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SUMMARY

Although some pharmacol ogical agents are known to alter socia behaviors, precise description and
guantification of such effects have proven difficult. The complexity of brain functions regulating sociality
makes it challenging to predict drug effects on social behavior without testing in live animals, and most
existing behavioral assays are low-throughput and provide only unidimensional readouts of social
function. To achieve richer characterization of drug effects on sociality, we developed a scalable social
behavioral assay for zebrafish named ZeChat based on unsupervised deep learning. High-dimensional and
dynamic socia behavioral phenotypes are automatically classified using this method. By screening a
neuroactive compound library, we found that different classes of chemicals evoke distinct patterns of
social behavioral fingerprints. By examining these patterns, we discovered that dopamine D3 agonists
possess a social stimulative effect on zebrafish. The D3 agonists pramipexole, piribedil, and 7-hydroxy-
DPAT-HBr rescued socia deficits in avalproic acid-induced zebrafish autism model. The ZeChat
platform provides a promising approach for dissecting the pharmacology of socia behavior and
discovering novel social-modulatory compounds.
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INTRODUCTION

Sociality is broadly conserved across the animal kingdom, facilitating cooperation, reproduction, and
protection from predation. In humans, social dysfunction isahalmark of several neuropsychiatric
disorders such as autism, schizophrenia, bipolar disorder, and Williams syndrome, to name afew. In
particular, social communication impairment is considered a core symptom of autism. Despite its
importance, we lack a comprehensive understanding of how the diverse classes of neuroactive drugs
impact socia behavior. Thisis evidenced by the fact that athough certain antipsychotics, antidepressants,
and stimulants medications are used clinically to help manage symptoms of autism™?, no treatment is
currently available to ameliorate the disease-relevant social deficit.

It has been a magjor challenge to predict how chemicals affect complex behaviors such as sociaity. Simple
in vitro assays cannot effectively model drug effects on whole organisms, especialy on brain activity.
Rodent models lack sufficient throughput and are cost-prohibitive for a comprehensive examination of the
hundreds of neuroactive drugs currently available, limiting their uses to small-scale hypothesis-driven
testing. As an increasingly important model organism for social behavioral research®, the zebrafish model
provides an opportunity for tackling this problem. Indeed, recent zebrafish behaviora profiling studies
have systematically assessed the effects of neuroactive chemicals on rest/wake behavior* and appetite®,
and discovered novel neuroactive molecules® and drugs with antipsychotic properties’.

Current methods for studying social behavior in zebrafish are mostly limited to quantifying simplex traits
such as social preference®, social orienting®, group cohesion®, and school polarization™. In these assays,
fish are either isolated from each other by transparent windows in a 3-chamber® or a 2-chamber® setup, or
interact in groups'®**. To assess the complex nature of social behavior in zebrafish in amore
comprehensive and unbiased way, we adopted an unsupervised deep learning approach. Deep learning
based on a convolutional autoencoder allowed us to process all relevant information available from a
recording, whereas unsupervised learning allowed for unbiased classification of behavioral phenotypes
without human intervention.

Here, we report the development of a fully automated and scalable socia behavioral analysis platform
named ZeChat. Built on an unsupervised deep learning backbone, ZeChat embeds the high-dimensional
and dynamical social-relevant behavioral datato a 2-dimensional space and assigns the embedded
datapoints to distinct behavioral categories, thus converting afish’s entire behavioral recording to a
behavioral fingerprint in the form of a 1-dimensional numerical vector. This generates arich set of social-
relevant behavioral phenotypes and enables unbiased clustering and classification of drug-treated animals.
Using the ZeChat system, we screened 237 known neuroactive compounds and discovered a social

stimul ative effect of dopamine D3 receptor agonists (D3 agonists). Acute exposure to D3 agonists rescued
socia deficitsin avalproic acid-induced zebrafish autism model. Our results demonstrate that
multidimensional socia behavioral phenotypes can be distilled into simple behavioral fingerprintsto
classify the effect of psychotropic chemicals on sociality.
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RESULTS
Rationale and overview of the ZeChat behavioral analysis framewor k

The ZeChat workflow is summarized in Figure 1a. We probed social interaction in a 2-chamber setup, in
which each fish swims freely in a square arena with visual accessto its partner fish through a transparent
window. A fish's position inside the arena, aswell asits posture and swim dynamics were deemed
relevant for socia interaction. Therefore, in the preprocessing step, we preserved each fish’s positional
information by imaging the entire arena, embedded motion-relevant features into each frame, and filtered
out the other irrelevant details. The social-relevant information in each image was then distilled by a
convolutional autoencoder to alatent vector. As behaviors are inherently dynamical and behavioral bouts
manifest in indefinite durations of time, we converted time series of the latent vectors to a wavel et
spectrogram to create a description of socia behavioral dynamics occurring at multiple time scalesin the
form of afeature vector. From this point onward, behavior was viewed as atrgectory through a high-
dimensional feature space of positional, postural, and motional dynamics*. Discrete behavioral motifs
manifest as pausesin trajectory at repeatable locations and therefore can be classified to distinct
behavioral categories.

Social-relevant information extracted by behavioral recording and image prepr ocessing

The zebrafish becomes socialy active at 3 weeks of age® while they are still small in size (~ 1 cm long),
enabling us to visualize their socia interactionsin a confined space. To alow easy separation of
individual fish for subsequent analysis, pairs of fish were each placed in a separate 2 cm x 2 cm arenaand
alowed to interact only through a transparent window (Supplementary Fig. 1a; Supplementary Video 1).
A custom-built high-throughput imaging platform allowed us to record 40 pairs of fish simultaneously
with sufficient spatiotemporal resolution to capture dynamic changes of the fish’s postures and positions
(Fig. 1b-c & Supplementary Video 2). Sexual dimorphism is not readily apparent at this stage, so fish
were paired without sex distinction.

