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ABSTRACT 
 
The scene-preferring portion of the human ventral visual stream, known as the 
parahippocampal place area (PPA), responds to scenes and landmark objects, which tend to 
be large in real-world size, fixed in location, and inanimate. However, the PPA also exhibits 
preferences for low-level contour statistics, including rectilinearity and cardinal orientations, 
that are not directly predicted by theories of scene- and landmark-selectivity. It is unknown 
whether these divergent findings of both low- and high-level selectivity in the PPA can be 
explained by a unified computational theory. To address this issue, we fit hierarchical 
computational models of mid-level tuning to the image-evoked fMRI responses of the PPA, 
and we performed a series of high-throughput experiments on these models. Our findings 
show that hierarchical encoding models of the PPA exhibit emergent selectivity across 
multiple levels of complexity, giving rise to high-level preferences along dimensions of real-
world size, fixedness, and naturalness/animacy as well as low-level preferences for 
rectilinear shapes and cardinal orientations. These results reconcile disparate theories of 
PPA function in a unified model of mid-level visual representation, and they demonstrate 
how multifaceted selectivity profiles naturally emerge from the hierarchical computations of 
visual cortex and the natural statistics of images. 
 
SIGNIFICANCE STATEMENT 
 
Visual neuroscientists characterize cortical selectivity by identifying stimuli that drive 
regional responses. A perplexing finding is that many higher-order visual regions exhibit 
selectivity spanning multiple levels of complexity: they respond to highly complex 
categories, such as scenes and landmarks, but also to surprisingly simplistic features, such as 
specific contour orientations. Using large-scale computational analyses and human brain 
imaging, we show how multifaceted selectivity in scene-preferring cortex can emerge from 
the coding of mid-level visual features, whose complexity is neither as simple as local 
contours nor as complex as scenes or objects. Our work reconciles seemingly divergent 
findings of selectivity in scene-preferring cortex and suggests that mid-level features may be 
central to understanding the category-selective organization of the human visual system.  
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MAIN TEXT 
 
INTRODUCTION 
 
A central goal of visual neuroscience is to identify the stimulus properties that selectively 
drive the responses of neural populations in visual cortex. In high-order visual areas, 
responses often exhibit complex and unintuitive patterns of multifaceted selectivity for 
stimulus properties spanning from low-level image features to high-level conceptual 
attributes (1–4). Several lines of research suggest that the multifaceted selectivity profiles of 
higher-order visual regions cannot be reduced to a single level of explanation: neither low-
level perceptual factors nor high-level conceptual factors fully account for cortical response 
preferences (5–9). Thus, a major challenge for visual neuroscience is to explain how such 
multifaceted selectivity profiles emerge from the information-processing mechanisms of 
visual cortex. 
 
The parahippocampal place area (PPA) is a clear example of such multifaceted selectivity. 
The PPA is a scene-preferring area of the ventral visual stream that responds strongly to 
spatial scenes (10). A longstanding hypothesis of the PPA is that it selectively processes large 
scene elements, including spatial structures and objects, that can serve as navigational 
landmarks (11–16). This hypothesis is primarily motivated by the strong global signal 
modulation of the PPA in response to scenes and to objects that are large in real-world size, 
spatially fixed, and inanimate (13, 16). However, other work has shown that the responses 
of the PPA are also modulated by low-level visual features, with a specific preference for 
high spatial-frequency contours that form rectilinear junctions and are oriented along the 
cardinal axes (17–19). Low-level features can even drive the responses of the PPA when 
presented in minimal stimuli, such as basic geometric shapes, that do not resemble natural 
scenes or landmarks (18, 19).  
 
