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ABSTRACT 

Low grade gliomas (LGG) account for about two-thirds of all glioma diagnoses in 

adolescents and young adults (AYA) and malignant progression of these patients leads 

to dismal outcomes. Recent studies have shown the importance of the dynamic tumor 

microenvironment in high-grade gliomas (HGG), yet its role is still poorly understood in 

low-grade glioma malignant progression. Here, we investigated the heterogeneity of the 

immune microenvironment using a platelet-derived growth factor (PDGF)-driven RCAS 

(replication-competent ASLV long terminal repeat with a splice acceptor) glioma model 

that recapitulates the malignant progression of low to high-grade glioma in humans and 

also provides a model system to characterize immune cell trafficking and evolution. To 

illuminate changes in the immune cell landscape during tumor progression, we 

performed single-cell RNA sequencing on immune cells isolated from animals bearing 

no tumor (NT), LGG and HGG, with a particular focus on the myeloid cell compartment, 

which is known to mediate glioma immunosuppression. LGGs demonstrated 

significantly increased infiltrating T cells, CD4 T cells, CD8 T cells, B cells, and natural 

killer cells in the tumor microenvironment, whereas HGGs significantly abrogated this 

infiltration. Our study identified two distinct macrophage clusters in the tumor 

microenvironment; one cluster appeared to be bone marrow-derived while another was 

defined by overexpression of Trem2, a marker of tumor associated macrophages. Our 

data demonstrates that these two distinct macrophage clusters show an immune-

activated phenotype (Stat1, Tnf, Cxcl9 and Cxcl10) in LGG which evolves to an 

immunosuppressive state (Lgals3, Apoc1 and Id2) in HGG that restricts T cell 

recruitment and activation. We identified CD74 and macrophage migration inhibition 

factor (MIF) as potential targets for these distinct macrophage populations. Interestingly, 

these results were mirrored by our analysis of the TCGA dataset, which demonstrated a 

statistically significant association between CD74 overexpression and decreased overall 

survival in AYA patients with grade II gliomas. Targeting immunosuppressive myeloid 

cells and intra-tumoral macrophages within this therapeutic window may ameliorate 

mechanisms associated with immunosuppression before and during malignant 

progression. 
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INTRODUCTION 

Low-grade gliomas (LGGs) represent approximately one third of all CNS tumors [1]. In 

the adolescent and young adult (AYA) population, approximately two thirds of gliomas 

are low-grade [2] in this unique patient population [3]. Of note, two thirds of patients with 

LGG transform to high-grade gliomas in the IDH1 mutant setting (HGG - grade III or IV) 

[4], and the median overall survival after malignant progression is only 2.4 years [5]. To 

date, no approved therapies are available to prevent malignant progression in patients 

with low-grade glioma and radiologic imaging is the primary mode of gauging 

progression. [6]. The current standard of care consists of maximally safe resection 

followed by adjuvant therapy, including chemotherapy, radiation therapy, or combination 

chemoradiation therapy. However, these treatments are fraught with comorbidities and 

toxicities ranging from surgical complications, endocrine dysfunction, neurocognitive 

delay, and impaired neurologic function in the AYA population.   

Although recent studies have shown LGG malignant progression is associated with 

overexpression of fibrinogen-like protein 2 in patients and murine models demonstrating 

increased regulatory T cells and M2 macrophage signatures, the molecular 

mechanisms of malignant progression require further elucidation [7].  Given the 

immunosuppressive tumor microenvironment (TME) within gliomas, current 

immunotherapy approaches with anti-PD1 immune checkpoint blockades have had 

limited success in improving patient survival in primary HGGs and recurrent 

glioblastoma multiforme (GBM) [8]. In 2020, one study described blocking the PD1 

pathway, which promoted M1 macrophage polarization in murine glioma models 

independent of CD8 T cells [9]. Furthermore, tissue-specific deletion of PD1 on myeloid-

derived cells enhanced antitumor immune responses in melanoma [10]. Moreover, the 

presence of myeloid-derived suppressor cells (MDSC) and tumor-associated 

macrophages negatively impact the efficacy of immune checkpoint blockade therapies 

by creating an immunosuppressive environment [11]. To that end, monocytic and 

granulocytic MDSCs have been shown to suppress T cell immune responses in murine 

GL261 glioma models [12].  
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We previously described the association of bone marrow-derived myeloid cell 

expansion, mobilization, and infiltration during LGG to HGG malignant progression 

using a platelet-derived growth factor (PDGF)-driven replication-competent ASLV long 

terminal repeat with a splice acceptor (RCAS) model [13, 14]. Various chemokines and 

cytokines secreted in the tumor microenvironment (TME) recruit myeloid-derived cells to 

the brain from peripheral circulation [14, 15]. Depleting macrophages by targeting 

CSF1R appeared to demonstrate preclinical efficacy in HGG models while modulating 

the Jak-Stat pathway and KDR/ID2 axis in myeloid cells appeared to impair LGG 

malignant progression in murine PDGF-RCAS LGG to HGG models [14, 16].  Despite 

these preliminary reports, there is still an unmet need to understand the functional 

diversity of myeloid cells within the TME. Identifying immunosuppressive myeloid cell 

vulnerabilities using single-cell RNA sequencing may provide therapeutic opportunities 

for patients with low-grade gliomas at risk of malignant progression. Here, we 

interrogated the heterogeneity within the myeloid compartment and its association with 

lymphoid cells in the TME during distinct points of LGG to HGG progression using 

single-cell RNA sequencing. 