For image preprocessing, each fish was first tracked to be isolated from the background (Fig. 2d &
Supplementary Video 3: tracked). Consecutive frames were subtracted to generate a silhouette of how
fish’ s positions have changed between frames (Fig. 2d & Supplementary Video 3: silhouette). In parallel,
we color each fish based on its direction of movement extracted using the dense optical flow algorithm
(Fig. 2d & Supplementary Video 3: dense optical flow). Finally, the dense optical flow image was
masked by the subtracted silhouette to generate a merged image (Fig. 2¢ & Supplementary Video 3:
merge; Supplementary Fig. 1c).

Images ar e transfor med to feature vector s by feature extraction and time-frequency analysis

Aspart of theinitial setup, a subset of the preprocessed frames was first used to train a convolutional
autoencoder. Briefly, a 7-layer convolutional autoencoder compressed each input image by forcing it
through a bottle neck (alatent representation space) before reconstructing an output image similar to the
input image (Fig. 2e & Supplementary Fig. 1d), enabling the autoencoder to “learn” to extract the
essential features from each input image to alatent vector. A principal component analysis (PCA)
extracted 40 principal components from the latent vectors, preserving ~ 95% of the total variance. When
running the ZeChat analysis, preprocessed frames were converted to motion features in the form of 40
principal components by the pre-trained autoencoder and PCA models.
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Behaviors happen in durations, necessitating time to be taken into consideration in the analysis to
properly interpret information in the behavioral recordings. To embed time-related information into the
motion features, we conducted continuous wavel et transform (CWT) on each of the 40 principal
components to convert time-domain information into the frequency-domain. In the resulting spectrogram,
25 amplitudes at each timepoint are concatenated into a single vector of length 40 x 25, generating a
1,000-dimensional feature vector (Supplementary Fig. 2).

Feature vectors are assigned to behavioral categories by nonlinear embedding and classification

We then performed nonlinear dimensionality reduction on these high dimensional vectors using t-
distributed stochastic neighbor embedding (t-SNE)™. Due to computational limitations, we first
embedded a small subset of randomly sampled feature vectors to draw a reference map. Because t-SNE is
non-parametric, we applied a parametric variant of t-SNE named kernel t-SNE™ to embed additional
datapoints onto the reference map. We named the resulting 2-dimensional behavioral space ZeChat map
(Fig. 2f).

Calculating the probability density function (PDF) of ZeChat map identified regions with high datapoint
density aslocal maxima (Fig. 2g), which according to our hypothesis, mark the locations of potential
behavioral categories™. We segmented ZeChat map into 80 regions based on locations of the local
maxima using a watershed transform algorithm, allowing each original video frame — now embedded as a
datapoint in ZeChat map — to be assigned to a particular behavioral category (Fig. 2h).

The pause-move dynamic of ZeChat map

We made videos to help visualize how afish’sreal-time behavioral changes trandate to datapoint
trajectories on the ZeChat map (Supplementary Video 4). As hypothesized, we found that the trgjectory of
the 2-dimensional embedding alternates between sustained pauses within certain regions of the map and
rapid movements from one region to a distant region on the map. Plotting the velocity of the trgectory
reveded a*“ pause-move’ dynamic (Fig. 2a). The low-velocity points are localized in distinguishable
peaks that often overlap with the ZeChat map’slocal maxima (Fig. 2b & 1g). In contrast, the high-
velocity points are more uniformly distributed (Fig. 2c). This result supports our hypothesis that the
social-relevant behaviora changes can be represented by atrgjectory through a high-dimensional space of
postural, motional, and positional dynamics in which discrete behaviors correspond to epochs of
trajectory pauses.

Positional and motional featur e patter ning on ZeChat map

We extracted each fish’s centroid positions inside each arena (Fig. 2d). The peak in the Y -axis position
histogram demonstrates that fish typically tend to interact with their partner fish by staying close to the
transparent window (Fig. 2e). The X-axis position histogram, in contrast, shows an even distribution and
demonstrates lack of preference for either of the two side walls of the arena as expected (Fig. 2f). To
examine whether the positional features and motional features such as velocity affect the distribution of
datapoints on ZeChat map, we colored each datapoint based on the value of these features. Datapoints
with lower Y -axis position values (fish closer to the transparent window) are more likely located in the
upper-right region of ZeChat map, in contrast to datapoints with higher Y -axis position values which
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favor the lower-l€ft region, indicating that the upper-right region’s behavioral categories may represent
more “prosocial” behavioral phenotypes compared to the lower-left behavioral categories (Fig. 2g). The
X-axis position, on the other hand, does not appear to be correlated with datapoint distribution (Fig. 2h).
The high velocity datapoints also appear to be preferentially located in the upper-right region (Fig. 2i).

As shown in Figure 2g, behaviors assigned to the upper-right region behavioral categoriesin ZeChat map
typically correspond to timepoints when afish is positioned close to its partner fish, likely indicating
social interest. On the other hand, behaviors assigned to the |ower-left region categories appear to mark
moments of social disinterest. Coincidently, the behavioral categories were automatically labeled from the
lower-left corner to the upper-right corner with the numbers 1 to 80 (Fig. 1h), meaning that the lower-
number behavioral categories typically correspond to behaviors of social disinterest, while the higher-
number categories show social interest behaviors.