The existence of low-level feature preferences in the PPA has been argued to be 
inconsistent with theories of landmark-specialization, and it has sparked a debate over the 
appropriate level of interpretation for PPA selectivity (2, 6, 17–19). However, several 
findings suggest that the response preferences of the PPA cannot be fully explained by low-
level features alone. First, the PPA shows a preference for scenes even when they are 
matched to comparison stimuli on low-level properties (17, 20). Second, the PPA exhibits a 
preference for spatial scenes and large objects even in the absence of visual stimulation, 
when sighted subjects haptically explore miniature scenes or when blind subjects are cued 
to think of large objects (21, 22). Nonetheless, the low-level feature preferences of the PPA 
remain to be explained. Understanding how these low-level preferences square with 
findings of scene- and landmark-selectivity is critical for developing a complete theory of the 
PPA, and it may have broader implications for understanding the complex tuning functions 
of category-selective visual cortex more broadly.  
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We explored the possibility that the multifaceted selectivity profile of the PPA can be 
understood as an emergent property of the hierarchical computations of visual cortex and 
the natural statistics of scenes (6, 23). We focused specifically on the representation of mid-
level visual features, which are more complex than simple oriented contours but less 
complex than the semantic attributes of objects (24, 25). Our hypothesis was that the 
feedforward computation of mid-level features is sufficient to explain several high-level 
selectivity findings in the PPA and that a direct consequence of these feedforward 
computations is the emergence of low-level biases for cardinal orientations and rectilinear 
shapes. This hypothesis is premised on a simple principle of computational hierarchies: that 
higher-level representations inherit the biases of their downstream inputs. It is known that 
the PPA inherits at least one type of low-level bias in the form of a retinotopic preference 
for the upper and peripheral visual field (26), and it has been speculated that scene areas 
exhibit preferences for the low-level features that are most associated with scenes and 
landmarks (2, 6). However, no previous studies have determined whether the multifaceted 
selectivity profile of the PPA naturally emerges from a feedforward computational 
hierarchy.  
 
To test our hypothesis, we fit hierarchical neural network models of mid-level visual 
representation to the scene-evoked fMRI responses of the PPA. We then ran a series of 
high-throughput in-silico experiments on these models to characterize their selectivity to 
multiple properties of both natural images and simple geometric stimuli. We found that the 
feedforward coding of mid-level features is sufficient to predict the fMRI responses of the 
PPA to natural scenes and objects and to reproduce the selectivity profile of the PPA across 
multiple levels of complexity for tens of thousands of images, including selectivity for 
scenes, selectivity for objects that are large, inanimate, manmade, and spatially fixed, and 
selectivity for the low-level contour statistics of rectilinearity and cardinal orientations. 
These findings suggest that the multifaceted selectivity profile of the PPA may naturally 
emerge from the feedforward coding of mid-level visual features and the statistical 
regularities of images.  
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RESULTS 
 
Encoding model of mid-level feature tuning  
 
We used convolutional neural networks (CNNs) and fMRI data to create image-computable 
voxelwise encoding models of mid-level feature tuning in the PPA. CNNs are theoretical 
models of the core information-processing mechanisms implemented by biological neural 
populations, and they are the leading computational models of human visual cortex (27), 
including scene-selective areas (23, 28). They perform a set of biologically plausible 
mathematical operations, and their hierarchical, convolutional architecture is inspired by 
the primate visual system. CNNs take images as inputs and pass them through a hierarchy of 
nonlinear transformations whose final outputs support image classification (after model 
training). A major strength of CNNs is that they make explicit predictions about the stimulus 
transformations that may occur along the processing hierarchy of visual cortex. This makes 
CNNs ideally suited for testing theories about the computational basis of multifaceted 
selectivity.  
 
