑑| represents the number of genes in 576 

this module. 577 

Benchmarking cell-type assignment 578 

For benchmarking cell-type assignment, we collected 54 scRNA-seq datasets 579 

from five tissues across seven different species (Supplementary Figure 3A, 580 

Supplementary Table 1), paired datasets of different species within the same 581 

tissue, and filtered those pairs where more than 50% of query cells are 582 

unresolved in the reference cell types, resulting 649 cross-species dataset pairs. 583 

For each dataset, we removed the cell types of less than 10 cells. CAME was 584 

compared with six benchmarking methods including Seurat V3 [16], ItClust [18], 585 

Scmap [44], SingleCellNet [14], SciBet [15], and Cell BLAST [17]. For Seurat 586 

V3, we input the raw data, used the default normalize process by 587 

NormalizeData() function, extracted the top 2000 HVGs by its 588 

FindVariableFeatures() function for reference and query respectively, and 589 

performed further annotation process as described in its documentation. For 590 

ItClust, since it provides an automatic workflow including preprocessing and 591 

annotation, we input the raw data. For Scmap, we log-transformed the raw 592 

counts with pseudo-count 1 added and used its inherited function 593 

selectFeaures() to select the top 2000 HVGs with a threshold=0.1 in function 594 

scmapCluster() (which works better for the cross-species scenario than its 595 

default value). For SingleCellNet, we also input raw data as it suggested, used 596 

splitCommon function to split for training and assessment, employed expTMraw 597 

function to transform training data, and then used scn_predict to make 598 

predictions for query dataset. For SciBet, we used R to perform all the 599 

operations. We first input the library-size-normalized data calculated by cpm() 600 

function of package edgeR [45] and used SelectGene_R() function from SciBet 601 

package to select 2000 HVGs, and used SciBet_R() function to annotate the 602 

query data. For Cell BLAST, we used the raw data as input and used 603 

find_variable_genes() to select HVGs with default parameters and took the 604 

union of the HVGs between reference and query datasets. After that, the 605 

datasets were combined together to remove their batch effects by using 606 

function fit_DIRECTi() with lambad_reg=0.001 as suggested by the original 607 

authors to stabilize the training process. Cell BLAST also provides a supervised 608 

training process that leverages the cell type labels of reference datasets to 609 

perform label transfer. However, it led to a 4% decrease in the average 610 

accuracy compared with their previous batch effects correction process. All 611 

hyper-parameters not mentioned were set with default values in these six 612 

packages. 613 

To evaluate the performance of the cell-type assignment, we adopted three 614 

metrics: Accuracy, MarcoF1, and WeightedF1. Accuracy is the most common 615 

criterion and it directly measures how many of the predictions are the same as 616 

the actual ones: 617 
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𝐴𝑐𝑐 =
#{𝑌′==𝑌}

#{𝑌}
, 618 

where # is the sign of cardinality. Specifically, #{𝑌𝑡𝑟𝑢𝑒} means the number of 619 

the total cells and #{𝑌′ == 𝑌} means the number of correctly predicted ones.  620 

We also used⁡ 𝑀𝑎𝑐𝑟𝑜𝐹1 and 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹1 which consider the 𝐹1-score for 621 

each cell type. For a binary classification task, precision and recall are 622 

calculated as 623 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 624 

and 625 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, 626 

respectively, where TP, FP, and FN represent the number of true positives, false 627 

positives, and false negatives, respectively. 628 

The 𝐹1-score is the harmonic mean of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙: 629 

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
, 630 

and the 𝑀𝑎𝑐𝑟𝑜𝐹1 is defined as the average of class-wise 𝐹1-scores,  631 

𝑀𝑎𝑐𝑟𝑜𝐹1 =
1

𝑇
∑ 𝐹1

(𝑡)
𝑡

𝑐=1
, 632 

where ⁡ 𝐹1
(𝑡)

  represents the 𝐹1 -score for cell type 𝑡 . The 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹1 633 

considers the proportion of each class,  634 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹1 =∑
𝑁𝑡

𝑁
× 𝐹1

(𝑡)
𝑇

𝑡=1
, 635 

where 𝑁𝑡/𝑁 represents the proportion of type 𝑡 in all cells. 636 

Benchmarking data integration  637 

FastMNN [46], Harmony [30], and Seurat-v3 [16] were performed using the 638 

corresponding R package through SeuratWrapper, following the online 639 

documents with default settings. FastMNN, Harmony, and Seurat shared the 640 

same normalization and the top 2000 HVGs by Seurat function NormalizeData 641 

and FindVariableFeatures, respectively. Harmony was performed on the PCA-642 

reduced embeddings. The number of reduced dimensions for these three 643 

methods was set as 50 for all pairs of datasets. LIGER [19] took the raw count 644 

data as input and run with the default pipeline. Cell BLAST [17] was performed 645 

using its Python package, following the standard pipeline with the default 646 

settings.  647 

 648 
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Figure 1. Overview of CAME. (A) The architecture of the heterogeneous graph 827 

neural network in CAME. The scRNA-seq data of both reference and query 828 

species and their homology genes are encoded as a heterogeneous cell-gene 829 

graph. The cell-gene edge indicates that the cell has non-zero expression of 830 

the gene. The gene homologous mappings are represented by a gene-gene 831 

bipartite graph with each edge indicating a gene homology. Note that the 832 

homologous gene mappings can be many-to-many homologies. To preserve 833 

the intrinsic data structure, the within-species cell-cell edges are adopted where 834 

an edge between a pair of cells indicates that one is the k nearest neighbor of 835 

the other (k=5 by default). The heterogeneous graph and the gene expression 836 

profiles are input to CAME, passing through the inductive embedding layer, the 837 