Neur oactive compound screening reveals diver se social behavioral responses

To systematically assess how neuroactive compounds modulate socia behavior, we conducted a screen of
237 compounds including modulators of the dopamine, serotonin, and opioid-related pathways. These
pathways were selected because they have been implicating in influencing social behavior™™*’. Briefly, 3-
week-old juvenile fish were treated with compounds by bath exposure for 1-3 hours prior to ZeChat
recording. Ten fish were treated with each compound, and fish treated with the same compound were
paired with each other for ZeChat recording (Fig. 3a). A set of DM SO control fish wasincluded in every
recording.

Counting the number of times when afish’s behavior is classified to each behavioral category generated a
behavioral fingerprint in the form of an 80-dimensional numerical vector. Fish treated with the same
compound showed highly similar behavioral fingerprints (Fig. 3b), suggesting that the behavioral
fingerprints produced by a given compound are consistent across multiple individual animals. To
consolidate data, we combined the behavioral fingerprints of fish treated with the same compound by
keeping the median value of each behavioral category. All 237 consolidated behavioral fingerprints plus
DM SO controls were normalized, and the medians of DM SO controls were subtracted from all samplesto
help visualize changes in behavioral fingerprints compared to wild type behavior.

Hierarchical clustering reveals a diversity of behavioral responses (Fig. 4 & Supplementary Fig. 3). As
discussed in the previous section, lower-number behavioral categoriestypicaly correlate to behaviors of
socia disinterest, while higher-number behavioral categories correlate to social interest behaviors. In the
clustergram, we noticed severa clusters showing increased signals almost exclusively in the higher-
number behavioral categories (Fig. 4, red vertical lines), suggesting elevated socia interest in these fish
compared to wild type controls, aswell as clusters showing increased signals mainly in the lower-number
behavioral categories (Fig. 4, blue vertical lines), indicating decreased social interest. The remaining
clusters showed relativel y balanced signals between the higher and lower-number behavioral categories.

We found that compounds belonging to the same functional class consistently evoked highly similar
behavioral fingerprints (Fig. 5aand Supplementary Fig. 4 & 5). To compare the typical behaviora
fingerprints of major drug classes, we cal culated the median value of each behavioral category for all
behavioral fingerprints elicited by functionally similar molecules. Only drug classes with no fewer than 3
compounds tested in the screen were included in this analysis. Hierarchical clustering of the resulting
behavioral fingerprints again revealed distinct behavioral phenotypes (Fig. 5b). Remarkably, compounds
targeting the 3 major neuronal pathways naturally clustered apart from each other. Most serotonin
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pathway modulators enhanced signals in the lower-number behavioral categories while reducing signals
in the middle and higher-number behavioral categories, indicating a reduced tendancy in the drug-treated
fish to stay close to their partner fish in the ZeChat assay setup. In contrast, most dopamine and opioid
pathway modulators appeared to enhance signals in the higher-number behavioral categoriesto varying
degrees. In particular, asubcluster of drug classes, including the dopamine D3 receptor agonists (D3
agonists), showed strong signals in the higher-number behavioral categories (Fig. 5b, black vertical bar).

Dopamine D3 receptor agonistsrescue social deficitsin a VPA-induced autism model

The five D3 agonists produced highly similar behavioral fingerprints, with most showing strong signalsin
behavioral categories 68 to 80 (Fig. 6a-c). In contrast, the D1 and D2 agonists showed very different
behavioral fingerprints with no enrichment in these behavioral categories (Fig. 6a). Because we
hypothesized the higher-number behavioral categories to represent behaviors of stronger social interest
compared to the lower-number behavioral categories, we examined the raw behaviora recordings of D3
agonist-treated fish for hints of elevated social interaction. In needed, we noticed that the D3-agonist-
treated fish tend to spend a significant amount of time swimming intensively while pressing against the
transparent window. Compared to wild type, these fish demonstrate persistent and strong high-frequency
tail beat, fast swim velocity, quick and frequent turns, and rarely retreat from the proximity of the
transparent window (Supplementary Video 5 and Fig. 6d), consistent with enhanced sociality.

We attempted to validate the socia stimulative property of D3 agonistsin an autism model with a social
deficit phenotype. Embryonic exposure to valproic acid (VPA) is aclassic model of autism in rodents'®
and zebrafish™. Using asimple zebrafish social preference assay®, we observed a clear social deficit
phenotype in VPA-treated zebrafish (Supplementary Fig. 6a). To test the effect of D3 agonists against
socia deficits, we acquired 3 structurally diverse D3 agonists, pramipexole, piribedil, and 7-hydroxy-
DPAT-HBr (Supplementary Fig. 6b). Both pramipexole and piribedil are FDA-approved antiparkinsonian
agents. We found that exposure to D3 agonists for 1 hour by simple submersion prior to the socia
preference assay effectively rescued the socia deficit in the VPA-treated fish (Fig. 6€).
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DISCUSSION

ZeChat is adeep learning-based behavioral assessment tool enabling scalable and low-cost zebrafish
behavioral profiling to characterize changesin sociality. The in vivo ZeChat platform combines
advantages of in vitro and rodent models, enabling scalabl e testing with high behavioral resolution.
Compared to previous zebrafish behavioral profiling methods, the ZeChat analysis method specifically
processes and analyzes socia behavioral-relevant information, linking known neuroactive drugs with
complex but distinct social behavioral outcomes.

We adopted an unsupervised deep learning approach in ZeChat. Severa aternative approaches exist, but
each hasits drawbacks. Supervised machine learning methods have been widdly adopted to analyze social
interactionsin fruit fly?~%, zebrafish®®, and mouse®*. However, this supervised approach still relies on
human interpretation of the animal behavior and is unable to fully reveal the complexity and subtilty of
animal behavior. Using predefined measurement criteriato mathematically model and classify socia
interactionsis also possible®>? but the outcome quality is highly dependent upon the validity of the model.
In comparison, unsupervised methods have successfully revealed stereotypic behavioral matifsin
individual animals of C. elegans™ ™, fruit fly*>*** zebrafish®***, and mouse***, as well as paired

interactions in fruit fly***°, without any human interventions or a priori assumptions.