We developed voxelwise computational models of mid-level feature tuning by mapping the 
outputs of a feedforward CNN to fMRI responses in four subjects from the BOLD5000 
dataset who viewed between 2,952 and 4,916 unique natural scene images depicting real-
world environments and objects (29). We used the AlexNet CNN architecture pre-trained on 
ImageNet (30). The first five layers of AlexNet are convolutional layers, whose units receive 
inputs from spatially local regions of the previous layer, like the spatial receptive field 
structure of visual cortex. Each unit performs a linear-nonlinear operation in which it 
computes a weighted linear sum of its inputs followed by a nonlinear activation function 
(specifically, a rectified linear threshold). The weights on the inputs for each unit define a 
type of feature channel, and each convolutional layer contains a set of feature channels that 
are replicated with the same set of weights over the entire image. Our modelling procedure 
involved pooling and reweighting of the CNN responses from the last convolutional layer 
(layer 5) to predict the image-evoked fMRI responses in the BOLD5000 dataset (Fig. 1A). We 
were specifically interested in characterizing feature tuning in the PPA rather than 
retinotopic biases. We therefore created a set of fully spatially invariant feature activations 
by applying global max pooling across all spatial locations for each feature channel in layer 
5. The outputs of this global max pooling operation were passed to a linear regression layer 
that we trained to predict fMRI responses as a weighted sum of feature activations. We 
used regularized regression to develop sparse models of feature tuning that focus on the 
most informative features for each voxel. We compared cross-validated performance when 
using LASSO (L1 penalized), which encourages sparse models, ridge (L2 penalized), and 
ordinary least squares (OLS) regression. We found that LASSO outperformed both ridge and 
OLS regression, suggesting that our models of feature tuning benefited from the inclusion of 
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a regularization term that pushes a portion of the regression weights to zero 
(Supplementary Fig. 1).  
 
We assessed the reliability of encoding model performance in two ways. We first used 
cross-validation to examine out-of-sample prediction accuracy on the BOLD5000 dataset 
and found that the prediction accuracy in the PPA was statistically significant 
(Supplementary Fig. 2A). We next performed a stringent test of how well our encoding 
models could generalize to new data by examining their ability to predict the average 
responses of the PPA in a separate fMRI dataset with different subjects and novel stimuli. 
We examined data from an fMRI study of object representation in which four subjects 
viewed images of isolated objects from 81 different categories (31). We found that our 
encoding models trained on the BOLD5000 dataset were highly accurate at predicting the 
fMRI responses of the PPA to novel stimuli in a completely different set of subjects (Fig. 1B; 
r=0.58, p=1e-5; see other visual ROIs in Supplementary Fig. 2B). The strong generalization 
performance of our encoding models suggests that they capture important aspects of the 
feature preferences of the PPA and, furthermore, that these feature preferences explain a 
substantial portion of variance in the responses of the PPA to a wide range of stimuli, 
including complex scenes and isolated objects (Fig. 1C). 
 
Selectivity for scenes and object properties  
 
With our model of mid-level tuning for PPA in hand, we next sought to determine whether 
mid-level feature preferences in a feedforward model are sufficient to reproduce the 
multifaceted selectivity profile of the PPA for scenes, high-level object properties, and low-
level contour statistics. We developed an approach that builds on a powerful two-fold 
procedure for characterizing cortical tuning profiles: first, highly parameterized encoding 
models are fit to neural data (as we have done with our mid-level tuning models), and 
second, in silico experiments are performed to reveal the interpretable, latent properties of 
these encoding models (23, 32–34). The strength of this two-fold procedure is that it 
combines the predictive power of highly parameterized models with the interpretability 
gained from in silico experiments. Here we developed an approach that leverages high-
throughput experiments to rigorously assess the latent information content of our mid-level 
representations in the context of a large natural scene dataset. In doing so, we are able to 
address a critical challenge for studies of mid-level visual representation: namely, that mid-
level features are notoriously difficult to describe in terms of their perceptual properties but 
may nonetheless correspond to interpretable directions along the natural image manifold 
(25, 35, 36).  
 