MATERIALS AND METHODS 

Animals 

The RCAS -Nestin tv-a (Ntv-a) model has been described before [17]. Ntv-a animals 

possess a transgenically expressed tv-a (receptor for RCAS) under the control of a 

Nestin promoter. Ntv-a animals were crossed with Ink4a-Arf-/- LPTEN animals. The 

heterozygous pups were injected with 100,000 cells of DF-1 cells transfected with 

RCAS-Cre and RCAS-PDGFB in the brain parenchyma using a 10 μl gastight Hamilton 

Syringe. The Institutional Animal Care and Use Committee (IACUC) of Nationwide 

Children’s Hospital (Protocol number: AR19-00146) approved all animal experiments.  

Tissue processing and H&E staining 

After euthanizing the animals in a CO2 chamber, the brains were extracted and fixed in 

10% neutral buffered formalin, followed by embedding in paraffin and sectioning at 
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4 µm. Slides were stained with hematoxylin and eosin. Images were acquired using 

Aperio Scanscope and processed using Imagescope. 

Cell culture 

DF-1 cells were cultured in DMEM with 10% fetal bovine serum (FBS) and antibiotics 

(Penicillin and Streptomycin) at 37°C. DF-1 cells were transfected with vectors RCAS-

Cre and RCAS-PDGF using Fugene.  

Single-cell preparation 

Tumor or similar-sized normal tissue was excised from the brain’s right hemisphere, 

where the cells had been injected. The tissue was minced, triturated, and digested with 

2 mg of Papain (Brainbits, Cat. # PAP/HE) for 20 minutes at 37°C. After digested tissue 

was triturated and passed through a 70 µm cell strainer and CD45+ cells were isolated 

with a Miltenyi positive selection kit (Cat. # 130-052-301), according to the 

manufacturer’s instructions.  

Single-cell RNA sequencing 

Single cell suspensions were run on a Chromium controller (10x Genomics) using the 

chromium Next GEM Single Cell 3’ Reagent kit v3.1, targeting a capture of 5000 cells. 

Sequencing results were mapped to the mm10 mouse genome reference build and 

quantified using the CellRanger v3.0.2 (10xGenomics) [18, 19] 

(https://support.10xgenomics.com/single-cell-gene 

expression/software/pipelines/latest/installation). Cells (n= 14,125) were identified as 

HGG (n=4468), LGG (n=5844), and no tumor (NT) (n=3813). Seurat v.4 and ShinyCell 

packages were utilized to evaluate gene expression analysis in R [19-21]. We excluded 

cells with fewer than 200 transcripts or more than 10% mitochondrial genes to filter out 

low-quality data. With these filters, 12,668 cells remained for further analysis 

(HGG=4100, LGG=5024, and NT=3544 cells). Gene expression measurements were 

LogNormalized, and the data were scaled, regressing out the transcript counts and 

mitochondrial gene percentage. The “mean.var.plot” method revealed variable features. 

After integrating the data, principal component analysis using the first 38 principal 
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components for further analysis reduced the dimensionality. Unsupervised clustering 

was performed with the resolution set to 0.8. Two-dimensional t-SNE and Uniform 

Manifold Approximation and Projection (UMAP) approaches visualized the clustering 

results [22, 23]. Canonical marker expression identified and further analyzed immune 

cluster types. Cell counts determined the cells in each cluster at each tumor time. The 

Wilcoxon rank-sum test (min.pct = 0.1) identified differentially upregulated genes 

between groups and functionally analyzed clusters. Differentially upregulated and 

downregulated genes were also identified with the Wilcoxon rank-sum test (min.pct = 

0.1, only.pos = FALSE) and used for IPA analysis (Qiagen). 

Random forest modeling  

Random forest modeling was performed utilizing the random Forest package in R [24]. 

Normalized expression counts were extracted from the scRNA-seq Seurat object, along 

with cluster labels and cell barcodes. Information was merged into a novel data frame in 

R composed of a cell’s cluster, normalized gene expression values, and the cancer 

progression state the cell was extracted from [Normal, LGG, HGG]. To reduce 

computational complexity, evaluated genes for each cell cluster were filtered over genes 

identified as differentially expressed from our above analysis and split into individual 

data frames composed of cells from each cluster. Data was then passed through Boruta 

to further reduce features (genes) for modeling (Supplementary Figure 5) [25]. 

Utilizing the reduced feature list, random forest models were generated to predict a 

cell’s cancer progression state origin utilizing gene expression profiles. Data was split 

60% for model training and the remaining 40% for validation testing. Validation 

performance was evaluated using caret and pROC to calculate confusion matrix scores 

and receiver operating characteristic-area under the curve (AUC) [26, 27]. Performance 

metrics and ranked importance were visualized using ggplot2 [28]. 

