bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461754; this version posted September 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1

1	The germline-specific region of the sea lamprey genome plays a key role in spermatogenes					
2	Tamanna Yasmin ¹ , Phil Grayson ^{1,2} , Margaret F. Docker ¹ and Sara V. Good ^{1,3}					
3						
4	¹ Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2,					
5	Canada					
6	^{2.} Present Address: Department of Biomedical Informatics, Harvard Medical School, Boston,					
7	Massachusetts, USA, 02115					
8	^{3.} Department of Biology, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada					
9						
10	Abstract					
11	The sea lamprey genome undergoes programmed genome rearrangement (PGR) in which ~20%					
12	is jettisoned from somatic cells soon after fertilization. Although the role of PGR in embryonic					
13	development has been studied, the role of the germline-specific region (GSR) in gonad					
14	development is unknown. We analysed RNA-sequence data from 28 sea lamprey gonads					
15	sampled across life-history stages, generated a genome-guided de novo superTransciptome with					
16	annotations, and identified genes in the GSR. We found that the 638 genes in the GSR are					
17	enriched for reproductive processes, exhibit 36x greater odds of being expressed in testes than					
18	ovaries, show little evidence of conserved synteny with other chordates, and most have putative					
19	paralogues in the GSR and/or somatic genomes. Further, several of these genes play known roles					
20	in sex determination and differentiation in other vertebrates. We conclude that the GSR of sea					

lamprey plays an important role in testicular differentiation and potentially sex determination.

22

23 Introduction

The genetic structure and composition of germline and somatic cells typically remain constant 24 25 throughout an organism's life span. However, under some conditions (e.g., cancer) or in some 26 taxa, the genetic composition of cells varies by type and/or developmental stage^{1,2}. Included in this is the unusual process of programmed genome rearrangement (PGR), in which either 27 28 portions of chromosomes (chromosomal diminution) or entire chromosomes (chromosomal elimination) are removed during embryonic development, thereby reducing the genomic content 29 of descendent cells by up to 90%³. Although the frequency of PGR across metazoans is 30 31 unknown, it has been observed in more than 100 vertebrate and invertebrate species from nine major taxonomic groups³, including in lampreys^{4–7}. In sea lamprey (*Petromyzon marinus*), flow 32 cytometric measurements of DNA content in the germline (testes) vs. somatic (blood) cells 33 indicate that $\sim 20\%$ (~ 500 Mb) of the germline genome is eliminated during PGR⁸. Further 34 studies have shown that PGR in sea lamprey, which occurs ~3 days post-fertilization (dpf), 35 shares conserved features with PGR in other agnathan lineages^{4–7}. This event involves 36 chromosomal elimination of repetitive and single-copy sequences and is enriched for genes 37 involved in development or germline maintenance^{6,9}. However, further research on the possible 38 39 function of the germline-specific regions (GSR) in gonad development is needed. Many hypotheses have been posited regarding the biological significance of PGR, 40 41 including gene silencing, dosage compensation, position effects on gene expression, germline development, and sex determination^{1,10–13}. In sea lamprey, it has been suggested that PGR 42 43 permits the expression of genes beneficial to the germline during the early stages of embryonic development^{6,8}, consistent with the high levels of gene silencing observed for genes in the 44 GSR^{3,9}. In the zebra finch (*Taeniopygia guttata*), chromosomal diminution of a germline-45

restricted chromosome (GRC) occurs during early embryonic development; the genes in the

46

3

GRC have higher expression in the ovary than the testis, and the GRC is later eliminated from 47 mature sperm, being transmitted only through the oocytes^{14,15,16}. 48 In sexually reproducing taxa without PGR, primordial germ cells (PGCs) are formed 49 early during embryogenesis. PGCs typically develop through the coordination of three 50 51 developmental cues: suppression of ongoing somatic differentiation, repression of DNA methylation, and inhibition of cell proliferation¹⁷. Once defined, PGCs subsequently exhibit 52 tightly coordinated gene expression that leads to germ cell development and differentiation in 53 54 both sexes. In lampreys, however, the germline cells are specified at fertilization, and somatic cell delineation occurs afterward, $\sim 3 \text{ dpf}$, when PGR is initiated⁵. This intriguing reversal of 55 events is heightened by the ongoing enigma of their sex determination. Lampreys do not have 56 heteromorphic sex chromosomes and there is no evidence to date of genomic differences 57 between males and females; sex may be determined by genetic factors in the germline genome, 58 environmental factors, or a combination of the two (reviewed by 18). 59 Here, we used RNA-sequence (RNA-seq) data from 28 sea lamprey gonads sampled at 60 61 different life-history stages and in both sexes to generate a gonadal superTranscriptome and 62 examined the function, expression, and evolutionary relationships of sex-biased genes, particularly in the GSR. We identified 638 germline-specific genes (GSGs), many of which were 63 64 present in multiple germline-specific paralogues pertaining to 163 unique gene names that were, 65 overall, very highly expressed during spermatogenesis, but lowly expressed during oogenesis 66 and in undifferentiated larvae. The observation that the genes in the GSR appear to be present in

67 undifferentiated larvae and females but are expressed at low levels suggests that the male-

68 specific expression is due to regulatory changes, as opposed to there being a male-specific

germline sequence. Further, we found that ~55% of the GSGs also have paralogous copies in the 69 somatic genome and ~19% have putative orthologues in other taxa including, most importantly, 70 71 a core set of conserved genes involved in sex determination and spermatogenesis. Using publicly available RNA-seq data from 1–5 dpf embryos, we found that the genes expressed during 72 gonadogenesis are either not expressed or lowly expressed during early embryo formation. 73 74 Collectively, these results suggest that a major role of the GSR is in testicular differentiation and probably sex determination. PGR in sea lamprey may serve to reduce conflict of genes under 75 76 sexual selection, a hypothesis further supported by the highly duplicated nature of genes in the 77 GSR and their association in sexual differentiation and determination pathways in other taxa (see^3) . 78

79 Results and discussion

GSGs show predominantly male-biased expression and have a key role in gametogenesis. We 80 used RNA-seq data from 28 sea lamprey gonads sampled across a range of developmental stages 81 to generate a gonadal superTranscriptome using the Necklace pipeline¹⁹. Stages included 82 undifferentiated larvae, female larvae following the onset of oogenesis and sexually mature (adult) 83 84 females, prospective male larvae (i.e., those in which the gonad was still histologically undifferentiated but which were beyond the size at which ovarian differentiation is complete), 85 86 males undergoing testicular differentiation following the onset of metamorphosis, and sexually 87 mature (adult) males (see Supplementary Fig. 1 and Supplementary Table 1). This revealed a large number of genes that were highly expressed during male but not female gonad development; these 88 89 genes were physically linked and mapped to chromosome 81 and many unplaced scaffolds based 90 on the Vertebrate Genome Project (VGP) reference assembly. Thus, we sought to define which of 91 the genes in our gonadal superTranscriptome mapped to the GSR.

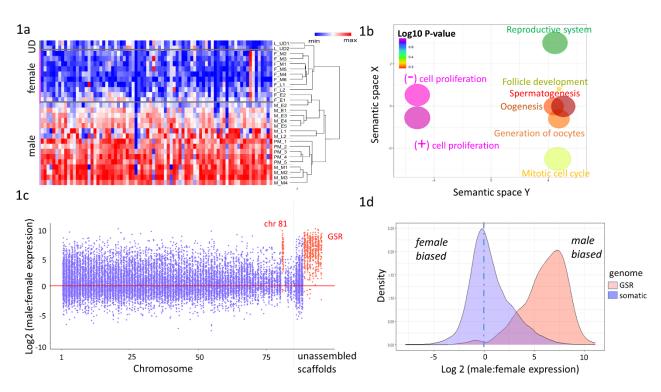


Fig. 1: Identification of genomic location of the germline-specific genes (GSGs) in the VGP 92 genome and their expression in the sea lamprey gonadal samples used in this study. a) Heatmap 93 showing GSG expression pattern of all samples used in the study; UD stands for undifferentiated 94 95 larvae (see Supplementary Fig. 3 for full heatmap) b) Gene ontology term enrichment analysis of the GSGs where colours indicate the log10 of the false discovery rate-corrected *P*-value 96 97 (PANTHER overrepresentation test, with a Fisher exact test for significance and filtering using a false discovery rate of 0.05); circle size denotes fold enrichment above expected values. c) 98 Scatterplot showing the log₂(male:female) normalized gene expression across all chromosomes 99 and concatenated scaffolds in the VGP assembly of the sea lamprey genome; regions identified as 100 101 belonging to the GSR are coloured in red, while those in the somatic genome are coloured in blue. **d**) Density plot of the log2(male:female) ratio of normalized gene expression. When x = 0, average 102 expression across all females = males. For genes in the somatic genome, the density peaks at x = -x103 0 but is right skewed, while for genes in the GSR, the density peaks at x = 7.5, showing that genes 104 in the GSR are male-biased. 105

106 The GSR in sea lamprey was identified for an earlier release of the sea lamprey germline

assembly (www.stowers.org) 20 . Thus, we used a modified version of the DifCover pipeline used

- 108 for that analysis²¹ to define the coordinates of GSR in the VGP assembly. Accordingly, GSRs
- were designated as regions in which the read coverage of sperm DNA was > 2-fold more than
- the read coverage of blood DNA. Based on the VGP reference genome, a total of 5253 genomic
- 111 intervals were mapped by DifCover, of which 919 segments had an enrichment score

(log2(standardized sperm coverage/blood coverage) greater than 2. The total span of the GSRinferred regions consisted of more than 27 Mbps (Supplementary Table 2, Supplementary Fig.
2).