We first sought to determine whether our mid-level model of the PPA exhibits a pattern of 
scene-selectivity in its mean activation to images of scenes, objects, and faces, which are the 
stimulus categories that are often used to localize the PPA. In the following analyses, we 
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refer to our mid-level encoding model of the PPA as simPPA (and we use a similar naming 
convention for other ROIs in the supplementary figures). We found that much like the actual 
PPA, the activations of our simPPA model to a set of localizer stimuli showed the typical 
pattern associated with scene-preferring areas, with response preferences ordered from 
scenes to objects to faces. In direct comparisons, the mean activation of simPPA was 
significantly greater for scenes relative to both objects (t(702)=23.99, p=1e-96) and faces 
(t(702)=71.09, p=1e-100) (Fig. 1C). It is worth noting that the scene-selectivity of simPPA is 
driven by mid-level feature tuning and cannot be attributed to spatial preferences, given 
that our encoding models involved a global max pooling procedure. Furthermore, although 
simPPA was trained to predict PPA responses to a diverse sample of natural scenes, it was 
never trained on the localizer stimuli examined here. Thus, these findings show that the 
mid-level feature tuning of simPPA is sufficient to generate a reliable pattern of scene-
selectivity that generalizes to new stimuli.  
 
We next sought to characterize the selectivity of simPPA for object properties. We were 
specifically interested in determining whether the mid-level feature preferences of simPPA 
are reliably associated with interpretable object properties in the statistics of natural 
scenes. To accomplish this, we developed a computational method to characterize how the 
activations of an image-computable encoding model are affected by the presence of specific 
object categories in the context of natural scenes, and we used behavioral studies to relate 
these findings to human-interpretable object properties. This approach, which we refer to 
as semantic-preference mapping, has several strengths. First, it allows us to determine how 
the seemingly ineffable mid-level features of simPPA are related to the nameable 
components of scenes (i.e., objects). Second, it allows us to determine how simPPA 
responds to objects in their natural image contexts. And third, it is scalable to a large sample 
of images (i.e., 10^4), allowing us to characterize the association between mid-level features 
and interpretable object properties in a manner that is broadly representative of natural 
scene statistics. 
 
Semantic-preference mapping works by systematically occluding instances of objects from 
target categories in a large set of images and then assessing how model activations are 
affected by the occlusion of these objects (Fig. 1D). We used the ADE20K dataset of densely 
annotated scenes to perform targeted occlusions of objects from specific semantic 
categories. The ADE20K dataset contains 27,574 images of real-world scenes from a diverse 
array of scene categories (37). The objects in each image of this dataset have been manually 
segmented and labeled by an expert human annotator. We examined 85 categories of 
objects that each had at least 500 instances in the ADE20K dataset (these categories are 
listed in Supplementary Table 1). We performed targeted occlusions of all instances of these 
object categories and passed the occluded images to our encoding model (see Methods for 
details). For all units in the encoding model, we calculated the difference in activation for 
each occluded image relative to its corresponding original image, and we then calculated 
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the mean of this difference score across all instances of an object category. The resulting 
metric indicates how strongly the responses of the encoding model are affected by the 
presence of a target object category in an image (Fig. 1E). We refer to this metric as a 
selectivity index. As an illustrative example, if a unit in the encoding model hypothetically 
responded to the features of cars, then its responses would decrease whenever cars were 
occluded, and it would have a high selectivity index for the target category car. Note that we 
partialled out occluder size from the selectivity indices to ensure that our results could not 
simply be attributed to differences in occluder size across categories (see Methods for 
details). We also performed several experiments that verified the robustness of the 
semantic-preference mapping results to variations in occluder shape (i.e., oval vs. rectangle) 
and CNN initialization parameters (see Methods and Supplementary Fig. 3).  
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Figure 1. Encoding models and semantic preference mapping. A) Image-computable 
voxelwise encoding models of mid-level feature tuning were trained using the BOLD5000 
fMRI dataset and the convolutional layers of a pretrained AlexNet CNN. The encoding 
models were created by truncating AlexNet at layer 5, adding a global max pooling 
operation, and then training a linear regression layer to map CNN feature activations to 
image-evoked fMRI responses. B) A strong test of generalization performance was 
conducted using data from Bonner & Epstein, 2021. The trained encoding models from 
BOLD5000 were used to generate predicted univariate fMRI responses in an ROI for a new 
set of stimuli and a new set of subjects. This plot shows the correlation between the 
predicted and actual fMRI responses in the PPA, which was strongly significant (r=0.58, 
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p=1e-5). C) Encoding model responses were obtained for a set of standard functional 
localizer images, including scenes, faces, and objects. The simPPA encoding model showed a 
preferential response to scenes relative to both faces and objects. Red and black lines 
indicate the median and mean of the distributions. D) In the semantic preference mapping 
procedure, a database containing densely segmented images is used to perform targeted 
occlusions of object categories and to assess how encoding model activations are affected 
by these object occlusions (37). This procedure is repeated for all instances of an object 
category in the database, and the results are averaged to produce the selectivity index for 
each object category. E) This panel illustrates the results of the semantic preference 
mapping procedure for simPPA by showing the object categories with the highest and 
lowest selectivity indices. ***p<0.001. CNN: Convolutional neural network.  a.u.: arbitrary 
unit. 
 