However, all these approaches still rely on manual selection of features for data preprocessing, which
requires strong domain knowledge in the behaving animal. These prerequisites are not always met,
especially when faced with complex problems such as analyzing subtle behavioral changesin avideo or
analyzing sequences of behaviors. It is difficult to exhaustively extract useful features from an image or a
sequence of images. Deep learning methods, on the other hand, can automatically learn feature
hierarchies which represent objects in increasing levels of abstraction, and are particularly powerful at
processing images. As behavioral recordings are sequences of images, the potential benefit for applying
deep learning to processing these data is apparent. In fact, several recent studies have successfully utilized
deep learning to facilitate individual animal identification®, tracking®, and movement prediction® in
zebrafish, paving the way for its application in ZeChat.

In alignment with our findings, the D3 receptor has been previously implicated in social behavioral
regulation. In humans, pramipexole alleviates social anxiety in selective serotonin reuptake inhibitor
(SSRI) treated patients™. In rodents, two D3 agonists 7-OH-DPAT and PD 128907 were reported to cause
avariety of complex alterations in social behavior™>". Further investigations are needed to validate these
findings in rodents using other D3 agonists and under different test conditions, drug doses, and genetic
backgrounds of the animals, but the resultsin zebrafish, rats, and humans all point to an important role of
D3 receptorsin modulating social behaviors. In addition, because both pramipexole and piribedil are
FDA-approved antiparkinsonian agents, it may be worthwhile examining their impact on the social
behavior of patients receiving these drugs.

Future studies using the ZeChat platform may expand to screening other neuroactive compounds,
compounds with no known neuroactivity, and uncharacterized compounds, in the hope of identifying
additional phenotypes and drug classes with social-modulatory properties. The characteristic behavioral
fingerprint of the D3 agonists may be used to discover novel compounds with similar behaviora effects.
In addition to wild type fish, fish carrying mutations relevant to human psychiatric disorders can also be
assayed, and their behaviora fingerprints compared to the neuroactive compound clustergram to associate
genetic mutations with perturbations of neuronal pathways. As demonstrated by Hoffman et al.*, small
molecules evoking an anti-correlated behavioral fingerprint may ameliorate social deficits in the mutant
fish. Hence, by providing arapid, high-resolution means of characterizing and categorizing zebrafish
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with altered socia behaviors, ZeChat represents a useful tool for investigating the role of genes and
pharmacological agentsin modulating complex socia behaviors.
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METHODS
The ZeChat imaging system setup

The basic unit of this system isa 10 mm deep, 20 mm wide, and 41.5 mm long (interna dimension)
rectangular chamber with 2 mm thick walls. A 10 x 4 array consist of 40 independent testing units was
3D printed using white PLA at 100% infill. The printed test arenawas glued onto a 3/16" thick white
tranglucent (43% light transmission) acrylic sheet (US Plastic) using a silicone sealer (Marineland). Each
unit was then divided into two square-shaped compartments by inserting a 1.5 mm thick transparent
acrylic window — precision cut to 10 mm x 41 mm pieces using alaser cutter —into 0.5 mm deep printed
dotslocated in the middle of each unit on the side of the 41.5 mm wall and fastened using the silicone
sedler.

The key component of the imaging system is a 322 mm diameter bi-tel ecentric lens (Opto Engineering)
with an IR (850 nm) bandpass filter (Opto Engineering). A telecentric lens only allows passing of light
that are parallel to the optical axis, thus avoiding parallax error in imaging, and enables al test units—
being located either in the middle or close to the edge of the field of view — to be imaged without
distortion. Videos are taken at 50 frames per second (fps) by a 75 FPS Blackfly S Mono 5.0 MP USB3
Vision camera (PointGrey) with aresolution of 2448 x 2048. The tail beat frequency (TBF) for adult
zebrafish is ~ 20 Hz>, therefore images taking at 50 Hz by the camera should adequately sample motion-
relevant features based on the Nyquist—Shannon sampling theorem. The imaging platform is back-
illuminated with an infrared (850 nm) LED array (Environmental Lights) to provide light for video
recording. Theinfrared LED array is positioned on top of aheat sink (H S Marston). The imaging
platform is also illuminated from two opposing sides using white LED arrays (Environmental Lights) to
provide ambient light for the test subjects. Structural supports and enclosure are custom built using parts
purchased from Thorlabs, McMaster Carr, and US Plastic.

ZeChat test

Test subjects were individually placed into each unit — one on each side of the transparent window — using
atransfer pipette with itstip cut off. Their visual access to each other were temporarily blocked by a 3-D
printed nontransprent comb-like structure (Supplementary Fig. 1b) prior to each recording session. Once
all test subjects were placed into test arenas, the entire test apparatus was transferred into the imaging
station and the combs were removed to allow visual access between each pair of fish.

The 2-compartment social interaction setup allows the behavior of each fish to be recorded and analyzed
independently without having to go through complex and often computationally demanding and time-
consuming tracking procedures to separate each fish. Videos were streamed and recorded using the
software Bonsai®. A 10 min test session was video recorded for each test. To give fish an acclimation
period at the beginning of each test and to take into consideration that the effect of some of the drugs tend
to wear off quickly, only the 5 min video segment between 2.5 min and 7.5 min was used for subsequent
analyses. All subsequent data processing and analyses were conducted in Python using packages
including OpenCV, scikit-learn, Keras, PyWavelets, and imutils.