115 We then used the segment enrichment scores to assign genes from our gonadal 116 superTranscriptome to either the GSR or somatic genomes. Using an earlier scaffold-based 117 assembly of the sea lamprey germline genome (available at SIMRbase), Smith et al., (2018) identified ~13Mbps including 356 protein-coding genes in the GSR²⁰. On the other hand, using 118 119 the VGP assembly which consists of 85 chromosomes and 1195 unassembled scaffolds, we 120 assigned the entirety of chromosome 81 as well as 177 scaffolds (Supplementary Fig. 3) to the 121 GSR, while the remaining 84 chromosomes and 1018 scaffolds were not germline-enriched, 122 suggesting that they are found in the somatic genome. In total, 638 genes from our gonadal superTranscriptome mapped to the GSR; these 638 genes corresponded to only 163 unique gene 123 124 names based on our combined Trinotate and reference genome annotation pipeline 125 (Supplementary Table 3), with approximately half of the GSGs occurring in a single copy but the other half occurring in 2–77 duplicated copies (Supplementary Table 4, Supplementary Fig. 4). 126 Importantly, however, none of the GSR enriched scaffolds or chromosomes showed overlap 127 128 between the GSR and the somatic regions. This supports previous work that determined that PGR in lampreys is more likely to involve chromosome elimination than diminution⁹. 129 130 The expression analysis of the GSGs revealed that out of 638 GSGs, 409 genes (64% of the genes in the GSR) are moderately to highly expressed in one or more stages of the 131 132 developing testis, but only a few GSGs are expressed in undifferentiated larval gonads (Fig. 1a, see Supplementary Fig. 5 for full heatmap). Functional enrichment analysis of the GSGs from 133 the gonadal superTranscriptome indicate that they are involved in 26 pathways of which wnt 134

135	signaling and <i>E-Cadherin</i> signaling pathways each represented 16.4% of the total hits				
136	(Supplementary Fig. 6). Other critical pathways include the insulin/insulin growth factor (igf)				
137	pathway, gonadotropin releasing hormone receptor (gnrhr) pathway, transforming growth factor				
138	beta ($tgfb$) signaling pathway, and fibroblast growth factors (fgf) pathway, which contained				
139	2.7%, 2.7%, 2.7%, and 1.4% of all hits, respectively (Supplementary Fig. 6). Next, we analyzed				
140	the GO terms associated with genes in the GSR to obtain further insight into their molecular				
141	function (Supplementary Table 5). Using an overrepresentation test, we found that the highest				
142	FDR terms were associated with reproductive system development, positive and negative				
143	regulation of cell population proliferation, ovarian follicle development, oogenesis and				
144	spermatogenesis. Collectively, this demonstrates that the functional ontology of GSGs is				
145	enrichment for GO terms related to reproductive developmental processes (Fig. 1b,				
146	Supplementary Table 6).				

PGR has been proposed as a mechanism to reduce conflict between the somatic and 147 germline genomes during early embryogenesis. Bryant et al. (2016) identified that the genes 148 149 eliminated during PGR are expressed throughout lamprey embryogenesis and found ontological overrepresentation of these genes in germline development and oncogenesis⁴. However, PGR is 150 151 closely tied to PGC specification in sea lamprey since germ cells are those that do not undergo 152 PGR. Thus, we hypothesized that genes in the GSR might play roles in both early embryogenesis 153 as well as gonadal differentiation and/or development. To address this, we assessed global 154 differences in expression of genes in the GSR vs. somatic genome during gonadal development across differentiated ovaries and testes sampled in early, mid, and late developmental stages as 155 156 well as in undifferentiated larvae and prospective males prior to testicular differentiation (See 157 Supplementary Fig. 1 and Supplementary Table 1). This revealed the surprising result that

158	almost all of the genes in the GSR exhibit male-biased expression during gonad development
159	(Figs. 1c, 1d, Supplementary Fig. 7), while genes in the somatic genome were, overall, equally
160	likely to be expressed in the female or male gonad (as expected): i.e., the density of the
161	male:female gene expression ratio peaks at $x = 0$ for genes in the somatic genome (Fig. 1d). A
162	possible explanation for this observation could be that females do not have the same GSR as
163	males, since the reference genome for sea lamprey was generated using sperm DNA. To examine
164	this possibility, we aligned individual BAM files from both male and female gonad samples to
165	the indexed superTranscriptome and annotation file using the Integrative Genome Viewer
166	(IGV) ²² . This revealed 410 transcripts from female gonad samples that mapped to either known
167	or novel exons in the GSR (Supplementary Fig. 8a-8b). This suggests that females harbour the
168	GSR but that it exhibits very low gene expression in female gonads, perhaps due to
169	hypermethylation.
170	The mechanism of sex determination in lampreys remains unknown, and may involve

both genetic and environmental factors $^{18,23-26}$. The single elongated gonad remains histologically 171 undifferentiated for up to several years, and the differentiation process is asynchronous in 172 females and males (see¹⁸). Ovarian differentiation occurs in the larval stage, following 173 174 synchronized and extensive meiosis and oocyte growth. A few small oocytes may also appear in future males, but testicular differentiation does not occur until the onset of metamorphosis $\sim 2-3$ 175 176 years later, when resumption of mitosis in the remaining undifferentiated germ cells produces spermatogonia²³. It also appears that some larvae may be capable of undergoing sex reversal to 177 males following ovarian differentiation²⁴. Thus, a suite of genes could be turned on to initiate 178 179 testicular differentiation. Our data suggest that female sea lamprey gonads harbour the same 180 GSR as males but, with the exception of some rRNA and ribosomal protein-coding genes,

181	females exhibited very low expression of the GSGs (Supplementary Fig. 8a-8b). Male-biased			
182	sex ratios under conditions of high larval density or slow growth have led to suggestions that			
183	primary sex differentiation in lampreys is influenced by environmental factors ^{25,26} .			
184	Environmental factors that influence the activation or silencing of genes in the GSR could, at			
185	least partially, control sex determination. In this case, low expression of the GSGs would result			
186	in a phenotypically female lamprey, whereas high expression in late larval or early			
187	metamorphosing lamprey would produce a male.			
188	Somatic paralogues of GSGs are expressed differently than germline paralogues. We			
189	observed that many of the GSGs had duplicated copies: of the 163 GSGs, 92 were found to have			
190	one or more paralogous copies in the GSR (Supplementary Table 4) while 89 have putative			
191	paralogs in the somatic genome, suggesting that some of the GSGs may have been recruited to			
192	the GSR to play specific roles in gametogenesis. The somatic paralogues of the GSGs were			
193	found distributed throughout the entire somatic genome, on every chromosome except			
194	chromosome 49 (Fig. 2a, Supplementary Table 7). To assess whether the somatic paralogues of			
195	the GSR genes exhibit similar sex-biased expression, we selected one paralogous gene per			
196	genome (somatic and germline) and generated a heatmap to compare somatic vs. GSR			
197	expression of the paralogous genes (Fig. 2b). In keeping with the somatic-wide pattern (Fig. 1d),			
198	this demonstrated that the somatic paralogues of the GSR genes do not exhibit the same sex-			
199	biased expression (Fig. 2b).			
200				

bioRxiv preprint doi: https://doi.org/10.1101/2021.09.24.461754; this version posted September 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