After calculating the selectivity indices for all 85 object categories, we then performed 
follow-up experiments to determine whether these selectivity indices were related to 
human-interpretable object properties. Specifically, we collected behavioral ratings for five 
properties that have previously been linked to the responses of the PPA: real-world size, 
fixedness, inanimate, manmade, and rectilinearity (13, 16, 18, 38) (Fig. 2A and 
Supplementary Figs. 4 and 5; see Methods for details). Because the manmade and 
inanimate ratings were highly correlated (r=0.91), we combined them into a single rating by 
taking their averaging for each category. We then calculated correlations of these object 
property ratings with the selectivity indices from our semantic-preference mapping 
procedure. For these correlations, we partialled out the size of the occluder for each object 
category to ensure that the correlations could not be attributed to occluder size (see 
Methods). We first calculated correlations with the mean selectivity index across all units in 
simPPA, which is analogous to examining the global univariate response of a brain region. 
We found that the mean selectivity index was significantly correlated with all four object 
properties, indicating that simPPA exhibits a preference for objects that are boxy, large in 
real-world size, fixed in location, and inanimate/manmade (Fig. 2B and Supplementary Fig. 
6A). These results demonstrate that the known object preferences of the PPA, even for 
seemingly high-level properties like real-world size and fixedness, can emerge from purely 
feedforward computations of mid-level visual features and that these effects are 
representative of the statistical regularities in a large and diverse sample of natural scenes.  
 
We next performed variance partitioning analyses to determine the degree to which our 
object-property ratings accounted for unique and shared variance in the selectivity of 
simPPA (see Methods for details). Rectilinearity had the highest correlation with the mean 
selectivity of simPPA (Fig. 2B), and our variance partitioning analyses showed that it could 
account for at least a portion of the explained variance associated with all three other 
object properties (Fig. 2C). For fixedness, the explained variance could be fully accounted for 
by rectilinearity. However, both real-world size and manmade/inanimate had unique 
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explained variance that could not be attributed to rectilinearity or any other property (Fig. 
2C and Supplementary Fig. 6B). Thus, the mean response of simPPA exhibits preferences for 
the object properties of rectilinearity, real-world size, and manmade/inanimate that cannot 
be fully reduced to a common underlying factor.  
 

 
Figure 2. Univariate selectivity indices are correlated with interpretable object properties. 
A) Behavioral ratings were collected for object properties that have previously been 
associated with the responses of the PPA: rectilinearity, real-world size, fixedness, 
manmade, and inanimate. These ratings were collected for all 85 object categories that 
were examined in the semantic preference mapping procedure. Because manmade and 
inanimate were highly correlated, they were combined into a single manmade/inanimate 
rating. B) The average selectivity indices of simPPA were significantly correlated with all four 
object properties. This shows that the mid-level tuning of simPPA gives rise to preferential 
responses to objects that are rectilinear, large in real-world size, fixed in location, and 
inanimate/manmade. The violin plots show distributions of the correlation values across 
10,000 bootstrap resampling iterations. C) Variance partitioning was used to identify the 
unique and shared contributions of each object property for explaining variance in the 
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selectivity indices of simPPA. There was a considerable amount of shared variance across 
the object properties. However, all properties other than fixedness also explained some 
portion of unique variance. See Supplementary Figure 6 for statistical assessments of the 
unique variance associated with each object property. *p<0.05, ***p<0.001. p-value 
calculated by permutation test (N=10,000). 
 