Data preprocessing
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For data preprocessing, individual fish were first separated from the background using the K-nearest
neighbors method™. A separate video segment is cropped out for each fish which contains a recording of
the entire square compartment where the fish islocated in. Because the relative position of fish toits
compartment is relevant to social interaction dynamics, each compartment was analyzed as awhole. And
because each compartment is polarized, with only one of the four sides being transparent to another fish,
for each pair of compartments, the video containing fish in the “top” compartment is flipped vertically by
rotating 180 degrees to match the orientation of video recording the “bottom” compartment, so that the
side of the compartment facing the transparent widow always faces upward in each video.

To capture changes in fish’ s posture between consecutive frames, we subtracted every current frame from
its previous frame. The resulting images were binary-thresholded to generate silhouette-like masks. In
parallel, we calculated fish's direction of movement between consecutive frames using the Franeback
Method of dense optical flow®® and used thisinformation to color the fish; motionless fish appear dark
after applying this method, thus restricting our analysis to fish in motion. Finally, we applied the mask
acquired by subtracting consecutive frames to the dense optical flow image so that the image colored by
dense optical flow is cropped by the subtracted silhouette-like mask.

Training convolutional autoencoder and featur e extraction

Convolutional autoencoders can learn highly abstract features from input images and use these features to
reconstruct input images. We used a convolutional autoencoder to compress training images into the
latent representation space, and then use this latent representation space as features for subsequent
analyses. The architecture of the convolutional autoencoder consists of three encoding layers each
containing 64, 32, and 16 filters, and three decoding layers each containing 16, 32, and 64 filters.

We used atraining set of preprocessed images to train the convolutiona autoencoder. The preprocessed
images with a dimension of 220 pixels x 220 pixels were first resized to 56 pixels x 56 pixelsto reduce
computational requirements. Because wild type fish typically spend most of the time interacting with its
paired fish by staying close to the transparent window, causing the position of the fish in input images to
be highly polarized, we enriched the training dataset by rotating each resized image by 90°, 180°, and 270°
to generate input images more postural and positional variations.

The autoencoder forces input images to pass through a“bottleneck” before reconstruction. The
bottleneck , or the latent representation space, has a dimension of 784. We then applied principal
component analysis (PCA) to this 784-dimensional feature vector and extracted 40 principal components
which preserved ~ 95% of total variance.

Time-frequency analysis of feature dynamics

Calculating the 40 principal components for each video frame yields 40 timeseries for each video. Each
timeseries was then expanded into a spectrogram by applying the Continuous Wavelet Transform (CWT).
The Morlet wavelet was used as the mother wavelet and 25 scal es were chosen to match frequencies
spanning 1 to 50 Hz. The time-frequency representation augments the instantaneous representation by
capturing oscillations across many timescales. The spectral amplitudes of each time point were then
concatenated into a vector of length 40 x 25, giving rise to a 1,000-dimensional representation for each
original video frame. Each 1,000-dimensional vector was normalized to having a sum of 1 in order to
treat each vector as a probability distribution for subsequent calculation.
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Nonlinear embedding and segmentation

We then performed nonlinear dimensionality reduction on these high dimensional vectors using the
popular nonlinear manifold embedding al gorithm t-distributed stochastic neighbor embedding (t-SNE)*2.
To reduce computation time, we randomly sampled 5000 frames for each fish. A behavior space
distribution was computed by embedding the selected samples to a 2-dimensiona map using t-SNE. The
t-SNE al gorithm is non-parametric. To enable embedding of additional datapoints onto this map, we
applied a parametric kernel t-SNE* method to embed additional datapoints. As the feature vectors are
normalized and treated as probability distributions, we calcul ate the Jensen—Shannon distance (the square
root of the Jensen—Shannon divergence) between each pair of vectors as a distance metric for both t-SNE
and kernel t-SNE. We chose the Jensen—Shannon distance as a metric for calculating distances due to it
being symmetric and bounded by 0 and 1 which avoids the generation of infinite values.

We calculated the probability density function (PDF) of this 2-dimensional distribution by convolving
with a Gaussian kernel. This probability density map was then inverted to turn local maximainto
“valleys’. The“ridges’ between valleys were detected using Laplacian transform. Finally, awatershed
transform was applied to mark the boarders between each valley to unbiasedly segment the ZeChat map
into 80 behavioral categories.

Behavioral fingerprint calculation and hierarchical clustering

Each frameis assigned awatershed region (behavioral category) based on ZeChat map segmentation. For
each fish, the total number of frames assigned to each watershed region was counted, giving riseto a
behavioral fingerprint in the form of an 80-dimensional vector. Behaviora fingerprints of fish treated by
each drug were combined into one fingerprint by calculating the median of each behavioral category. All
combined raw behavioral fingerprints were normalized so that the signals of each behaviora category are
between 0 and 1. To help visualize the difference in behavioral patterns between drug treatments and

DM SO control, we calculated the median of each behavioral category of all DM SO controls to generate a
representative fingerprint for DM SO control, and subtracted this fingerprint from all drug treatment
samples. Finally, the normalized and DM SO-subtracted fingerprints of each drug treatment were clustered
using the clustermap function (metric="euclidean’, method="complete’) of Python’s Seaborn library.