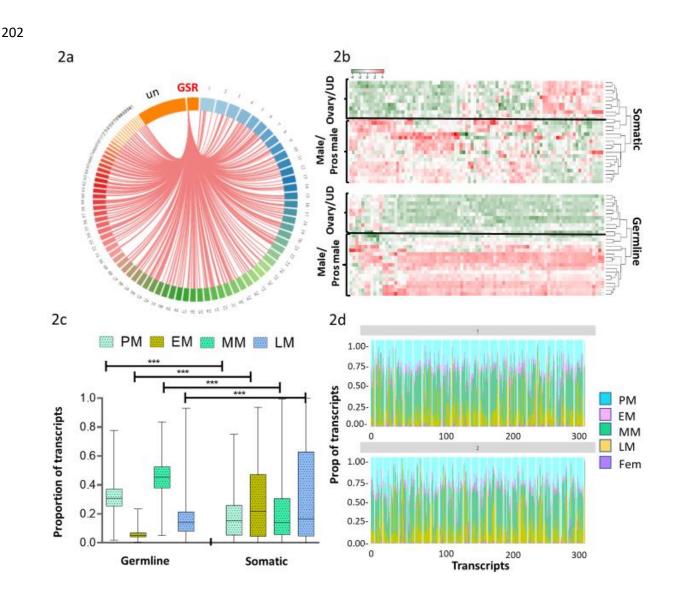
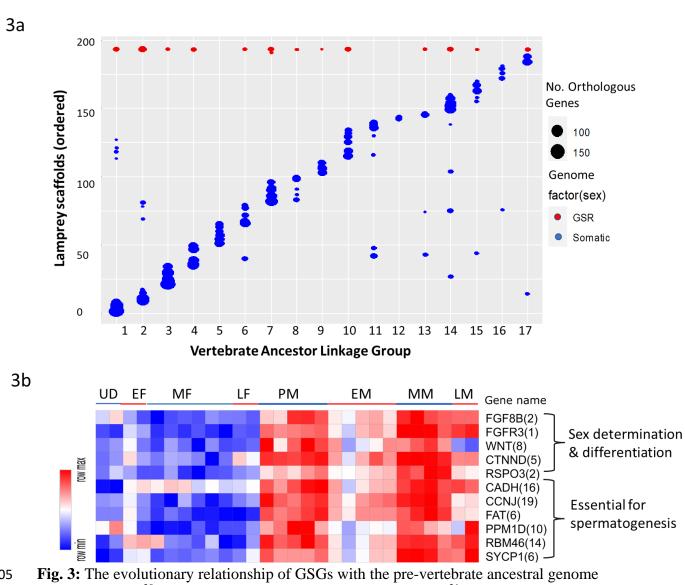


Fig. 2: Somatic paralogues of GSGs are expressed differently than germline paralogues. a) 203 204 Circos plot indicating the link between genes in the GSR with putative somatic paralogues in the sea lamprey genome. Chromosome 81 and enriched scaffolds are indicated as GSR and non-205 enriched scaffolds are indicated as un (unplaced scaffolds in somatic genome). b) Heatmap 206 showing the relative expression of genes that have paralogues in both the GSR and somatic 207 genomes in males and prospective males (pros male), females (ovary), and undifferentiated 208 larvae (UD). c) Box plot showing the gene expression differences of somatic and GSR 209 paralogues of GSGs in prospective males (PM), and early, mid, and late males (EM, MM, and 210 LM, respectively). d) Comparison of the proportion of transcripts of GSGs in prospective, early, 211 212 mid, and late males (PM, EM, MM, LM) and females (Fem). X-axis represents the number of transcripts present in GSR and Y-axis represents the proportion of transcripts in each stage. 213 214

216	Given the evidence of male-biased gene expression in the GSR, we next examined					
217	whether the GSGs had uniform expression across male gonadal developmental stages, using the					
218	number of male-biased genes per stage in the somatic genome as reference. In total, we					
219	identified 1270 male-biased genes (of 18,945 total genes), of which 409 (of 638 total genes)					
220	were found in the GSR and 861 (of 18,307 total genes) were found in the somatic genome,					
221	indicating that genes in the GSR have a 36x higher odds of exhibiting male-biased expression					
222	(OR = 36.5068 where $P < 0.0001$). Using the normalized counts of transcripts exhibiting male-					
223	biased expression, we compared the proportion of total transcripts in early, mid, and late					
224	testicular development and in prospective males by examining the interaction between genome					
225	(somatic or GSR) and stage using a repeated measures mixed model design in which gene nested					
226	in genome was a random effect, and stage was a repeated measure (Supplementary Table 8,					
227	Supplementary Fig. 9). This showed that there was a higher proportion of genes expressed in					
228	males in mid-testicular development and in prospective males in the GSR compared to somatic					
229	genomes, and a significantly lower proportion of genes expressed in early and late testicular					
230	development in the GSR relative to the somatic genome (Fig. 2c, Supplementary Tables 8 & 9).					
231	To visualize the stage-specific bias in gene expression of GSGs, we plotted the relative					
232	proportion of transcripts expressed in each of the three male gonadal stages (early, mid and late),					
233	as well as in prospective males and the pooled sum of transcripts expressed at any female stage					
234	(Fig. 2d, Supplementary Table 10). This underscores that there is a similar pattern of expression					
235	across all genes in the GSR: high gene expression in prospective and mid gonadal stage males,					
236	but zero to very low expression in females. These findings are similar but distinct from those in					
237	zebra finch: the chromosomes undergoing chromosomal diminution and the genes eliminated are					
238	not sex-biased; however, individual genes have showed expression in both testes and ovaries,					

with overall greater enrichment for genes involved in ovarian development¹⁶. On the other hand, 239 in a sciarid fly (Sciara coprophila), the elimination of one or two paternal X chromosomes in all 240 somatic cells determines the sex of the embryo¹⁰. Here, we find evidence that the GSGs show 241 comparatively higher expression in presumptive males when male sea lamprey are putatively 242 undergoing sex determination and in a later stage of spermatogenesis when male gametes are 243 244 generating spermatogonial Type B cells. This supports our hypothesis that gene expression in the sea lamprey GSR may function to control sex determination and/or differentiation, with high 245 246 expression leading to testicular development in males and gene silencing resulting in ovarian 247 differentiation in females.


Our IGV analysis showed that the GSR appears to be present in ovaries (Supplementary 248 Fig. 8a-8b), suggesting that the genes in the GSR are turned off in females, while they are 249 250 expressed in males throughout the sampled stages of spermatogenesis. One possibility is that differential DNA methylation is involved in sex determination/differentiation in sea lamprey. 251 252 DNA methylation is a common process of epigenetic modification with known roles in gene regulation, embryogenesis and increasingly, sex determination²⁷ which has, interestingly, 253 become more important throughout deuterostome evolution²⁸. A recent study in zebrafish (*Danio* 254 255 *rario*) found that DNA methylation plays important functions in germline development as well as in sexual plasticity²⁹. Given the clear role for the GSR in male spermatogenesis, we wanted to 256 257 probe the expression of the GSR during early development bracketing PGR itself. To this end, 258 we analyzed publicly available RNA-seq data from sea lamprey embryos that span the PGR (1-5 dpf). Of the 638 genes we identified in the GSR, only 186 were expressed during early 259 260 embryogenesis. Of these 186 genes, 146 were expressed pior to PGR and 111 post-PGR, but 261 only 20 had an average gene count >50 post-PGR and 18 pre-PGR (Supplementary Table 11),

while the five most abundantly expressed genes code for ribosomal proteins. We then compared
the expression of the 186 GSGs expressed during pre- and post-PGR embryos with our male and
female gonad samples, and find that they exhibit very low expression in females and embryos,
but high expression in male gonads (Supplementary Fig. 10). This further supports the
hypothesis that the role of the GSR in sea lamprey is predominantly to support male gonadal
development.

Evolutionary conservation of GSGs and their function in vertebrate spermatogenesis.

269 Genes in the GSR are expected to be released from the dosage sensitivity constraints of genes in 270 the somatic genome⁴ and may show conservation of gene functions related to gonadal sex determination and differentiation in other vertebrates. We thus hypothesized that genes in the 271 272 GSR 1) do not originate from a single linkage group in the pre-vertebrate ancestor, and do not map to a single linkage group in the post-2R vertebrate genome, 2) exhibit accelerated evolution 273 274 either via high rates of duplication and/or amino acid change and 3) have known roles in sex 275 determination or spermatogenesis in other vertebrates. To this end, we performed comparative mapping of genes in the sea lamprey GSR to an earlier chordate (Branchiostoma belcheri) and to 276 277 nine post-2R taxa. Of the 163 unique gene names identified in the GSR, orthologues with 278 variable levels of conservation across chordates were identified for 31 genes (Supplementary 279 Table 12). Some of these genes are found predominantly as a single copy in most taxa, whereas 280 in sea lamprey, we find a single copy in the GSR but multiple paralogues in the somatic genome 281 (*rpab4*, *rlp37A*, *mid2bp*, and *hsop3*), multiple paralogues in both the GSR and somatic genomes 282 (scyp1) or a single copy in the GSR and somatic genomes (fgfr3), or a single copy in the GSR but no copy in the somatic genome (e.g. agrl3, cxb1, hsop3, rpab4) (Supplementary Fig. 11, 283 Supplementary Table 4). 284

285	On the other hand, some of the genes in the GSR are found in multiple paralogues in later					
286	vertebrate genomes, and in multiple copies in the GSR and/or somatic genomes in sea lamprey					
287	(agrl3, cxb1, spop1, lpar1, cadh2, lrrn1, mlcl1) (Supplementary Fig. 11). Of the 31 genes					
288	assigned to an orthogroup, 23 were also identified in Branchiostoma (Supplementary Table 12					
289	and Supplementary Fig. 11), and 9 are present only in the GSR (not the somatic genome)					
290	suggesting that some of the lamprey GSR genes are not novel. Lastly, a comparative syntenic					
291	analysis between all genes in the lamprey genome for which orthogroups were assigned to the					
292	pre-vertebrate ancestral genome ($n = 9,850$) or human genome ($n = 19,701$) found blocks of					
293	conserved synteny for somatic but not GSGs. For example, there is strongly conserved synteny					
294	between the sea lamprey somatic genome and the 17 linkage groups hypothesized to exist in the					
295	pre-2R vertebrate genome (see ²⁹), but the genes linked to the GSR are dispersed across all but					
296	two of the pre-2R linkage groups (Fig. 3a), and do not show conserved synteny in the human					
297	genome (Supplementary Fig. 12). This suggests that the genes involved in spermatogenesis in					
298	the GSR were independently duplicated into the GSR and were not part of an evolutionarily					
299	conserved paralogon.					
300						
301						