Ingenuity Pathway Analysis (IPA) analysis 

IPA (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-

analysis) was used to generate network analysis, and upstream predicted targets [29].  
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Flow cytometry 

Tumor tissue excised from the brain was mechanically dissociated using a 70 um cell 

strainer in phosphate-buffered saline (PBS) with 10% FBS and 0.1 mg/mL DNAse I 

(Stem Cell Technologies). Cells were then resuspended in 25% isotonic Percoll solution 

and centrifuged for 20 minutes at 18°C with acceleration and deceleration set to 

minimum. After removing myelin debris and Percoll, the cell pellet was washed with 

10 mL of PBS with 10% FBS. Cells were resuspended in 1x PBS and stained with the 

Invitrogen™ LIVE/DEAD™ Fixable Blue Dead Cell Stain Kit. Cells were then washed 

and blocked with 1:100 of FcR blocking solution (BD Biosciences) for 10 minutes on ice. 

Cells were stained with CD11b-BV421, CD3-PE-Cy7, CD8-APC-Cy7, F4/80-APC, 

CD45-PE, and Gr1-FITC, then washed and fixed with 1% PFA for 5 minutes on ice. 

Flow cytometry data were acquired using BD Fortessa X-20 and analyzed using 

FlowJo-v10.  

Quantitative polymerase chain reaction (qPCR) 

Myeloid and Lymphoid tumor-infiltrating populations were isolated as previously 

described (flow cytometry method). RNEASY Micro Kit (74004, Qiagen) was used to 

extract total RNA, and the High Capacity Reverse Transcription Kit (4387406, Applied 

Biosystems) was used to synthesize cDNA. qPCR product was amplified using SYBR 

Green master mix (A25742, Applied Biosystems) and StepOnePlus (Applied 

Biosystems). The primers (IDT) used included the following: CD74 (Fwd: 

CTGATGCGTCCAATGTCCAT; Rev: CAGACCTCGTGAGCAGATG), ID2 (Fwd: 

CACTATCGTCAGCCTGCATC; Rev: TCATTCGACATAAGCTCAGAAGG), GAPDH 

(Fwd: AATGGTGAAGGTCGGTGTG; Rev:GTGGAGTCATACTGGAACATGTAG), TBP 

(Fwd: TGTATCTACCGTGAATCTTGGC; Rev: CCAGAACTGAAAATCAACGCAG). 

Tissue lysate preparation 

After excising, tumor or normal tissue was homogenized in a pyrex tissue grinder with 1 

mL of tissue extraction buffer. The Pierce BCA protein assay kit was used to quantify 

total protein. Samples were reconstituted to a final protein concentration of 5 µg/mL and 
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stored at -80°C. Chemokines were quantified using the Luminex kit by Eve 

Technologies.  

Survival analysis (TCGA dataset) 

RNA-seq expression levels were extracted from The Cancer Genome Atlas Low Grade 

Glioma project data (TCGA-LGG - https://www.cancer.gov/tcga) as fragments per 

kilobase of transcript per million mapped reads (FPKM) using the Genomic Data 

Commons Portal [30, 31]. As defined by TCGA, “lower grade glioma” samples included 

both grade 2 and grade 3 gliomas (astrocytoma, oligodendroglioma, and mixed 

gliomas). Samples were filtered for cases less than 40 years of age and stratified by 

grade. Genes with FPKM geometric means greater than 1 across patients were retained 

and then raw counts were normalized using Trimmed Mean of M-values. Values were 

calculated for genes of interest and patients from the upper (n=34) and lower quartiles 

(n=34) of expression were plotted for survival and compared using a Log-rank test P-

value. Accompanying clinical data and molecular markers describing the assayed 

patient populations were extracted using TCGAbiolinks and summarized in 

Supplementary Table 1 [32-35].  

Survival analysis (Glioma dataset) 

Paired-end RNA sequencing was performed on total RNA extracted from formalin-fixed, 

paraffin-embedded (FFPE) tissues from secondary GBM (Grade III (n=44), Grade IV 

(n=23)) and LGG (grade II, n=42) using MasterPure kit (Epicentre).  Raw reads from the 

RNA-seq data were processed using an in-house pipeline that uses STAR for read 

alignment; FastQC and RSeQC (for read and alignment quality assessment) and 

FeatureCount for expression count. Samples with degraded RNA or unique mapping 

rates lower than 30% were excluded. The reads were aligned to GRCh38 Human 

reference genome and mapped to the human transcriptome according to UCSC gene 

annotations. We then normalized the RNA-seq read counts for genes and applied a 

variance stabilizing transformation. We transformed the expression data to z-scores and 

set a Z-scale cutoff for high and low expression. Expression values higher than 0 are 

set to “high” and lower than 0 are set to “low” and compared these against “overall 
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survival” in a Cox Proportional Hazards (Cox) survival model. We included sample 

grade information as a covariate in the model. We used survminer R package for the 

survival analysis. 

 

RESULTS 

Single-cell RNA sequencing identifies quantifiable differences in immune cell 
phenotypes during glioma progression 

Immature myeloid-derived cells may restrict T cell infiltration and activation, leading to 

immunosuppression in gliomas [36]. We are specifically interested in studying the 

heterogeneity of myeloid cell populations and the functional consequence of this 

diversity in the TME during LGG malignant progression. To that end, we have used a 

murine PDGF-B driven RCAS glioma model [16, 17] that develops LGGs starting 

around 3 to 4 weeks and progresses to high-grade glioma at about 6 to 8 weeks 

(Figure 1A). Here, we performed flow cytometry for CD11b and Gr1 (Ly6c/Ly6g), a 

murine marker of myeloid-derived suppressive cells in the bone marrow of tumor-

bearing animals at specified times. The proportion of CD11b+Gr1+ cells significantly 

expanded in the bone marrow of animals between 3-4 weeks and in HGG (39.4 ± 2.7%) 

when compared to LGG (18.7 ± 2.1%) (Supplementary Figure 1). Increased 

CD11b+Gr1+ cells correlated with tumor progression and aligns with other reports [14, 

37], however our observation details the initial timing for bone marrow expansion of 

MDSC-like cells.  