Zebrafish chemical treatment and screening

For ZeChat testing, 21 dpf zebrafish were collected from nursery tanks. Fish of roughly average size were
selected to minimize influence by the different sizes. For the screen, 10 fish were picked into a60 mm
petri dish containing 10 ml E3 medium. Compounds were then added to each dish at afinal concentration
of 10 uM (for all dopamine and serotonin pathway compounds and most opioid-rel ated pathway
compounds) or 1 pM (for a small subset of opioid-related pathway compounds). Fish were incubated for
1-3 hours prior to ZeChat testing. Immediately before testing fish in a petri dish, the content of the petri
dish is poured through a nylon tea strainer to remove liquid while keeping fish in the tea strainer. The tea
strainer is then consecutively dipped into 3 petri dishes containing E3 to wash the residual chemical away
from the fish. The fish is then poured into a petri dish containing clean E3 and each transferred into the
ZeChat test arena using a plastic transfer pipette for testing.
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Rescue of VPA fish and social preferencetesting

VPA treatment was conducted by submerging embryosin 1 uM VPA in E3 medium from O to 3 dpf. The
drug treated embryos were washed at 3 dpf and transferred to petri dishes containing clean E3 medium.
At 5-7 dpf, larvae were transferred into nursery tanks and raised to 21 dpf for behaviora testing of socia
preference using a 3-chamber assay apparatus®. For the D3 agonist rescue experiment, 20 VPA-treated
fish were picked into a25 mm deep 10 cm petri dish containing 30 ml E3 medium. Compounds were then
added to each dish and fish were incubated for 1 hour. Immediately before testing, fish were washed as
described above, and individually placed into the social preference testing arenas for behavioral testing.

Chemical library and other compounds

All screening compounds were acquired from the Biomol neuroactive compound library (Biomol) which
contains atotal of 700 neuroactive drugs dissolved in DM SO at a stock concentration of 10 mM or 1 mM
(for only asmall subset of drugs). Valproic acid was purchased from Sigma-Aldrich. Pramipexole was
purchased from Cayman Chemical. Piribedil was purchased from Selleck Chemicals. 7-hydroxy-DPAT-
HBr was purchased from Santa Cruz. All individually purchased compounds were dissolved in DM SO.
Chemical structures were generated using PubChem Sketcher.

Zebrafish husbandry

Fertilized eggs (up to 10,000 embryos per day) were collected from group mating of EKKWill strain
zebrafish (Danio rerio) (EkkWill Waterlife Resources). Embryos were raised in HEPES (10 mM)
buffered E3 medium at 28°C, with or without compound treatment, during the first 3 days. At 3 days post
fertilization (dpf), chorion debris was removed, and larvae were transferred into petri dishes containing
fresh E3 medium. At 5—7 dpf, larvae were transferred into nursery tanks and raised at 28°C on a 14/10 hr
on/off light cycle.

Statistical analysis

Graphs were generated using GraphPad Prism or Python using the Matplotlib package. Data were
analyzed using the 2-tailed Student’ s t-test. P values less than 0.05 were considered significant.

Code availability

Codeis available on the GitHub repository at https://github.com/yijie-geng/ZeChat and is archived on
Zenodo under DOI: 10.5281/zenodo.5519964.
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FIGURE LEGENDS
Figure 1. The general framework of ZeChat behavioral analysis.

(a) To analyze a ZeChat recording, a separate video clip isfirst generated for each fish by cropping out
the ZeChat arenawhereit islocated in. Each cropped video clip is orientated so that the transparent
window is aways aigned to the top edge of the clip. Each frame is then Preprocessed to preserve
positional, postural, and motion related information. The preprocessed images are fed into an autoencoder
for Feature Extraction. The main principal components of the extracted feature vector are each converted
to a spectrogram by Time-Frequency Analysis. The resulting spectral feature vectors are embedded into a
2-dimensional map and classified to distinct behavioral categories by Nonlinear Embedding and
Classification.

(b) The 3D design of the 40-unit ZeChat testing array.
(c) A screenshot of ZeChat recording. Also zoom in to show an independent testing unit.

(d) Intermediate and resulting images of the preprocessing procedure. Fish isfirst tracked to remove
background (tracked). Consecutive tracked frames are subtracted (silhouette). In parallel, the tracked fish
is colored by dense optical flow (dense optical flow). Finally, the dense optical flow image is masked by
the silhouette to generate a merged image (merge).

(e) Training the convolutional autoencoder. Preprocessed images (left, Input Images) are fed into the 7-
layer convolutional autoencoder (middle) to be reconstructed (right, Reconstructed Images). The Encoder
layers are responsible for compressing the input image into alatent representation space in the form of a
Latent Vector, which isthen used to reconstruct the input image by the Decoder |ayers.

(f) Training set data embedded into a 2D map by t-SNE.
(9) Probability density function (PDF) generated by convolving the t-SNE map with a Gaussian.

(h) The PDF map is segmented into 80 distinct behavioral categories by performing a watershed
transform.

Figure 2. Characteristics of the ZeChat map.

(a) A typical datapoint trajectory in the Z, and Z, axes of ZeChat map. Showing a pause-move dynamic.
(b) PDF map of low velocity (< 1) datapoints. Itslocal maxima positions closely match Fig. 2g.

(c) PDF map of high velacity (> 1) datapoints, showing a more uniform distribution pattern.

(d) The X and Y axes of aZeChat arena.

(e-f) A sample dataset shows fish's preference behavior for staying close to the partner fish as
demonstrated by a peak in the Y -axis histogram located at a position closeto zero (€), and lack of
preference for X-axis positions (f).

(g-i) Positional and motional features of ZeChat map. Color coding is proportional to the fish’s rea -time
Y -axis position (g), X-axis position (h), and velocity (i).
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Figure 3. Neur oactive compounds produce highly reproducible behavioral fingerprints
(a) A schematic of the screening procedure.

(b) Behavioral fingerprints of individual fish treated by different chemicals. Each row represents the
behavior fingerprint of an individual fish. Each square represents the total number of timesafishis
assigned to a behavioral category. Horizontal axis: the 80 behavioral categories. Color bar: cumulated
number of times afish is assigned to a behavioral category.

Figure 4. Hierarchical clustering revealsdistinct drug-induced behavioral responses.