305 reconstructed by³⁰ and and obtained from Genomicus webserver³¹ and their functional 306 conserveness across vertebrate a) Chromosome plot showing comparative mapping in the sea 307 lamprey and ancestral genomes. b) Heatmap of the median expression of paralogs in gene 308 families present in GSR that have known roles in sex determination or spermatogenesis in other 309 vertebrates. The numbers in brackets are the number of paralogues of these genes present in 310 GSR. UD represents undifferentiated larvae, EF, MF and LF represent early, mid and late 311 312 females respectively and PM, EM, MM and LM represents prospective, early, mid and late males 313 respectively. 314

We searched the literature for evidence that any of the 163 unique gene names we

- 316 identified in the GSR are associated with sex determination and/or differentiation in other taxa
- 317 (Supplementary Table 13). Some of the GSGs have been found to exhibit female-biased

318	expression in later diverging vertebrates, and some are involved in ovarian development,					
319	suggesting that the tissue (gonad) of expression may be conserved, but the function (male vs.					
320	female gonadogenesis) is not. Importantly, however, we find orthologues or paralogues of most					
321	of the core genes involved in sex-determination across vertebrates e.g., fibroblast growth factor 8					
322	(<i>fgf8</i>), which is involved in sex determination in mice ^{$32-34$} , as well as fibroblast growth factor					
323	receptor 3 (<i>fgfr3</i>), which is involved in sex determination in sturgeon (<i>Acipenser dabryanus</i>) ³⁵ .					
324	Other genes such as <i>scyp1</i> , which is important for early meiotic recombination during					
325	spermatogenesis ³⁶ , R spondin (<i>rspo1</i>) and beta catenin 1 (<i>ctnnb1</i>) are important antagonists for					
326	Wnt pathway and initiating testicular differentiation ^{37,38} . Further, several of the gene families					
327	known to be essential for spermatogenesis are highly duplicated. For example, cadherins (cadh)					
328	are responsible for maintaining the integrity of testis structure ³⁹ ; cyclins (ccnb) are essential for					
329	cell progression during distinct phases of the male spermatogenesis pathway ⁴⁰ ; RNA binding					
330	proteins (rbm) play diverse and important roles in spermatogenesis including testis-specific					
331	splicing ⁴¹ and the absence of <i>rbm46</i> (present in 16 copies in the sea lamprey GSR) is associated					
332	with male infertility in mice ⁴² . Other important genes e.g., $sox9$ and $cbx2$ which play roles in					
333	stabilizing the male differentiation pathway, are present in the somatic genome of sea lamprey.					
334	We find that all of these genes are highly expressed in the gonads of prospective males and mid-					
335	males when gonadal germ cell specification and spermatogonial development are occurring					
336	respectively (Fig 3b). This suggests that the GSR is likely to play a role in gonadal sex					
337	determination and differentiation as well as spermatogenesis in sea lamprey.					

338 Phylogenetic relationship of GSGs provides evidence of diversified genes involved in sex-

determination pathway. Lampreys diverged from the jawed vertebrate lineages more than 500
 million years ago^{43,44}, either after the two rounds (2R) of whole genome duplication (WGD) that

341	occurred in early vertebrate evolution ^{30,45} , or more likely after 1R ^{20,46,47} . However, a recent study
342	suggested that, after the 1R tetraploidization, lampreys underwent an additional
343	hexaploidization ⁴⁸ . Since lampreys have an unusual vertebrate ploidy state, it proved impossible
344	to perform a reliable test of positive selection at the amino acid level (which requires essentially
345	gapless alignments) for the germline genes in agnathans (lampreys and hagfishes) relative to
346	other vertebrates. Thus, we selected a few genes which have important roles in gametogenesis in
347	other species for phylogenetic analyses (see Supplementary Table 13).
348	Gene trees were reconstructed using the output from OrthoFinder and the orthologues of
349	sea lamprey GSGs in 10 other chordates identified (see Supplementary Fig. 11) and combined
350	with our data on gene annotations and genomic location (GSR vs. somatic) in sea lamprey. This
351	revealed that the <i>cadh</i> gene family is highly duplicated in both the germline and somatic
352	genomes of sea lamprey (16 vs. 15 duplicates, respectively) andhagfish (Supplementary Table
353	12). In particular, <i>cadh2</i> has undergone a divergent expansion in the GSR in sea lamprey
354	(Supplementary Fig. 13a); agnathans have witnessed an expansion of a somatic cluster of genes
355	related to vertebrate cadh1/cadh3/cadh13 as well as an expansion in both the somatic and
356	germline genomes of a novel cadh paralogue (bottom of Supplementary Fig. 13a). Phylogenetic
357	trees for hykk (Supplementary Fig. 13b), sycp1 (Supplementary Fig. 13c), and adgrl
358	(Supplementary Fig. 13d) depict similar patterns of one or more highly duplicated germline
359	lineages that are sometimes interspersed with closely related somatic paralogues (hykk and
360	scyp1), but overall, they show clades of highly diversified germline lineages marked by long

361 internal branch lengths, indicating that the GSGs exhibit independent evolution for variable

362 periods of time and may be subject to positive selection.

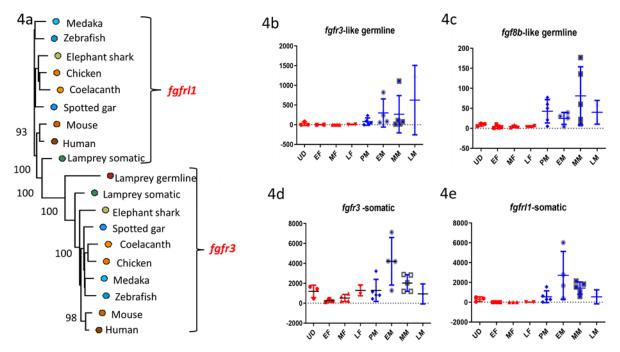


Fig. 4: Phylogenetic tree of putative ligand and receptor of fibroblast growth factor (fgf) and
their genome-, sex- and stage-specific expression a) phylogenetic tree, b) *fgfr3*-like gene in the
GSR genome, c) *fgf8b* like gene in GSR, d) *fgfr3* in somatic genome, and e) *fgfrl1* in the somatic
genome. In 4b–4e, the Y-axis is gene counts and the X-axis is stage, where UD is
undifferentiated larvae; EF, MF, and LF are early, mid, and late females; and PM, EM, MM, and
LM are prospective, early, mid, and late males, respectively.

- 369
- 370

We identified a novel *fgfr3*-like gene in the germline genome, and confirmed expression

- of a possible ligand for it, *fgf8b*, also located in the germline genome. The *fgfr3*-like gene was
- not identified by OrthoFinder as an orthologue of the somatic copy of fgfr3; thus, we
- downloaded the canonical coding sequences for fgfr3, and a related gene also present in the
- somatic genome, *fgfrl1*, from eight post-2R taxa and reconstructed a ML tree with bootstrap
- support (Fig. 4a). This revealed that the germline sequence of the *fgfr*-like coding sequence is
- more closely related to fgfr3 in the sea lamprey somatic genome and to the fgfr3 in higher

378	vertebrates (bootstrap support 100%), while the somatic copy of <i>fgfrl1</i> groups with the <i>fgfrl1</i>				
379	sequences from later vertebrates and there is no paraloge in the GSR (100% bootstrap support).				
380	Examination of the expression of these three genes as well as the possible receptor for the				
381	germline gene, fgf8b, indicates that the germline copy of fgfr3 and fgf8b have very low				
382	expression in female gonads, and somewhat higher expression in male gonads: notably, fgf8b is				
383	most highly expressed in prospective male and mid-stage male gonads (Fig. 3b, 4b-4e). Given				
384	their role in sex determination in other vertebrates, sea lamprey germline genes fgf8b and fgfr3				
385	warrant further investigation as possible loci involved in sex determination.				

386 Conclusion

The study of PGR events and their effects on gonadal development and sex determination 387 388 represent a burgeoning field in evolutionary biology. Our result suggests that the genes present in the GSR in sea lamprey are involved in the crucial processes of sex differentiation and testicular 389 390 development, and could be involved in sex determination. We find GSGs are most highly expressed in prospective males and in males undergoing spermatogonial differentiation, but they 391 have low overall expression in females. Given evidence that sex is partially determined by 392 393 environmental factors in sea lamprey, the possible role of methylation in the GSR during early stages of gonad development in larval sea lamprey warrants further attention. We find low levels 394 of syntenic or sequence conservation of genes in the GSR across chordates, but importantly, 395 396 many of the genes identified in the GSR are known to play roles in gonad differentiation or sex determination in other vertebrates. Assuming females harbour the same GSR as males, our data 397 suggests that the factors controlling epigenetic modification of the GSR are pivotal for sex 398 399 determination and differentiation. Further work is needed to assess the presence and chromatin

400 accessibility of the GSR in females and to identify the function of the GSGs in sea lamprey sex401 determination and differentiation.