Our analyses thus far have focused on the overall mean selectivity of simPPA. However, it is 
possible that these selectivity indices contain multiple latent dimensions of object 
preferences. We next performed analyses to examine the multivariate selectivity profile of 
simPPA and its principal representational dimensions. We applied principal component 
analysis (PCA) to the selectivity indices of simPPA for all 85 object categories from the 
semantic-preference mapping procedure. We focused on the first two principal components 
(PCs), which accounted for 82% and 7% of the variance in the selectivity indices. We then 
analyzed these PCs in the same way as the mean selectivity index. The first PC largely 
resembled the mean selectivity index, with significant correlations with all four object 
properties and unique explained variance for every property except fixedness (Fig. 3 and 
Supplementary Fig. 7A). Though the second PC accounted for far less variance than the first 
PC, it exhibited an interesting pattern of selectivity for large, natural/animate objects, with 
significant but opposite-signed correlations for real-world size and manmade/inanimate, 
which both explained unique variance (Fig. 3 and Supplementary Fig. 7A). Furthermore, 
there was almost no correlation with rectilinearity in the second PC. The results of these PC 
analyses show that when the multivariate selectivity of simPPA is broken down into its 
principal latent dimensions, we find two orthogonal patterns of selectivity: one for objects 
that are large and manmade and another for objects that are large and natural.  
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Figure 3. Principal components of the selectivity indices are correlated with interpretable 
object properties. A) As shown on the left, the first PC of the selectivity indices from simPPA 
was significantly correlated with all four object properties and resembled the findings for 
the global univariate selectivity indices. As shown on the right, the second PC of the 
selectivity indices exhibited a different pattern. This PC had significant but opposite-signed 
correlations with real-world size and manmade/inanimate and appears to reflect a 
preference for large, natural objects. The violin plots show distributions of the correlation 
values across 10,000 bootstrap resampling iterations. C) Variance partitioning was used to 
identify the unique and shared contributions of each object property for explaining variance 
in the selectivity indices of simPPA. For both PCs, there was a considerable amount of 
shared variance across the object properties. For the first PC, there are unique contributions 
from all properties other than fixedness. For the second PC, only inanimate/manmade and 
real-world size had unique contributions. See Supplementary Fig. 7 for statistical 
assessments of the unique variance associated with each object property. *p<0.05, 
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**p<0.01, ***p<0.001. p-value calculated by permutation test (N=10,000). PC: Principal 
component. 
 