We expanded upon these results by performing single-cell RNA sequencing on isolated 

CD45+ cells from pooled tumor or normal tissues from animals with no tumor (NT, n=2), 

LGG (n=3), and HGG (n=3) using the 10x Genomics platform (Figure 1B). We analyzed 

12,668 cells from the three samples after quality control, then integrated data from all 

samples and projected the data using UMAP (Figure 1C).  Unsupervised cell clustering 

was performed using Seurat V4. We identified a total of 11 distinct clusters of known 

immune cells comprising disparate populations of microglia, macrophages, monocytes, 

T cells, B cells, natural killer cells and immature erythrocytes (Figure 1C). Cell cluster 
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identities were verified by expression of canonical markers for each cell type. These cell 

cluster datasets are visualized using dot plots (Figure 1D) and feature plots (Figure 

1E).  

To identify immune cell landscape dynamics during glioma progression, we calculated 

the ratio of each cell cluster per total cells analyzed in each sample, then evaluated the 

myeloid and lymphoid cell distribution and heterogeneity across NT, LGG, and HGG 

(Figure 2A). We observed a significantly increased proportion of the total macrophages 

and a significantly reduced T cell proportion in HGG compared to LGG (Figure 2B). In 

order to validate these results, we performed flow cytometry on dissociated brain tumor 

tissues of LGG and HGG. We quantified the percentages of CD45 high and CD11b+ 

cells, conventionally identified as bone marrow-derived myeloid cells (BMDM) [38, 39]. 

Using flow cytometry, we detected a 4-fold in vivo increase in the percentage of BMDM 

in HGG (11.5 ± 4.5%) compared to LGG (2.7 ± 1.5%) (Figure 2C and 2D). These 

CD45high and CD11b+ cells also expressed F4/80, a macrophage marker, in 63.5 ± 7% 

of LGG and in 87.3 ± 5.1% of HGG (Figure 2C and 2D). In CD45 high and CD11b+ 

cells, the difference in CD11b+Gr1+ cells (myeloid-derived suppressive cells) between 

LGG (5.5 ± 3.2%) and HGG (10.9 ± 4.3%) animals was not statistically significant 

(Figure 2D).  In addition, we validated the presence of T cells in animal brains with low-

grade and high-grade glioma by flow cytometry (Figure 2E). We found significantly 

increased T cells in the lymphocyte population (CD45hiCD11b+) in LGG (78.5 ± 1.4%) 

than in HGG (43.4 ± 11.3%). Similarly, LGG had significantly higher proportion of CD8+ 

T cells (33 ± 6.2%) than HGG (8.6 ± 10.9%) (Figure 2F). These results support our 

single-cell RNA sequencing data which revealed significantly reduced T cell infiltration 

in HGG.  

Diversity in microglial populations during tumor progression 

The predominant immune cell type observed in the normal brain was microglia, with 

76.6% of all immune cells clustered as microglia. In contrast, only 45.8% and 46.1% of 

immune cells in LGG and HGG were microglia, respectively (Figure 2A, 2B, 

Supplementary Figure 2A, 2B). Strikingly, the activated microglial population was 

absent in the normal brain and was observed in only LGG and HGG (9% and 8.5% of all 
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immune infiltrates, respectively), Figure 2A and 2B. Activated microglia also 

significantly expressed more chemokines (e.g., Ccl4, Ccl3, and IL-1b) and other 

signatures of transcriptional activation (e.g., Jun, Junb, Junc, Fos, Fosb, and Socs3) 

than microglia (Supplementary Figure 2C), as also identified by this report [40].  
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Macrophages adopt immunosuppressive transcriptional signatures during 

malignant progression 

Single-cell RNA sequencing identified two distinct macrophage clusters. We observed 

an increase of macrophage cluster 1 in LGG (16.5%) relative to normal brain (8.5%) 

and to HGG (9.5%), Figure 2A, 2B. Macrophage cluster 1 also expressed unique 

signatures of bone marrow-derived macrophages (BMDM) (e.g., TgfbI, Cd14, and Itga4) 

(Figure 3A), as described by these reports [41, 42]. By comparison, Macrophage 

cluster 2 expressed signatures of Trem2 high macrophages (e.g., Cd9, Cd81, Ctsb, 

Ctsd, and Ctsd) (Figure 3A). This cluster also demonstrated significantly downregulated 

signatures of BMDM-associated genes while overexpressing Trem2 (Figure 3A). In 

addition, Trem2 is a marker of tumor-associated macrophages [43], and increased 

Trem2 hi macrophages have been reported in non-responders to immune checkpoint 

inhibitors in patients with melanoma [44].  

Integrated data revealed both macrophage clusters overexpressed significantly 

increased immunosuppressive factors (e.g. Arg1, Mif, Lgals3, Pkm, Axl, Btk, Id2, Ccl4, 

Pdcd1) in HGG compared to LGG (Figure 3B). In contrast, LGG had significantly 

increased levels of recruitment factors and M1 genes (Stat1, Tnf, HLAII (H2-Aa), Cd86, 

and IL-1b) (Figure 3B). This trend also manifests in macrophage clusters 1 and 2, 

respectively (Supplementary Figure 2D, 2E). Overall, our data suggest that both 

macrophage clusters develop immunosuppressive signatures as LGGs progress to 

HGG.  