402 Methods

Sample preparation and RNA extraction. Sea lamprey from different life-history stages were collected by collaborators using these samples for other projects. An Abbreviated Protocol for Minimal Animal Involvement form completed at the University of Manitoba determined that an Animal Use Protocol (AUP) was not required because live sea lamprey were not handled by us for the purposes of this project, and no animals were sacrificed or manipulated solely to provide us with tissue.

Larval sea lamprey were collected by backpack, pulsed DC electrofishing in tributaries of 409 410 the Richibucto River, New Brunswick, Canada, or in tributaries of Lake Huron and Lake Michigan in the Great Lakes basin (Supplementary Table 1). Larvae were transported or shipped 411 412 live to Wilfrid Laurier University, Waterloo, ON, sorted according to size, and transferred to 110 L holding tanks supplied with aerated well water at a flow rate of 1.0–2.0 L/min. The larvae were 413 monitored for external signs of metamorphosis (e.g., changes in eye and oral disc morphology) 414 415 and then euthanized at the desired stages. The brain and gills, required for other projects, were dissected and placed in RNAlater. With the remaining carcass (posterior to the last branchial 416 pore), RNAlater was injected into the gut to perfuse the intestine, liver, gallbladder, kidneys, and 417 418 gonad. The carcass with organs was then placed in a 10 mL Falcon tube and filled with RNAlater to saturate the tissues thoroughly. Dissections were completed as rapidly as possible to reduce 419 any potential RNA degradation. Samples were kept at 4 °C for 24 h, stored at -80 °C, and then 420 421 shipped to the University of Manitoba on dry ice, and stored at -80 °C upon arrival. The gonads were subsequently dissected out and placed in a 1.5 mL centrifuge tube with 1 mL RNAlater and 422

423	kept at -20 °C. Sex was identified during dissection based on physical inspection with the naked					
424	eye (i.e., the ovary is larger and has a different texture than the testis or undifferentiated gonad),					
425	and gonadal stage was identified by a combination of visual inspection and inferences based on					
426	larval size and stage of metamorphosis ¹⁸ (Supplementary Table 1).					
427	Adult sea lamprey were captured in traps near the mouth of the Black Mallard River or					
428	Ocqueoc River, MI, during their upstream (spawning) migration (Supplementary Table 1).					
429	Lamprey were euthanized, length and weight measurements were taken, and ~35 mg gonad was					
430	flash frozen in a 2.0 mL centrifuge tube and kept on dry ice (April 2018) or placed in a 1.5 mL					
431	centrifuge tube with 1 mL RNAlater and kept at -20 °C (June 2018). Samples were shipped to					
432	the University of Manitoba on dry ice, and stored at -80 °C.					
433	Total RNA was isolated from ~30 mg of gonadal tissue from each individual using the					
434	RNeasy Mini kit (Qiagen, USA) according to the manufacturer's protocol. The extracted RNA					
435	was treated with RNase-free DNase set (Qiagen, USA) to remove residual genomic DNA. RNA					
436	quantity and quality was assessed using a NanoVue Plus spectrophotometer. The RNA samples					
437	were preserved at -80 °C.					
438	To obtain a comprehensive representation of gene expression, RNA from individuals at					
439	the same stage of development and same sex was pooled. Early males $(n = 4)$ were those					
440	identified by external morphological characteristics to be in the early to mid stages of					
441	metamorphosis and thus presumed to be in the early stages of spermatogonial differentiation, that					
442	is, in the process of producing Type A spermatogonia (Supplementary Fig. 1, Supplementary					
443	Table 1) ¹⁸ . Mid males (metamorphosing stage 7 and immediately post-metamorphosis; $n = 6$)					
444	were presumed to be undergoing spermatogonial proliferation and differentiation and producing					
445	Type A and Type B spermatogonia, while late males were sexually mature $(n = 2)$. In early					

446	females ($n = 2$), ovarian differentiation had been initiated and/or completed (i.e., with a number
447	of small growing oocytes in the gonad), mid-stage females $(n = 6)$ had completed oocyte
448	differentiation and were arrested in meiotic prophase with larger growing oocytes, and late
449	females were sexually mature $(n = 2)$. In addition to samples that were definitively male and
450	female, larvae that had histologically undifferentiated gonads and were below the size at which
451	ovarian differentiation occurs $(n = 2)$ and presumptive male larvae with histologically
452	undifferentiated gonads but beyond the size at which ovarian differentiation is complete $(n = 4)$
453	were included.
454	Library preparation, Illumina sequencing, and data filtering. High-quality RNA from 28
455	gonad samples was sent to Genome Quebec, McGill University, Montreal, to construct a cDNA
456	library and perform RNA sequencing. Messenger RNA (mRNA) was isolated using poly-A
457	isolation and non-normalized libraries prepared using the Illumina TruSeq DNA Kit and
458	Epicentre Script Seq Kit. Sequencing was performed in both forward and reversed directions and
459	100 base pair (bp) reads were generated on an Illumina Hi-Seq 4000 PE100. The resulting RNA-
460	Seq paired-end (PE) reads were checked for quality control using FASTQC (v0.11.8) ⁴⁹ , and low-
461	quality sequences and adapters were trimmed with Trimmomatic (v0.36) ⁵⁰ , using
462	ILLUMINACLIP:TruSeq3-PE-2.fa:2:15:10 LEADING:5 TRAILING:5 SLIDINGWINDOW:4:5
463	MINLEN:50 and a quality score threshold of Phred-33.
464	
465	Combining reference and <i>de novo</i> assemblies:
466	Generating comprehensive gonadal superTranscriptome: The software pipeline Necklace ¹⁹ ,

467 was used to generate a merged superTranscriptome derived from three sources: 1) a genome-

468 guided alignment using the sea lamprey reference genome, 2) a *de novo* assembly using Trinity,

- and 3) a reference-based proteome from other chordate species. For the genome-guided
- assembly, the 28 gonadal transcriptomes were mapped to the Vertebrate Genome Project (VGP)
- 471 sea lamprey reference germline genome
- 472 (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/010/993/605/GCF_010993605.1_kPetMar1.pri/G
- 473 <u>CF_010993605.1_kPetMar1.pri_genomic.fna.gz</u>) and associated gene annotation file
- 474 (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/010/993/605/GCF_010993605.1_kPetMar1.pri/G
- 475 <u>CF_010993605.1_kPetMar1.pri_genomic.gff.gz</u>) available at NCBI. Reads were aligned to the
- sea lamprey genome using HISAT2, and StringTie⁵¹ was used to assemble transcripts, some of
- 477 which map to known genes and some of which are novel (MSTRG IDs). For the third tier of the
- 478 Necklace pipeline, reference proteomes from a non-teleost fish, spotted gar (*Lepisosteus*
- 479 *oculatus*)
- 480 (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/242/695/GCF_000242695.1_LepOcu1/GCF0
- 481 00242695.1_LepOcu1_protein.faa.gz), and a cartilaginous fish, elephant shark (*Callorhinchus*
- 482 *milii*) (https://www.ncbi.nlm.nih.gov/genome/689?genome_assembly_id=49056) were used.
- In the second step, a *de novo* assembly of reads was generated with Trinity⁵² for all 28 483 samples. The assembled transcripts from genome-guided and *de novo* assembly were sorted into 484 485 three groups: annotated transcripts that align to the reference genome (known genes), transcripts that align to the reference genome but are not found in the reference annotation (reference-based 486 487 novel genes), and unmapped novel transcripts – those that align to the spotted gar/elephant shark proteome (*de novo*-specific genes). These three groups were merged into a single 488 489 superTranscriptome and used for the second stage of the analysis: gene counting and differential expression analyses. The Necklace pipeline allows for the identification of novel transcripts yet 490
- 491 generates a compact and comprehensive superTranscriptome, while preventing the introduction

492 of false chimeras generated during *de novo* assembly. The step-by-step workflow of Necklace493 pipeline is illustrated in Supplementary Fig. 14.

494 In total, we identified 42,479 genes in the sea lamprey germline genome, of which 20,630 495 overlapped with those annotated by NCBI (representing ~94% of the total number of genes in the VGP annotation), 21,808 were identified de novo through StringTie, and 40 Trinity de novo 496 497 assembled transcripts matched sequences in the spotted gar/elephant reference proteome by homology. However, since the genomic location of these 40 homology-based sequences could 498 499 not be ascertained, they were discarded from further analyses. Of the remaining 42,439 500 sequences, tRNA, rRNA, and lncRNAs (long non-coding RNAs), were removed, retaining 501 18,945 protein-coding transcripts (16,328 from the VGP annotation and 2,617 novel transcripts, 502 which is ~14% of the total gene list) (Supplementary Fig. 15). Those 18,945 genes pertain to 12,583 unique gene names, which would be a lower limit on the actual number of genes 503 504 identified, since paralogous genes may be assigned the same gene name. 505 Gene-counts: Reads from each of the 28 gonadal transcriptomes were subsequently aligned to the merged superTranscriptome, and gene counts extracted and filtered. These gene-counts are 506

used for further downstream analysis, i.e., in differential gene expression analysis, identifying
sex-biased and sex-specific transcripts and genes.