Hierarchical clustering of behavioral fingerprints generated by the screen. Each behavioral fingerprint
(row) represents the median value of theindividual fingerprints of al fish (n<10 per treatment) treated by
the same compound. The behavioral fingerprints are normalized for each behavioral category and
subtracted by the median DM SO fingerprint. Horizontal axis |abels the 80 behavioral categories. Red
vertical lines mark the behavioral clusters showing elevated social interest compared to wild type control.
Blue vertical lines mark the clusters showing decreased social interest compared to wild type behavior.

Figure5. Functionally similar molecules evoke similar behavioral responses.
(a) Neuroactive compounds with similar annotated functions elicit similar behavioral fingerprints.

(b) Behavioral fingerprints of functionally similar molecules are consolidated to a single behavioral
fingerprint by calculating the median value of each behavioral category, and the resulting behavior
fingerprints are hierarchically clustered. Only groups of drugs containing no less than 3 compounds
sharing the same annotated function are included in the analysis. The group labels are colored by the
targeted pathway. Black vertical bar marks a subcluster with strong signals in the high-number behavioral
categories.

Figure 6. Dopamine D3 agonists rescue social deficitsin VPA-treated fish.

(a) Comparing the behaviora fingerprints of D1, D2, and D3 agonists. The behavioral fingerprints are
normalized and subtracted by the median DM SO fingerprint.

(b-c) PDF maps wild type fish (b) and fish treated by D3 agonists (c).

(d) Series of images taken at 0.5 second intervals revea different swim dynamics between wild type
treated by DM SO and fish treated by the D3 agonist piribedil (10 uM). Arrowsin red and yellow point to
fish’s direction of movement in the current frame.

(e) Boxplot showing social preference (social score) of VPA-treated fish exposed to DM SO (n=16) or 10
MM D3 agonist including pramipexole (n=17), piribedil (n=20), and 7-hydroxy-DPAT-HBr (n=24) for 1
hour before social preference test. In each boxplot, box encloses data points from the 25™ percentile to the
75" percentile, the horizontal line and cross mark the median and the mean, the lines above and below the
box reach datapoints with the maximum and minimum values. *: p<0.05, ***: p<0.001.
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SUPPLEMENTARY DATA LEGENDS

Supplementary Figure 1.

(a) The 3D design of one ZeChat unit.

(b) The 3D design of a comb-like insert for blocking the views of fish before ZeChat test.
(c) Example preprocessed images.

(d) Exampleinput images, latent vectors, and reconstructed images.

Supplementary Figure 2.

An example of spectrograms generated by time-frequency analysis of 40 principal components of alatent
vector. PC1-40: principal components 1-40. Horizonta axis: frames. Vertica axis: frequencies. Color bar:
amplitudes.

Supplementary Figure 3.

Hierarchical clustering of 237 behavioral fingerprints generated by the screen. The behavioral fingerprints
are normalized and subtracted by the median DM SO fingerprint. Labels on the right show: drug
classification [drug name].

Supplementary Figure 4.
Behavioral fingerprints of dopamine pathway and opioid pathway modulators, grouped by drug effects.

Supplementary Figureb5.
Behavioral fingerprints of serotonin pathway modulators, grouped by drug effects.

Supplementary Figure6.

(a) Boxplot showing social preference (socia score) of fish treated by DM SO (n=25) or valproic acid
(VPA; n=21) during the first 3 days of embryonic development. *: p<0.05.

(b) Chemical structures of the D3 agonists pramipexole, piribedil, and 7-hydroxy-DPAT-HBr.

Supplementary Video 1.

Video recording of a pair of fish interacting in a ZeChat unit. Each unit is divided into two arenas by a
transparent window.
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Supplementary Video 2.
Video recording of 40 pairs of fish interacting in afull-sized ZeChat test array.

Supplementary Video 3.

A combination of 4 processed clips of the same video recording, showing the intermediate and final
outcomes of image preprocessing.

Supplementary Video 4.

Side-by-side view of fish’'s behavioral recording and its trajectory on ZeChat map in real-time to visualize
how afish’s behavior translates to datapoint embeddings in the ZeChat map.

Supplementary Video 5.

Video recordings of wild type (DM SO) and dopamine D3 agonist-treated (10 UM piribedil) fish.
Demonstrating a more intense interaction pattern between pairs of D3 agonist-treated fish compared to the
wild type.
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= Serotonin -HT 2C agonist and partil 5-HT 241 28 agonst (PN 22394 HCI

= Serotont 5T 3 sragonit 100

| | = Serctonin ST 3 agoit [2-Methsrtanin HC)
<0 oioid gand 5yl 251

| dopamine snagonst Tifoperscine 2401
el

Selonn 41 3 atagont s
= Serstonin 5-HT 1 agonis [DpropyL 5

08 dopamine g 161742
e 112 g0t () sl Hetnyseronin mlate)
53]

= Serotonin .17 1C antagorist [N Desmetyclozapine]

01 dopamine st 8 Yromo 08 v
«Sercton

St 311 4 seagolst A5 e s
= Serctonin 54T 2 antagorist [Cinanserin]

= Serctonin 5-H1 3 prtal agonst (RS 56812 HCI)

= Dopamine aganst [Pergoide methanesufonate]
- Dopamine agoist (R} \VAlyinorapomershine Horl

-
| |
1028
=52 receptorgand [3*Fuorobenyspiperone maleate]
= Doparmineuptake inhibtor (GBR 12783 2HC))
St ST 14 g 1z Matropheny- 4 succinmidobuyperdinel
i
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Dopamine antagonist

(+)-Butaclamol = | [ |
chiorpromazine e~ [N | ] H | | ||
cis-(2)-Flupenthixol 2HCI - ]
Fluphenazine 2HCI = | ] ||
Haloperidol HCI = | | | | | W | HE B