Heterogeneity and distinct macrophage cluster function during malignant 
progression 

Macrophage cluster 1 significantly expressed more CD74, MHCII (H2-Aa) genes, and 

Stat1 in LGG than NT (Figure 3C). Macrophage cluster 1 from HGG had significantly 

increased expression of ApoE, ApoC1, Trem2, Cd81, and Ctsd than LGG (Figure 3C). 

The top 20 differentially expressed genes in this macrophage cluster included 

molecules involved in immunosuppression (e.g., Apoc1, Apoc4, ApoE, Spp1), and 

matrix remodeling factors such as Ctsd (Cathepsin) and Itgb5 (Integrin) in HGG 

(Supplementary Figure 3A). ApoE expression in macrophages downregulates pro-
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inflammatory M1 factors and induces an immunosuppressive M2 phenotype expressing 

Arg1 [45]. In contrast, macrophage cluster 1 in LGG expressed T cell-recruiting 

chemokines (Cxcl9, Ccl5, Ccl8) and immune-activating signatures [e.g., Stat1, MHC-II 

molecules (H2-Aa, H2-Q7), and MHC-I gene (H2-K1)] (Supplementary Figure 3A). In 

addition, machine learning-based modeling using a random forest approach 

(Supplementary Figure 5), demonstrated statistically significant predictive capability to 

discern the evolution of select cell clusters during tumor progression. Of note, this 

classifier algorithm demonstrated high predictive value for macrophage cluster 1 and its 

immunosuppressive evolution during tumor progression based on its transcriptional 

profile [Accuracy: 89%; AUC: 0.90] (Supplementary Figure 6D). When we evaluated 

the predominant features (genes) that most strongly drove the model’s predictive 

success, we identified several immunosuppressive (Cd74, ApoE) and immune-

activating or -recruiting (MHC genes, Stat1, Cxcl9, Ccl8) signatures (Supplementary 

Figure 6A). LGG and HGG samples upregulated more Cd74 and its binding partner Mif, 

as well as Id2 and Lgals3 (Figure 3D), compared to NT. Further, IPA analysis identified 

significantly increased expression of Stat1 and interferon-related genes in LGG 

compared to NT (Supplementary Figure 3B and 3C). Macrophage cluster 1 in HGG 

downregulated more Ifng and Stat1 pathways than LGG (Supplementary Figure 3D 

and 3E). This analysis also predicted the top upstream targets for activation in 

macrophage cluster 1: PPARG, PTGER4, and IL10RA, and downregulated pathways 

included TLR4, IFNAR1, TNF, IFNB1, STAT1, AND IFNG (Supplementary Figure 3D 

and 3E). 

Macrophage cluster 2 also significantly overexpressed Cd74 and MHCII (H2-Aa) genes 

in LGG relative to NT (Figure 3E). In HGGs, ApoE, ApoC1, Timp2, Cd63, and Ctsd 

were upregulated when compared to LGG (Figure 3E). Among the top 20 differentially 

expressed genes, we identified immunosuppressive factors [e.g., Lgals3 (Galectin-3), 

Spp1, Pkm, ApoE, ApoC1, and Gpnmb] in HGG (Supplementary Figure 4A). In 

contrast, LGG samples expressed more chemokines (Cxcl10, Cxcl9, Ccl5, and Ccl8) 

and HLA II genes (H2-Aa, H2-Ab1, H2-Q6, and H2-Oa) than NT and HGG 

(Supplementary Figure 4A). Furthermore, in-silico modeling using a random forest 

classifier algorithm showed high accuracy in predicting which state of progression a cell 
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from macrophage cluster 2 originated from based on transcriptional profile alone 

[Accuracy: 89%; AUC: 0.89] (Supplementary Figure 6E). Furthermore, the key 

features used to accurately predict progression state included cluster defining genes 

such as Timp2 and Cd63, but immunosuppressive markers ApoE and ApoC1 were 

among the top 3 genes which drove decision making of the model (Supplementary 

Figure 6B). Similar to cluster 1, macrophage cluster 2 expressed significantly higher 

levels of Cd74, Mif, Id2 and Lgals3 in tumor samples than NT, P<0.05 (Figure 3F). IPA 

analysis identified macrophage cluster 2 in LGG expressed increased TNF, IFN-g, 

TLR4 and STAT1 compared to NT (Supplementary Figures 4B and 4C). By contrast, 

HGG downregulated IFNg and upregulated CSF1 and CD300LF relative to LGG 

(Supplementary Figure 4D). Both macrophage clusters showed upregulated 

expression of M1-related genes STAT1, TNF, TLR4, and IFN-g in LGG, but relative 

downregulation of TGFB, PTGER4, and IL10RA compared to NT (Supplementary 

Figures 3B, 4B).  