509 Functional annotation and identifying orthogroups:

Functional annotation: All of the 18,945 putatively protein-coding genes generated from the
Necklace pipeline were annotated using Trinotate pipeline (v3.2.0)⁵³ following the method
described at (<u>http://trinotate.github.io/</u>). Initially, Transdecoder (v5.5.0) was used to obtain the
expected start and stop sites of protein translation from the assembled superTranscriptome. Then

514	each transcript and prote	in sequence were	searched against the	SwissProt database	using blastx
-----	---------------------------	------------------	----------------------	--------------------	--------------

- and blastp. The HMMER algorithm was used to search PFAM (ran in hmmer (v3.2.1)) for
- protein domain identification, signalp (v4.1f) and tmHMM (v2.0c) were used to predict the
- signal peptide and transmembrane regions, respectively, and Rnammer (v1.2) was used to
- 518 identify rRNA transcripts which were automatically removed in a later stage of the pipeline. In
- the final stage, the results from blast searches were combined with the other functional
- 520 annotation data and loaded into the Trinotate.SQLite database: an e-value of 1e-5 was used as the
- 521 threshold to generate the functional annotation report.
- 522 *Orthogroup identification:* The homology between the genes in our annotated sea lamprey
- 523 gonadal superTranscriptome were compared to genes in 11 chordate species chosen to represent
- 524 important time points in chordate evolution using the OrthoFinder pipeline⁵⁴. Protein sequences
- 525 were obtained from human (<u>ftp.ensembl.org/pub/release-</u>
- 526 <u>103/fasta/homo_sapiens/pep/Homo_sapiens.GRCh38.pep.all.fa.gz</u>), mouse (*Mus musculus*)
- 527 (<u>ftp://ftp.ensembl.org/pub/release-</u>
- 528 <u>102/fasta/mus_musculus/pep/Mus_musculus.GRCm38.pep.all.fa.gz</u>), zebrafish
- 529 (<u>ftp.ensembl.org/pub/release-103/fasta/danio_rerio/pep/Danio_rerio.GRCz11.pep.all.fa.gz</u>),
- 530 chicken (<u>ftp.ensembl.org/pub/release-</u>
- 531 <u>103/fasta/gallus_gallus/pep/Gallus_gallus.GRCg6a.pep.all.fa.gz</u>), medaka (*Oryzias sinensis*)
- 532 (<u>ftp.ensembl.org/pub/release-</u>
- 533 <u>103/fasta/oryzias_sinensis/pep/Oryzias_sinensis.ASM858656v1.pep.all.fa.gz</u>), spotted gar
- 534 (ftp.ensembl.org/pub/release-
- 535 <u>103/fasta/lepisosteus_oculatus/pep/Lepisosteus_oculatus.LepOcu1.pep.all.fa.gz</u>), elephant shark
- 536 (ftp.ensembl.org/pub/release-

- 537 <u>103/fasta/callorhinchus_milii/pep/Callorhinchus_milii.Callorhinchus_milii-6.1.3.pep.all.fa.gz</u>),
- 538 coelacanths (<u>ftp.ensembl.org/pub/release-</u>
- 539 <u>103/fasta/latimeria_chalumnae/pep/Latimeria_chalumnae.LatCha1.pep.all.fa.gz/</u>), hagfish
- 540 (Eptatretus burgeri) (<u>ftp.ensembl.org/pub/release-</u>
- 541 <u>103/fasta/eptatretus_burgeri/pep/Eptatretus_burgeri.Eburgeri_3.2.pep.all.fa.gz</u>), amphioxus
- 542 (Branchiostoma belcheri)
- 543 (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/001/625/305/GCF_001625305.1_Haploidv18h27/
- 544 <u>GCF_001625305.1_Haploidv18h27_protein.faa.gz</u>). OrthoFinder uses the complete list of
- 545 known protein sequences from all included taxa to find putative orthologues, and then creates
- 546 orthogroups with related sets of orthologues. OrthoFinder exports multiple sequence alignments
- 547 and rooted gene trees for all orthogroups, which can be used to infer gene duplication events.
- 548 Overall, in this study, 93.1% of the genes in the 12 chordate species were assigned to one of
- 549 27,364 orthogroups, and 5606 orthogroups contained representatives of all 12 species.

550 Prediction of germline-specific region (GSR) and genes by enrichment analysis:

551 *Identifying GSGs in the GSR:* Although the GSR in sea lamprey has been identified for a

previous germline assembly $(gPmar100)^{20}$, when the new VGP germline genome was deposited

on NCBI, the corresponding positions were not available. Following the protocol from Smith et

- al. 2018, germline enrichment was calculated using the DifCover program by calculating
- differences in read depth between a single germline sample (sperm) and a single somatic sample
- (blood) from the same male. We downloaded and mapped the same sperm (SRR5535435) and
- blood (SRR5535434) samples they had used from their previous analysis to identify the GSR
- 558 coordinates in the newly-deposited VGP genome in order to facilitate our downstream
- transcriptomic analyses. The DNAcopy output file was generated by following step by step

560 workflow with default settings described in the DifCover pipeline

(https://github.com/timnat/DifCover) (See Supplementary Fig. 14)²¹. This DNAcopy output file
was then used to identify GSR from the new chromosome level assembly, VGP germline
genome and the DNAcopy output file. Later, the GSGs were identified by extracting all genes
that fell within regions having an enrichment score >2 using bedtools (v2.29.0) with the aid of
the genome-based annotation file (generated in Necklace pipeline).

Initially, we identified 1845 GSGs by extracting the DNAcopy output file from VGP 566 genome; however, only 783 protein-coding GSGs were retained with gene counts after the initial 567 568 filtration steps discussed in previous section. In the next step, we sorted genes based on their 569 location: if two genes with the same name had overlapping start and end points, the canonical 570 transcript was retained, which reduced the number of genes to 672. In the final step, we extracted the protein sequences associated with each of these genes from the transdecoder pep file and 571 572 removed ambiguous sequences. The final list consisting of 638 GSGs was merged with the 573 Trinotate annotation report to assign putative gene names for the novel genes, and with the reference annotation for genes identified by VGP. In total, 163 unique gene names were assigned 574 to the 638 GSGs, 70 of them in a single copy, and the remaining 93 in 2-77 copies 575 576 (Supplementary Fig. 2).

Given our finding that genes in the GSR are highly expressed during gonad development (see Results and discussion), we wanted to assess whether all or a subset of the genes in the GSR are also expressed during early embryonic development. To this end, we downloaded paired-end RNA-seq read data for embryos sampled at 1 dpf (SRR3002837), 2 dpf (SRR3002840), 2.5 dpf (SRR3002843), 3 dpf (SRR3002846), 4 dpf (SRR3002849) and 5 dpf (SRR3002852) from the SRA database

583	(https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=306044). Reads
584	were aligned to the VGP genome using HISAT2 (v 2.2.1) ⁵¹ , and assembled into transcripts, and
585	gene and transcripts counts were obtained per sample using Stringtie (v 2.0) ⁵¹ . In the next step,
586	we extracted the embryo-expressed GSGs using the merged annotation file generated in the
587	previous step and the DNACopy output file generated from DifCover analysis (Supplementary
588	Fig. 13). We considered only genes available in the reference annotation that mapped to our
589	GSR, which resulted in 184 GSGs (after filtering ncRNA (non-coding RNAs), rRNA (ribosomal
590	RNAs) and pseudogenes from the reference annotation) expressed in early embryonic
591	development of which 149 genes overlapped with those expressed in our gonad samples. The
592	gene count file was used to compare gene expression in the GSR pre-PGR (1dpf, 2 dpf and 2.5
593	dpf) and post-PGR (3 dpf, 4 dpf and 5 dpf) and between gonads and embryos (both pre- PGR
594	and post-PGR).
595	Identifying somatic copies of GSGs: To identify putative paralogues of GSGs in the somatic
596	genome, the list of all genes was sorted based on the unique gene names obtained from either the

Trinotate annotation report or from the reference annotation. Of the 163 unique genes identified in the GSR, 89 were found to have either a single or multiple putative paralogues in the somatic genome, of which 31 were matched to a unique OrthoGroup by OrthoFinder (Supplementary Fig. 16).