Mesoridazine besylate = -
1234567 8 9101112131415 1617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5152 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Dopamine partial agonist

Dihydroergocristine mesylate = . .
Ergonovine maleate =

.,

S(+)Terguride =
123456 78 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

D4 antagonist
vl DETNENETEEE W . EE E BN IEEE EER +: L I |
745,870 3HCI - | |
T | T EE e u F =

L-750,667 3HCI =
PNU 96415E =
Thioridazine HCl =

123456 78 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Delta agonist
(0-Ser2)-Lew-EnkephalinThr 4 || [ D |
SNC 121 =
SNC 80~ [ | H 'H
Deltorphin Il =
(D-Cys(tBu)2,Thr(tBu)6)-Leu-Enkephalin-Thr = - - . .
(D-Thr2)-Leu-Enkephalin-Thr =

7 8 9 1011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 B

e
-

Delta antagonist
RSp— L | |

Naltriben mesylate = [ |
N-Benzylnaltrindole HCl = [ |
Naltrindole HCI =
12345676 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5152 53 54 55 56 57 58 50 60 61 62 63 64 65 66 67 68 69 70 7172 73 74 75 76 77 78 79 80

Kappa agonist

a-Neoendorphin | | |
Dynorphin B = .. | | | | u
Salvinorin A =
| |

()-U-50488 HCI =

(+)-U-50488 HCl =
BRL-52537 = | | ] [ |
Dynorphin A (1-13) =
Dynorphin A (1-8) - | | | | | N ] | B
Dynorphin A (2-13) =
GR 89696 fumarate =
1C1 199,441 HCl = |
IC1 204,448 HCI = [ ]
v I HCl -
U-50,488H mesylate = | ] [ | [ |
U-54494A HCl = || [ | | W | [ |
U-62066 - n [ | | |
U-69593 = _ -
12345678 5101112131415 16171819 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 56 50 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Mu antagonist
| H HE BnE

Naloxonazine 2HCI =

Nalbuphine HCl= [l [ | |

b-Funaltrexamine HCI =
8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Opioid agonist
| | |

(-)-Norcodeine =
(D-Ala2,D-Leus)-Enkephalin = [111 I
b-Casomorphin (human) = | ] | | [ |
12345678 91011121314151617 1819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Opioid antagonist

Levallorphan tartrate =
Naloxone HCI = | | [ |
| 'm ©H

Naloxone methiodide =
Naltrexone HCI =
123456789

10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 8

Nociceptin agonist

Nociceptin = [ |
NNC 63-0532 [

Nociceptin (1-13) NH2 =

6970 7172 73 74 75 76 77 78 79 8

123456 78 91011121314 15161718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6

Sigma antagonist

BD 1047 2HBr -
B0 1063 24cI - u u n [ ] | o | | 1 ]
1-(4-lodophenyl)-3-(2-adamantyl)guanidine = n
SDM25N HCI+D28 = [ I .. [ ] [ | [ ] ... [ |
BD 1008 - o
6970 7172 73 74 75 76 77 78 79 8

123456 7 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
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5-HT 1 agonist

8-Hydroxy-DPAT HBr =

BP 554 maleate = [ | I I
Dipropyl-scT+ [ [ | | | ||
LY-165,163 =
5-Nonyloxytryptamine oxalate = h
Anpirtoline = [ L] | u u 1

CGS 120668 dimaleate = u |
BRL 54443
1-(1-Naphthyl)piperazine HCI = . [ |
5-Carboxamidotryptamine maleate
Oxymetazoline HC\- l n . B .

12345678 51011121314151617131910212223242525272329303132333A353537333940414243441:546A743A9505152535A5555575359506151635'455655763597071727374757577757930

5-HT 1 partial agonist

Buspirone HCl = [ | | W | ]
MDL 73005EF HCl = . | ]

12345673809 101112]314151617181920212223242526272529303132333435363735394041424344454647434950515253545556575559606162636465666768697071727374757677757950

5-HT 1/2 antagonist

Methylergometrine maleate = ] | | | | ] ]
Methysergide maleate 4| | H
Methiothepin maleate =
Metergoline phenylmethyl ester = | |
ketanserintartrate = [N, 1

123456 78 91011121314 15161718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

5-HT 3 agonist
1-Phenylbiguanide HC! { - m ] u u
2-Methylserotonin HCI =
m-Chlorophenylbiguanide HCI = N | | | .
N-Methylquipazine dimaleate =
Quipazine dimaleate . n

SR 57227A HCI =

123456789 10]]121314]51617la19202122232425262728293031323334353637333940A142A344A5464743495051525354555557SE5950615263646566576E59707172737A757577737980

5-HT 3 antagonist

0 i itril ma\eate

i |
1-methyl-1 2.
||

¥-25130 =

Ondansetron = H B

Ondansetron =

E NN | = |
1v-278,584 ]

MDL-72222 =

Tropanyl 3,5-dimethylbenzoate =
Tropisetron = ||
| LD HE HEN l

12345678 0101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 5152 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

5-HT 4 antagonist

rs 2357100 Hei Y ]
RS 39604 HCI =

S8 203186 HCI - I | o
soz 205,557 ne I B8 1

123456 78 91011121314151617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

5-HT antagonist
Dihydroergocristine mesylate = [ ]
Mianserin HCI = | |
pizotifen matate - L0 L0 W A B X N . M AR RN BN Lo, A
123456 78 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Selective serotonin reuptake inhibitor (SSRI)

Citalopram HBr 41| [ |
Fluoxetine HC\
paroxetine HC! S | |

Fluvoxamine maleate =
1234567 8 0101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4142 43 44 45 46 47 48 49 50 5152 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
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