We identified Spp1 among the top 20 upregulated genes in both the macrophage 

clusters in HGG (Supplementary Figures 3A and 4A). Likewise, Gpnmb was among 

the top upregulated genes in macrophage cluster 2 in HGG (Supplementary Figure 

4A). Both Spp1 and Gpnmb are markers of glioma-associated macrophages in both 

murine glioma models and patients with GBM [43]. Furthermore, patients with GBMs 

expressing higher levels of Spp1 and Gpnmb had decreased overall survival compared 

to GBM patients expressing low levels of Spp1 and Gpnmb [43]. In addition, inhibiting 

Spp1 expression impaired progression of tumors overexpressing MMP2 and Vimentin in 

a murine xenograft glioma model [46].  

Given both macrophage clusters appear to demonstrate significant immunosuppressive 

properties, we identified common LGG markers that warrant further functional 

investigation. We observed LGG and HGG samples but not NT controls overexpressed 

Cd74 and Mif in both macrophage clusters, (Figures 3D and 3F). We then validated the 

expression of Cd74 and Id2 by qPCR in cells isolated from the TME. We found 

significantly higher Cd74 and Id2 expression in HGG compared to LGG (Figure 3G). 

Flow cytometry staining also indicated HGGs overexpressed CD74 in CD45hi/CD11b+ 
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cells (31.9 ± 16.2%) when compared to LGG (3.9 ± 1.7%) (Figure 3H). Interestingly, 

overexpression of Cd74, Mif, and Spp1 within macrophages of HGG is associated with 

reduced overall survival in grade II glioma patients in TCGA datasets (Figure 3I, 

Supplementary Figure 7A and 7B). Likewise, overexpression of Lgals3 and Ptger4 

negatively correlated with overall survival in TCGA patients less than 40 years of age 

with low- and high- grade glioma (Supplementary Figure 7C and 7D). 

Restriction of T cell trafficking and activation in the HGG TME 

We observed a significant infiltration of T cells in LGG compared to HGG samples 

(Figure 2B and Supplementary Figure 2A). Total CD3+ T cells accounted for 7.8% of 

immune infiltrates in LGG, whereas normal brain and HGG had less than 1% of CD3+ T 

cells in each sample (Figure 2B and Supplementary Figure 2A). To that end, 

differential expression analysis identified an upregulation of chemoattractants such as 

Ccl8, Cxcr6, Ifng, and Ccl5 in infiltrating T cells in LGG. In contrast, immune infiltrating T 

cells in HGG expressed more molecules associated with lipid metabolism (e.g., Apoe, 

Apoc1, Hmox, and Fabp5) (Figure 4A and Supplementary Figure 8).  

Then we investigated the differences in total CD3+ T cells between LGG and HGG. 

Total T cells in HGG expressed significantly fewer T cell activation markers (e.g., Cd69, 

Ifn-g, Cd27, Cd44, Tnf, and Il-2) than in LGG (Figure 4B). Tumor cell lysates in LGG 

also secreted more IL-2, Eotaxin, IL-1b, MCP-5, CXCL9 or MIG than NT and HGGs 

(Supplementary Figure 9A). These cells also expressed increased immune checkpoint 

molecules PD1 (Pdcd1), Lag3, and increased Th2 transcription factor, Gata3, and T reg 

transcription factor, Foxp3 (Figure 4B). Despite not detecting any CD4 and CD8 T cells 

in the NT sample, we found substantially more CD8+ T cells (2.9%) in LGG than in 

HGG (0.3%) (Supplementary Figure 2A). We found similar proportions of CD4+ T cells 

in LGG (0.5%) and HGG (0.2%) (Supplementary Figure 2A). CD4+ T cells expressed 

significantly higher levels of activation markers (e.g., Cd69, Cd27, Cd28, Ifn-g, Gzmb, 

Th1 transcription factor Tbx21, and Tnf) in LGG, and all these molecules were 

expressed significantly less in HGG (P<0.05). Likewise, T cell inhibitory markers Pdcd1, 

Lgals3, Lag3, Havcr2 (Tim3), Th2 transcription factor (Gata3), and T reg marker 

(Foxp3) expression increased in T cells after malignant progression (Figure 4C). In 
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CD8+ T cells, we observed Cxcr6, Cd44, Cd69, Cd28, Cd27 in LGG and increased 

Lgals3, Lag3, Btla4, Il10, and Fas (Figure 4D). LGG had expressed significantly more 

Cxcl9, Cxcl10, Ccl5, Ifng, and Cxcr6 than NT and HGG (P<0.05) (Supplementary 

Figure 9B). CXCR6 is a critical factor for homing and recruitment of CD8+ T cells [47]. 

IPA analysis also identified suppression of IL-2, Th1 polarization, and T cell and natural 

killer cell cytotoxicity (Figure 4E). Costimulatory molecules CD28, ICOS, IL-2, IL-15, 

IFNg, and Tnf were among the top downregulated predicted pathways. SOCS1, TGFB1, 

IL2R, and IL-6 were among the top upregulated pathways in HGG (Figure 4F). 

Interestingly, while the predictive capability of discerning the progression state of a T 

cell was high with a random forest model [Accuracy: 90%; AUC: 0.81] (Supplementary 

Figure 6F), the driving features of the model were not largely involved by many of the 

above-mentioned markers (Supplementary Figure 6). These results support that the 

immunosuppressive macrophage clusters within the TME may have restricted T cell 

function and infiltration as the tumor progressed to high-grade glioma (Figure 4G).  