601 Identifying male-biased expression:

To identify sex-biased genes, only the gonadal transcriptomes from definitive males were
analyzed; the undifferentiated larvae and prospective males were removed from this comparison.
Since traditional differential gene expression analyses using a threshold log-fold change between
conditions would likely identify genes with low or no expression in one sex but also low

expression in the other sex, we aimed to target genes that were very highly expressed in one sex
but had much lower or no expression in the other. The gene count data was obtained from the
raw gene count data across samples with reference to the necklace superTranscriptome, and these
were later filtered using normalized gene counts and log fold change (logFC) using DESeq2⁵⁵
and EdgeR⁵⁶. That gave us an estimate of 6088 genes with higher logFC in males than females of
which top 20% genes were considered to be male-biased as long as the total gene count is equal
or more than 1000 (Supplementary Fig. 17).

613 Comparison of GSG expression across sex and stage and functional enrichment analysis:

Comparison of GSG expression across sex and stage: The genome-wide raw gene counts were 614 converted to normalized counts using DESEQ255, and the log2 expression of all genes in the 615 616 GSR compared in a sex- and stage-specific manner. To assess global differences in sex bias in gene expression, we compared the density of the relative log2(male:female normalised 617 expression) of all genes in the somatic genome vs GSR. To compare the difference in expression 618 619 between GSGs against their somatic paralogues across both sexes and stage, we calculated the mean normalized log2 gene count and visualised the data with a heat map. To assess whether 620 621 GSGs exhibit stage-specific sex-biased expression, we extracted the list of all genes exhibiting sex-biased expression (as defined above) in both the somatic genome and GSR, and assessed 622 623 whether the proportional expression of genes differed between genomes and stage using a 624 repeated measures mixed model in which proportion gene expression was the response and the model was gene(genome) + stage + genome*stage, with gene as a random effect, and stage as 625 the repeated measure. 626

Functional enrichment: The list of genes identified in the GSRs was submitted for pathway
analysis using the human protein-coding genes as background using PANTHER (v14)

(http://pantherdb.org) 57. The PANTHER GO-slim molecular process terms associated with each

629

630	gene were used for an over-representation test ⁵⁷ in which the Fisher exact test was performed to
631	assess the significance of terms at an FDR of 0.05. Additionally, we used the gene ontology
632	(GO) terms associated with the GSGs identified by Trinotate ⁵³ , and visualized them in REVIGO
633	(<u>http://revigo.irb.hr/</u>) ⁵⁸ in a scatter plot that shows cluster representatives in a two-dimensional
634	space derived by GO terms with semantic similarity measure and clustering set at 0.9 overall.
635	Terms were plotted with size proportional to fold-enrichment above expected and color
636	according to the log10 of the FDR p-value (Fig. 1b; see Results and discussion).
637	Comparative mapping and phylogenetic analysis:
638	Comparative mapping: Lampreys, being an intermediate lineage between 1R and 2R WGD, are
639	important model organisms for the study of evolution of genes as well as evolution of
640	physiological process ^{20,30,45–48} . We compared the evolutionary origin and relationship of genes in
641	the GSR to the pre-2R vertebrate genome and in later diverging taxa. To this end, we identified
642	orthologues of the genes from all 85 assembled chromosomes as well as to scaffolds that we
643	identified as enriched (GSR) or non-enriched (somatic) for germline DNA (see results) to those
644	in human, chicken, and spotted gar and a reconstructed pre-2R vertebrate genome. Orthologous
645	genes were identified using the output of OrthoFinder ⁵⁴ , assigned to their chromosomal location
646	using BioMart (ENSEMBL) and the number of co-orthologues per linkage group/chromosome
647	calculated pairwise. To remove marginally supported syntenies, we used the observed number of
648	lamprey orthologues identified by chromosome for each species comparison as the maximum
649	expected value and retained all syntenic chromosomal pairs; if there were >10 genes shared
650	between species for lamprey chromosomes $1-69$, or > 5 for chromosomes 70-85 (this criterion
651	was set based on chromosome size), and retained all orthologous gene matches for the GSR. The

reconstructed pre-2R vertebrate genome was downloaded from the ftp site of the Genomicus
webserver³¹ (ftp://ftp.biologie.ens.fr/pub/dyogen/genomicus/69.10 details of the reconstruction
are described in³⁰).

655 *Phylogenetic analysis:* Given that genes in the GSRs may have unique evolutionary histories, the phylogenetic relationships of a subset of the genes in the GSRs and their somatic orthologues 656 657 were reconstructed along with orthologous/paralogous genes identified from the 11 taxa included in the OrthoFinder output. Phylogenetic trees were obtained from OrthoFinder which uses 658 RaxML reconstruction⁵⁴. Trees were not available for all GSGs, including the sea lamprey 659 660 putative orthologue of *fgfr3*, which has been shown to be important for sex determination and differentiation in other taxa^{32,35,59,60}. Thus, we obtained sequences for *fgfr3* for the same 11 661 species employed in the OrthoFinder analyses, and then performed an alignment in Maaft 662 (https://mafft.cbrc.jp/alignment/server/) followed by ML reconstruction with RAXML. We 663 hypothesized that genes in the GSR are under relaxed evolutionary constraint and relaxed dosage 664 665 sensitivity and thus may exhibit accelerated rates of sequence evolution. However, we were unable to employ tests of dN/dS due to the difficulty of obtaining sufficiently un-gapped 666 667 alignments of the coding sequence of the sea lamprey genes relative to those from other jawed 668 vertebrates. Nevertheless, phylogenetic trees were generated to understand the relationship of paralogous copies of the GSGs in the GSR to those in the somatic genome, as well as the 669 670 relationship of the protein coding sequences in sea lamprey to those in other chordate taxa. **Data availability:** The RNA-sequencing reads used for this study have been deposited in the 671 672 NCBI repository under the BioProject accession number PRJNA749754 and will be available

673 upon publication of manuscript.

Acknowledgements: We thank Dr. John B. Hume (Michigan State University), Dr. Nicholas

Johnson (U.S. Geological Survey), Dr. Michael Wilkie (Wilfrid Laurier University), and Joshua

676	Sutherby (University of Manitoba) for providing us with the samples used in this study. We also					
677	thanl	thank Arfa Khan (University of Manitoba) for her guidance during sample processing and RNA				
678	extra	extraction.				
679	Fund	Funding: This research was funded by the Natural Sciences and Engineering Research Council				
680	of Ca	of Canada (NSERC) Discovery Grants program (MFD, SVG), the University of Manitoba				
681	Grad	Graduate Enhancement of Tri-Council Stipends program (MFD), and the Great Lakes Fishery				
682	Commission Sea Lamprey Research Program (MFD).					
683	Refer	rences:				
684 685	1.	Kloc, M. & Zagrodzinska, B. Chromatin elimination - An oddity or a common mechanism in differentiation and development? <i>Differentiation</i> 68 , 84–91 (2001).				
686 687 688	2.	Zufall, R. A., Robinson, T. & Katz, L. A. Evolution of developmentally regulated genome rearrangements in eukaryotes. <i>J. Exp. Zool. B Mol. Dev. Evol. J EXP ZOOL PART B</i> 304 448–455 (2005).				
689 690	3.	Wang, J. & Davis, R. E. Programmed DNA elimination in multicellular organisms. <i>Curr. Opin. Genet.</i> 27 , 26–34 (2014).				
691 692 693	4.	Bryant, S. A., Herdy, J. R., Amemiya, C. T. & Smith, J. J. Characterization of somatically-eliminated genes during development of the sea lamprey (<i>Petromyzon marinus</i>). <i>Mol. Biol. Evol.</i> 33 , 2337–2344 (2016).				
694 695 696	5.	Smith, J. J., Antonacci, F., Eichler, E. E. & Amemiy, C. T. Programmed loss of millions of base pairs from a vertebrate genome. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 106 , 11212–11217 (2009).				
697 698	6.	Smith, J. J., Baker, C., Eichler, E. E. & Amemiya, C. T. Genetic consequences of programmed genome rearrangement. <i>Curr. Biol.</i> 22 , 1524–1529 (2012).				
699 700 701	7.	Timoshevskiy, V. A., Lampman, R. T., Hess, J. E., Porter, L. L. & Smith, J. J. Deep ancestry of programmed genome rearrangement in lampreys. <i>Dev. Biol.</i> 429 , 31–34 (2017).				
702 703	8.	Smith, J. J., Antonacci, F., Eichler, E. E. & Amemiy, C. T. Programmed loss of millions of base pairs from a vertebrate genome. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 106 , 11212–11217				