Selectivity for cardinal orientations and rectilinear shapes 
 
One of the most perplexing aspects of the PPA is that in addition to its selectivity for scenes 
and high-level object properties, it also exhibits preferential responses to low-level 
geometric stimuli with a high proportion of rectilinear shapes and cardinal orientations (17–
19). Here we tested whether our simPPA model of mid-level feature tuning also exhibits a 
similar pattern of response preferences for simple geometric stimuli. We created two sets of 
simple low-level stimuli to examine the response profile of simPPA across contour 
orientations and degrees of rectilinearity. We first examined simPPA responses to minimal 
images containing a single Gabor patch at a specific orientation, ranging from 0 to 165 
degrees in 15-degree intervals (Fig. 4A). We found that, as in previous reports of the PPA, 
simPPA shows a response preference for contours at cardinal orientations (i.e., vertical and 
horizontal). An analysis of other ROIs showed that this preference for cardinal orientations 
was not a universal phenomenon of our encoding models but, instead, appeared to be 
specific to the scene-selective ROIs (Supplementary Fig. 8). We next examined simPPA 
responses to minimal images containing simple shapes that varied along a continuum from 
curvilinear to rectilinear (Fig. 4B). Again, much like previous reports of the PPA, simPPA 
showed a response preference to simple geometric stimuli with rectilinear features. This 
preference for rectilinear features was not a universal phenomenon of our encoding models 
but, instead, appeared to be specific to the scene-selective ROIs (Supplementary Fig. 9). 
Together, these findings show that the feedforward computation of mid-level visual 
features in simPPA gives rise to a multifaceted selectivity profile for scenes and object 
properties in natural images as well as for low-level contour statistics in minimal stimuli.  
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Figure 4. Selectivity for cardinal orientations and rectilinear shapes. The selectivity of 
simPPA for low-level perceptual properties was assessed using minimal stimuli containing 
oriented Gabor patches or simple shapes. A) The average univariate response of simPPA is 
plotted for stimuli containing Gabor patches at a range of angles from 0° to 165°. Error bars 
represent +/-1 SD across the units of simPPA. These findings show that simPPA responds 
more to contours at cardinal orientations (0° and 90°). B) The average univariate response 
of simPPA is plotted for stimuli containing simple shapes that varied along a continuum from 
boxy to curvy. Error bars represent +/-1 SD across the units of simPPA. These findings show 
that simPPA responds more to rectilinear shapes.  
 
DISCUSSION 
 
We fit a feedforward model of mid-level feature tuning to the scene-evoked fMRI responses 
of the PPA and found that it reproduced core aspects of PPA selectivity for scenes, object 
properties, and simple geometric stimuli. Using high-throughput, in silico experiments, we 
found that selectivity for interpretable image properties spanning from high-level 
conceptual attributes to low-level perceptual features can emerge from mid-level tuning 
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and natural image statistics. Our results provide a unified theoretical account of PPA 
selectivity that resolves several seemingly divergent findings on the response preferences of 
the PPA, and they show how the computational hierarchy of visual cortex can give rise to 
multifaceted selectivity profiles that span multiple levels of stimulus complexity. 
 
Our results have implications for understanding the organizing principles of the ventral 
visual stream. One of the central anatomic properties of the ventral stream is its 
organization into patches that are selective for categories, such as places, faces, and objects, 
and coarse conceptual domains, such as those based on animacy and real-world size (38–
40). Although this functional organization of the ventral stream has long been characterized 
in terms of high-level, interpretable stimulus attributes, such as categories, recent findings 
suggest that the fundamental organizing principles may be better characterized in terms of 
differential tuning to mid-level visual features (35, 36). One such finding showed that mid-
level visual features are sufficient to elicit domain-selective fMRI activations in the ventral 
stream for the properties of animacy and real-world size, even when the experimental 
stimuli are unrecognizable as objects (36). Another key finding showed that the category-
selective organization of object representations in the macaque ventral stream can be 
mapped onto the first two principal components of a feedforward CNN and may thus 
naturally arise from the statistical structure of mid-level feature representations (35). 
Moreover, multiple studies have shown that the representations of the human ventral 
stream are better explained by perceptual features than by the abstract properties that 
underlie category identity or human intuitions about semantic similarity (28, 28, 41–43). Our 
findings are broadly consistent with a mid-level theory of ventral-stream organization and 
show the surprising degree to which a feedforward model of mid-level feature tuning can 
account for the characteristic selectivity profile of the PPA for stimulus properties spanning 
from high-level, conceptual attributes to low-level contour statistics.  
 