DISCUSSION 

We investigated the immune cell landscape and heterogeneity of the myeloid 

compartment and its association with cytotoxic effector cell trafficking and activation 

during malignant progression of glioma using the PDGF-driven RCAS LGG to HGG 

model in adolescent and young adult mice. Using scRNAseq, our data revealed distinct 

differences in macrophage immune activation status during tumor progression, 

facilitating the identification of potential therapeutic targets specific to macrophages. We 

identified two distinct macrophage clusters, with one cluster appearing to identify as 

bone marrow-derived macrophages (BMDM) while the other expressing markers 

associated with Trem2 high macrophages. Trem2 high macrophages are characterized 

by activating complementary pathways, expressing CD9 and extracellular matrix 

remodeling factors such as cathepsins [43]. CD9 expression inhibits LPS-stimulated 

macrophage activation resulting in immunosuppression [48]. Cathepsins are proteases 

that act as extracellular matrix modeling factors, and their expression in macrophages 

promotes tumor progression and invasion [49, 50]. Trem2 high macrophages may also 

increase resistance to immune checkpoint blockade therapies [44]. Both macrophage 
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clusters expressed increased M1-like genes and immune activation features during 

LGG; however, in HGG, immune suppressive factors were significantly overexpressed. 

In addition, we identified activated microglial populations expressing Ccl3 and IL-1b only 

in LGG and HGG, but not in NT. Others have described that microglia stimulated with 

lipopolysaccharide (LPS) significantly increased expressing chemokines (e.g., Ccl3 and 

IL-1b) [51]. Our results suggest that microglia may also be sensitive to changes within 

the microenvironmental milieu caused by tumorigenesis and non-resident immune cell 

infiltration resulting in their activation. 

However, while differential expression analysis provides understanding of the average 

fold change of genes between states, gene expression may largely vary within a group 

or be expressed by a percentage of cells at the single-cell level. Thus, to evaluate 

whether these effects were representative of a phenotypic shift of an immune cluster 

during malignant progression or a subset of cells which change during progression, we 

performed a series of in-silico experiments using a random-forest based approach to 

see if state origin could be accurately predicted and was driven by immunomodulatory 

signatures at a single-cell level. Surprisingly, all reported immune cell clusters were 

highly predictive by our model (Supplementary Figures 6D, 6E, 6F and 10). Moreover, 

the immunomodulatory signals identified from our differential expression analysis were 

key drivers of the model in both macrophage clusters; however, in T-cells, this 

relationship was less apparent (Supplementary Figure 5). Machine learning data for 

monocytes, CD4-specific T cells, CD8-specific T cells, B cells, NK cells, and immature 

erythrocytes were additionally not reported due to the low total cell counts of these 

groups (Supplementary Figure 2B). Most interestingly, assaying the top 30 features 

(genes) which drove stratification of progression state for microglia showed that the 

same immunomodulatory factors which characterized macrophage cluster 1 and 2 were 

involved, including CD74 (Supplementary Figure 10), implicating a homology in the 

phenotypic shift of both macrophages and microglia during glioma malignant 

progression. 

In other studies, similar observations of combined signatures for immune activation and 

suppression factors were observed in microglia and macrophages in the glioma 
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microenvironment [52]. Since both the macrophage clusters expressed increased 

immunosuppressive factors as malignant progression emerged, we identified additional 

targets that require further interrogation to determine whether selective depletion or 

impairment will alter their immunosuppressive macrophage functionality. To that end, 

we identified Id2 being upregulated in LGG and HGG for both macrophage clusters. The 

Id2-Kdr axis has been shown to drive myeloid-derived proangiogenic signaling during 

progression of glioma [13]. Similarly, Cd74 and Mif were both upregulated in LGG and 

HGG macrophage clusters 1 and 2. GBM patients with MIF-positive tumors had 42% 

reduced overall survival compared to patients with MIF-negative tumors [53]. In 

addition, CD74-MIF signaling can block both M1 polarization and IFN-g release in 

microglia and pharmacological inhibition of CD74 reduced tumor burden in a murine 

model of high-grade glioma [54].  

Furthermore, Ibudilast, which targets MIF signaling, has shown to sensitize glioblastoma 

cells to temozolomide in a patient-derived glioma xenograft model and may serve as a 

way to target tumor associated macrophage clusters [53]. Also, monocytic MDSCs 

express the MIF receptor for CD74 and targeting the MIF-CD74 interaction using 

Ibudilast ameliorated immunosuppression and amplified CD8+ T cell activity in a GL261 

glioma model [55].  

Our scRNA sequencing studies also revealed significantly less T cell infiltration in HGG 

than LGG, making these therapeutic approaches warrant further investigation. In line 

with this finding, patients with GBM present with extremely low T cell counts, and these 

T cells are often sequestered in the bone marrow due to the loss of S1P1 in T cells [56]. 

However, another study reported significant CD8+ T cell infiltration in patients with 

grade II glioma compared with grade III and IV [57] [58], and higher CD8+ T cell 

infiltration correlated with a better prognosis in primary GBM [59]. Overall, a significant 

reduction in T cell counts and increased co-inhibitory molecule expression in the 

remaining T cells depict a dynamic immunosuppressive and permissive TME within 

HGGs and during progression.  