705 706 707	9.	Timoshevskiy, V. A., Herdy, J. R., Keinath, M. C. & Smith, J. J. Cellular and molecular features of developmentally programmed genome rearrangement in a vertebrate (Sea lamprey: <i>Petromyzon marinus</i>). <i>PLoS Genet.</i> 12 , e1006103 (2016).
708 709	10.	Goday, C., Rosario, M. & Summary, E. Chromosome elimination in Sciarid flies. <i>Wiley Online Libr</i> . doi:10.1002/1521-1878(200103)23:3<242::AID-BIES1034>3.0.CO;2-P.
710 711	11.	Müller, F. & Tobler, H. Chromatin diminution in the parasitic nematodes <i>Ascaris suum</i> and <i>Parascaris univalens</i> . <i>Int. J. Parasitol.</i> 30 , 391–399 (2000).
712 713	12.	Tobler, H. The differentiation of germ and somatic cell lines in nematodes. <i>Results Probl. Cell Differ.</i> 13 , 1–69 (1986).
714 715	13.	Tobler, H., Müller, F., Back, E. & Aeby, P. Germ line - soma differentiation in <i>Ascaris</i> : A molecular approach. <i>Experientia</i> 41 , 1311–1319 (1985).
716 717	14.	Pigozzi, M. I. & Solari, A. J. The germ-line-restricted chromosome in the zebra finch: Recombination in females and elimination in males. <i>Chromosoma</i> 114 , 403–409 (2005).
718 719 720	15.	Biederman, M. K. <i>et al.</i> Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the Zebra finch, <i>Taeniopygia guttata. Curr. Biol.</i> 28 , 1620-1627.e5 (2018).
721 722	16.	Kinsella, C. M. <i>et al.</i> Programmed DNA elimination of germline development genes in songbirds. <i>Nat. Commun.</i> 10 , (2019).
723 724	17.	Magnúsdóttir, E. <i>et al.</i> A tripartite transcription factor network regulates primordial germ cell specification in mice. <i>Nat. Cell Biol.</i> 15 , 905–915 (2013).
725 726 727	18.	Docker, M. F., Beamish, F. W. H., Yasmin, T., Bryan, M. B. & Khan, A. The Lamprey Gonad. in <i>Lampreys: Biology, Conservation and Control Vol</i> 2 , 1–186 (2019) edited by M. F. Docker. Springer.
728 729	19.	Davidson, N. M. & Oshlack, A. Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis. <i>Gigascience</i> 7 , 1–6 (2018).
730 731	20.	Smith, J. J. <i>et al.</i> The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. <i>Nat. Genet.</i> 50 , 270–277 (2018).
732 733	21.	Timoshevskaya, N. Difcover. (2019) Available online: https://github.com/timnat/DifCover (accessed on 12 September 2019)
734	22.	Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26 (2011).
735 736	23.	Hardisty, M. Gonadogenesis, sex differentiation and gametogenesis. In: Hardisty MW, Potter IC (eds) The biology of lampreys. <i>Acad. Press. New York</i> 295–360 (1971).
737 738	24.	Lowartz, S. M. & Beamish, F. W. H. Novel perspectives in sexual lability through gonadal biopsy in larval sea lampreys. <i>J. Fish Biol.</i> 56 , 743–757 (2000).
739 740 741	25.	Docker, M. F., William, F. & Beamish, H. Age, growth, and sex ratio among populations of least brook lamprey, Lampetra aepyptera, larvae: an argument for environmental sex determination. <i>Environ. Biol. Fishes</i> 41 , 191–205 (1994).

742 743 744	26.	Johnson, N. S., Swink, W. D. & Brenden, T. O. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate. <i>Proc. R. Soc. B Biol. Sci.</i> 284 , (2017).
745 746	27.	Capel, B. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. <i>Nat. Rev. Genet.</i> 2017 1811 18 , 675–689 (2017).
747 748	28.	Xu, X. <i>et al.</i> Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. <i>Natl. Sci. Rev.</i> 6 , 993–1003 (2019).
749 750 751	29.	Wang, X. <i>et al.</i> The Role of DNA Methylation Reprogramming during Sex Determination and Transition in Zebrafish. <i>Genomics. Proteomics Bioinformatics</i> (2021) doi:10.1016/j.gpb.2020.10.004.
752 753	30.	Sacerdot, C., Louis, A., Bon, C., Berthelot, C. & Roest Crollius, H. Chromosome evolution at the origin of the ancestral vertebrate genome. <i>Genome Biol.</i> 19 , 166 (2018).
754 755 756	31.	Nguyen, N. T. T., Vincens, P., Crollius, H. R. & Louis, A. Genomicus 2018: Karyotype evolutionary trees and on-the-fly synteny computing. <i>Nucleic Acids Res.</i> 46 , D816–D822 (2018).
757 758	32.	Windley, S. P. & Wilhelm, D. Signaling pathways involved in mammalian sex determination and gonad development. <i>Sex Dev.</i> 9 , 297–315 (2016).
759 760	33.	Tao, W. <i>et al.</i> Characterization of gonadal transcriptomes from Nile Tilapia (<i>Oreochromis niloticus</i>) reveals differentially expressed genes. <i>PLoS One</i> 8 , e63604 (2013).
761 762	34.	Jia, Y. <i>et al.</i> Transcriptome analysis of three critical periods of ovarian development in Yellow River carp (<i>Cyprinus carpio</i>). <i>Theriogenology</i> 105 , 15–26 (2018).
763 764	35.	Chen, Y. <i>et al.</i> Gonadal transcriptome sequencing of the critically endangered <i>Acipenser dabryanus</i> to discover candidate sex-related genes. <i>PeerJ</i> 2018 , e5389 (2018).
765 766 767	36.	Takemoto, K. <i>et al.</i> Sycp2 is essential for synaptonemal complex assembly, early meiotic recombination and homologous pairing in zebrafish spermatocytes. <i>PLOS Genet.</i> 16 , e1008640 (2020).
768 769	37.	Lavery, R. <i>et al.</i> Testicular differentiation occurs in absence of R-spondin1 and Sox9 in mouse sex reversals. <i>PLOS Genet.</i> 8 , e1003170 (2012).
770 771	38.	Barbara, N. & Humphrey H, Y. Gonadal identity in the absence of pro-testis factor SOX9 and pro-ovary factor beta-catenin in mice. <i>Biol. Reprod.</i> 93 , (2015).
772 773	39.	Piprek, R. P., Kloc, M., Mizia, P. & Kubiak, J. Z. The central role of cadherins in gonad development, reproduction, and fertility. <i>Int. J. Mol. Sci.</i> 21 , 1–21 (2020).
774 775	40.	Wolgemuth, D. J., Manterola, M. & Vasileva, A. Role of cyclins in controlling progression of mammalian spermatogenesis. <i>Int. J. Dev. Biol.</i> 57, 159 (2013).
776 777	41.	Venables, J. P. <i>et al.</i> RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2 β and affect splicing. <i>Hum. Mol. Genet.</i> 9 , 685–694 (2000).
778	42.	Jungmin, L. et al. Developmental stage-specific expression of Rbm suggests its

779		involvement in early phases of spermatogenesis. Mol. Hum. Reprod. 10, 259-264 (2004).
780 781 782	43.	Dos Reis, M. <i>et al.</i> Using Phylogenomic Data to Explore the Effects of 3 Relaxed Clocks and Calibration Strategies on 4 Divergence Time Estimation: Primates as a Test Case. <i>Syst. Biol.</i> 67 , 594–615 (2018)
783 784	44.	Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A resource for timelines, timetrees, and divergence times. <i>Mol. Biol. Evol.</i> 34 , 1812–1819 (2017).
785 786 787	45.	Kuraku, S., Meyer, A. & Kuratani, S. Timing of genome duplications relative to the origin of the vertebrates: Did cyclostomes diverge before or after? <i>Mol. Biol. Evol.</i> 26 , 47–59 (2009).
788 789	46.	Smith, J. J. & Keinath, M. C. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications. <i>Genome Res.</i> 25 , 1081–1090 (2015).
790 791	47.	Simakov, O. <i>et al.</i> Deeply conserved synteny resolves early events in vertebrate evolution. <i>Nat. Ecol. Evol.</i> 4 , 820–830 (2020).
792 793 794	48.	Nakatani, Y. <i>et al.</i> Reconstruction of proto-vertebrate, proto-cyclostome and proto- gnathostome genomes provides new insights into early vertebrate evolution. <i>Nat.</i> <i>Commun.</i> 12 , 4489 (2021).
795	49.	Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).
796 797	50.	Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. <i>Bioinformatics</i> 30 , 2114–2120 (2014).
798 799 800	51.	Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. <i>Nat. Protoc.</i> 11 , 1650–1667 (2016).
801 802	52.	Haas, B. J. <i>et al.</i> De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. <i>Nat. Protoc.</i> 8 , 1494–1512 (2013).
803 804	53.	Bryant, D. M. <i>et al.</i> A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. <i>Cell Rep.</i> 18 , 762–776 (2017).
805 806 807	54.	Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. <i>Genome Biol.</i> 16 , 157 (2015).
808 809	55.	Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. <i>Genome Biol.</i> 15 , 550 (2014).
810 811 812	56.	Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. <i>Bioinformatics</i> 26 , 139 (2010).
813 814 815	57.	Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. <i>Nucleic Acids Res.</i> 47 , D419–D426 (2019).

- Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long
 lists of gene ontology terms. *PLoS One* 6, e21800 (2011).
- 818 59. Makiyan, Z. Studies of gonadal sex differentiation. Organogenesis 12, 42–51 (2016).
- 819 60. Quinn, A. & Koopman, P. The molecular genetics of sex determination and sex reversal in mammals. *Semin. Reprod. Med.* 30, 351–363 (2012).