recurrent relational graph neural network, and the graph classifier with attention 838 

mechanisms. The model is trained by minimizing the cross-entropy loss 839 

calculated between the model prediction and the given labels of the reference 840 

cells in an end-to-end manner. (B) Graph spatial convolutions for six different 841 

types of edges including “a cell expresses a gene”, “a gene is expressed by a 842 

cell”, “cell-cell similarity”, “gene-gene homology”, “cell self-loop” and “gene self-843 

loop” with the edge type-specific convolution weights. (C) Heterogeneous graph 844 

attention classifier on the last layer, where each cell pays different attention to 845 

its neighbor genes. The output cell-type probabilities are calculated by the 846 

weighted sum of the neighbor-gene embeddings, followed by the softmax 847 

normalization. The attention weights are calculated from the concatenated cell 848 

and gene embeddings with a linear transformation, followed by activation and 849 

the softmax normalization among the neighbor-genes of the cell. (D) The output 850 

of CAME includes the probabilistic cell-type assignment of the query species, 851 

as well as low-dimensional embeddings of the cells and genes from both 852 

species. The gene embeddings are used for joint module extraction that allows 853 

inter-species comparison of conservative or divergent characteristics. 854 
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Figure 2. Benchmarking cross-species cell-type assignment performance 857 

of CAME. (A and B) Performance comparison of CAME and the six 858 

benchmarking approaches in terms of cell-typing accuracy on 139 pairs of 859 

cross-species scRNA-seq datasets (A) and on 510 pairs of cross-species 860 

scRNA-seq datasets that associated with zebrafish, where each point 861 

represents a pair of cross-species datasets and is colored by tissue. The 862 

notation “X-Y” indicates that X is the reference and Y is the query. H: Human, 863 

M: Mouse, C: Chick, Z: Zebrafish. (C) Performance comparison of the 864 

classification accuracies of CAME and the six benchmarking methods on 865 

different down-sampling rates (0.75, 0.5, 0.25, 0.1) for read counts. 866 
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Figure 3. Alignment comparison of cell embeddings across datasets by 869 

CAME and five benchmarking methods. (A) The UMAP plots of the cell 870 

embeddings by CAME and five benchmarking integration methods on the 871 

scRNA-seq data from turtle (reference) and mouse (query) brains. Cells are 872 

colored by their dataset identities (the first row) or cell type (the second row). 873 

(B) Similar settings to (A). Here the reference datasets are the human 874 

pancreatic scRNA-seq data from eight batches by five different platforms and 875 

the query is from mouse pancreas cells. The UMAP plots of the third row 876 

showed the reference datasets, colored by batch identities. 877 
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Figure 4. Application of CAME to human and mouse scRNA-seq data of 879 

brain cells. (A) The predicted cell-type probabilities for each cell (each column) 880 

in the mouse brain scRNA-seq data. The gene expressions of the human brain 881 

were taken as the reference. Each row indicates a cell type in human data. OPC 882 

is short for “oligodendrocyte precursor cells”, SMC is short for “smooth muscle 883 

cell”, and VLMC is short for “vascular and leptomeningeal cell”. (B) The top 884 

homologous DEG expressions of oligodendrocytes and (predicted) OPCs in 885 

human and mouse data, including several marker genes reported by previous 886 

literature (collected from CellMarker, colored by red or blue). (C) Cross-species 887 

alignment of the gene embeddings output by CAME, where each dot represents 888 

a gene and each edge indicates the homology between a pair of genes. Genes 889 

shared between species are colored by light-blue (human) or pink (mouse) 890 

while the other genes are colored by dark-blue (human) or dark-red (mouse). 891 

(D) The UMAP plots of gene embeddings showing the average expression 892 

patterns (z-scored across cell-types for each gene) of four cell types (excitatory 893 

neurons, inhibitory neurons, oligodendrocytes, OPCs) of human and mouse 894 

brains, where the color of each dot is scaled by the expression level of that cell 895 

type in the gene. (E) Abstracted graph of the heterogenous cell-gene graph, 896 

each node represents a cell type (pink) or a gene module (light blue). The size 897 

of a node is scaled by the number of single cells in that type or the number of 898 

genes in that gene module. The width of an edge is scaled by either the 899 

normalized mean expression levels of a cell type in the connected gene module 900 

or the conservancy of inter-species gene modules based on the gene 901 

embeddings learned by CAME. (F) Gene modules detected by joint module 902 

extraction of genes from humans (above) and mice (below). 903 
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Figure 5. Application of CAME to human and macaque scRNA-seq data 905 

during spermatogenesis. (A) The predicted cell-type probabilities for each 906 

macaque testicular cell (each column). The gene expressions of human testis 907 

were taken as the reference. Each row indicates a cell type in the human data. 908 

(B) The UMAP plots of cell embeddings output by CAME, colored by datasets 909 

(left) or cell type (right). (C) 2D visualization of gene embeddings showing the 910 

average expression patterns (z-scored across cell-types for each gene) of the 911 

four stages across spermatogenesis, where each point represents a gene and 912 

the color of each scatter is scaled by the expression level of that cell type in the 913 

gene. (D) Abstracted graph of the heterogenous cell-gene graph. Each node 914 

represents a cell type (pink) or a gene module (light blue). The size of a node 915 

is scaled by the number of single cells in that type or the number of genes in 916 

that gene module. The width of an edge is scaled by either the normalized mean 917 

expression levels of a cell type in the connected gene module or the 918 

conservancy of inter-species gene modules based on the gene embeddings 919 

learned by CAME. (E) Gene modules detected by joint module extraction of 920 

genes from humans (above) and macaques (below).  921 
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