A limitation of this study is that single-cell transcriptomic analyses focused on isolated 

CD45+ cells and this selected population comprises only a fraction of immune cells 
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within the TME. However, this isolation process was necessary to capture a sufficient 

number of immune cells that supported enhanced immune cell cluster resolution at the 

single cell level. In subsequent studies, we aim to understand the tumor and immune 

cell cross-talk before and during malignant progression. It will be critical to understand if 

there are transcriptional commonalities between tumor cells in LGG, intermediate, and 

HGG time points and their associated myeloid cells, and how this impacts adaptive cell 

trafficking and activation. In addition, longitudinal studies aimed at immune cell 

monitoring in peripheral blood from patients may enhance our ability to develop 

immune-oncologic surveillance strategies that may be predictive of progression and 

treatment response. Our data suggest that macrophages demonstrate features of 

immune activation in the low-grade stage and acquire immunosuppressive signatures 

as the tumor transforms to high-grade. Functional studies targeting macrophages in the 

dynamic period between low and high-grade glioma may abrogate immunosuppressive 

mechanisms and provide new therapeutic windows and opportunities to prevent 

malignant progression.  
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FIGURE LEGENDS  

Figure 1. Single-cell RNA sequencing of tumor-infiltrating leukocytes during 

malignant progression. (A) A schematic representing the platelet-derived growth 

factor (PDGF)-driven replication-competent ASLV long terminal repeat with a splice 

acceptor (RCAS) glioma progression from low-grade (3-4 w) to high-grade (6-8 w) with 

representative H&E stained images. Scale bar – 100 µm. (B) Graphic illustrating single-

cell RNA sequencing from CD45+ cells (lymphocyte common antigen) isolated from 

brains of animals with no tumor (NT) (n=2), low-grade glioma (LGG) (n=3), and high-

grade glioma (HGG) (n=3). (C) Uniform Manifold Approximation and Projection (UMAP) 

for dimensionality reduction representing the cell clusters of the integrated dataset of all 

samples obtained using unsupervised clustering in Seurat. (D) Dot plots demonstrating 

canonical gene marker expression for each cell cluster. (E) Feature plots showing 

canonical marker expression for each cluster in the UMAP. 

Figure 2. Single-cell RNA sequencing reveals differences in immune cell 

infiltration during glioma progression. (A) Uniform Manifold Approximation and 

Projection (UMAP) representing immune cell clusters in samples with no tumor, low and 

high-grade gliomas. (B) Pie charts illustrating the proportion of immune cell clusters 

identified in each sample. (C) Flow cytometry gating strategy for BMDM and 

lymphocytes in high-grade glioma (HGG) and dot plots representing F4/80 or Gr1 

staining in BMDM (D) Quantification of CD11b+F4/80+ cells and CD11b+Gr1+ in BMDM 

in animals bearing low-grade glioma (LGG) (n=5) and HGG (n=5). (E) Representative 

dot plot showing flow cytometry staining of CD3 and CD8 in lymphocyte population in an 

animal with HGG. (F) Quantification of Total CD3 T cells and CD8 T cells within 
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lymphocytes of animals bearing LGG (n=5) and HGG (n=5). A two-tailed unpaired 

student’s t-test was used to calculate statistical significance. *P<0.05, **P<0.01, 

***P<0.005. 

Figure 3. Heterogeneity in macrophage clusters during glioma progression. (A) 

Heatmap of signature genes of bone marrow-derived macrophages (BMDM) and Trem2 

high macrophages in macrophage clusters 1 and 2. (B) Differential expression analysis 

of genes associated with M2 polarization, immunosuppression, invasion, recruitment, 

and M1 polarization in combined macrophage cluster. (C) Volcano plots showing top 15 

differentially expressed genes in macrophage cluster 1 in no tumor (NT) to low-grade 

glioma (LGG) and LGG to high-grade glioma (HGG). (D) Box plots representing the 

expression of key immunosuppressive molecules (Cd74, Mif, Id2 and Lgals3). (E) 

Volcano plots representing the top 15 differentially expressed genes in macrophage 

cluster 2 in NT to LGG and LGG to HGG, respectively. (F) Box plots representing the 

expression of key immunosuppressive molecules (Cd74, Mif, Id2 and Lgals3) in 

macrophage cluster 2. (G) qPCR analysis for Cd74 and Id2 in animals with NT (n=4), 

LGG (n=4) and HGG (n=4). (H) Flow cytometry analysis of CD74 staining in tumor 

infiltrating bone-derived myeloid cells of animals with NT (n=4) and tumor (n=4). (G) 

Overall survival of grade II glioma patients from the TCGA dataset expressing low levels 

(blue) and high levels (red) of Cd74. A two-tailed unpaired student’s t-test was used to 

calculate statistical significance. *P<0.05, **P<0.01, ***P<0.005.  

Figure 4. Impaired T cell activation in animals bearing HGG. (A) Heat maps 

showing key immune activation (Ccl8, Cxcr6, Ifng, and Ccl5) and suppression genes 

(Apoe, Apoc1, and Hmox1) in total T cells from samples with no tumor (NT), low-grade 
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glioma (LGG), and high-grade glioma (HGG). Differential expression analysis showing 

genes related to T cell activation and inhibition in total CD3+ T cells (B), CD4 T cells 

(C), and CD8 T cells (D). (E) Network of pathways inhibited (blue) and activated 

(orange) in total T cells during progression from LGG to HGG. (F) Top upstream 

predicted targets in T cells during progression from LGG to HGG. (G) Schematic 

representation of crosstalk between macrophages and T cells in glioma tumor 

microenvironment indicating immune activation and suppression during LGG and HGG, 

respectively. 
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