Although mid-level visual features are critical for explaining the cortical visual hierarchy, 
they are notoriously difficult to characterize (25). We lack simple algorithmic models of mid-
level features, in contrast to the Gabor model for V1. The most effective approach for 
discovering mid-level visual features that are predictive of cortical responses is deep 
learning in CNNs (27, 44). However, the resulting CNNs are black boxes whose mid-level 
representations are challenging to visualize and even more challenging to describe in 
words—their features exist in an ineffable valley between the describable patterns of low-
level vision (e.g., edges) and the intuitive concepts of visual semantics (e.g., objects). Here 
we sought to gain a more informative view of mid-level features by characterizing their 
covariance with nameable scene elements—a procedure we call semantic-preference 
mapping. This approach allowed us to combine the strengths of a CNN with the 
interpretability of a tuning profile across a set of object categories. Using this approach, we 
found that the mid-level features of our PPA encoding model had latent covariance 
relationships to interpretable object properties and that these covariance findings were 
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representative of the statistical regularities in the large and diverse sample of natural 
images examined here. These analyses provide a new perspective on PPA selectivity: they 
demonstrate that the strong responses of the PPA to scenes and landmark-like objects could 
in principle be mediated by the feedforward computation of mid-level features that covary 
with scenes and landmarks in the natural statistics of images.  
 
It is important to point out that our findings do not simply reveal a confound between mid-
level features and the high-level properties of scenes and landmarks. Rather, they reveal a 
potential mechanism for mediating the selectivity of the PPA during the passive viewing of 
natural images. After all, the PPA is a visual region that receives a large portion of its inputs 
from the visual pathway starting at the retina (26). Any mechanistic theory of the PPA will 
ultimately need to explain how it processes these downstream inputs in a manner that 
yields rapid and automatic selectivity for scenes and object properties. As an analogy, we 
could consider V1 cells, which are commonly described as being functionally selective for 
edges and are mechanistically modeled using oriented and localized spatial-frequency filters 
(45). The relationship between the mechanistic implementation (i.e., oriented spatial-
frequency filters) and the functional selectivity (i.e., edges) is premised on the covariance 
between the filter responses and the presence of edges in images, but it does not require 
that this relationship be one of perfect mutual information. In fact, oriented spatial-
frequency filters also provide information about image features other than edges and can 
even arise in models trained on spatially smooth images that contain no edges whatsoever 
(46). Despite this, there is little disagreement that V1 can be functionally described in terms 
of edge representation and that the underlying computational mechanisms involve spatial-
frequency filters. Similarly, we argue that the PPA can be functionally described as 
representing scenes and landmark-like objects, and that one of the underlying mechanisms 
that directly supports this function is the feedforward computation of mid-level visual 
features. 
 
It is also important to point out that our mid-level model does not capture all aspects of 
information processing in the PPA. Our model is only intended to account for the initial 
feedforward activations of the PPA and does not contain feedback and recurrent processes, 
which are pervasive in visual cortex and likely play a crucial role in the PPA. In fact, it is 
known that the PPA shows scene-related activation even without visual stimulation, 
including in subjects who are congenitally blind and in sighted subjects who are haptically 
exploring miniature scenes (21, 22). Thus, there appear to be scene-specific top-down 
feedback mechanisms in the PPA that remain to be explained. Our model is also spatially 
coarse and is focused on capturing tuning for mid-level features rather than spatial 
receptive-field biases. Although receptive-field biases are known to exist in the PPA (26), we 
found that our spatially coarse encoding model could nonetheless account for a substantial 
portion of the global univariate response profile of the PPA. Future work could examine how 
tuning to mid-level features interacts with the receptive-field biases of the PPA and to 
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determine whether there exist relevant covariance relationships between mid-level features 
and receptive-field locations in the natural statistics of vision (47). Our model is also not 
intended to explain the effects of navigational experience on the PPA, which shows stronger 
responses to objects that occur at navigationally important locations and treats stimuli as 
more similar if they come from the same place (14, 15, 48). Furthermore, our findings do 
not account for functional differences along the anterior-posterior extent of the PPA, which 
appear to reflect a general trend toward visual-form representations in the posterior PPA 
and mnemonic representations in the anterior PPA (31, 49, 50). However, future studies 
could leverage our mid-level modeling framework to test whether the effects of 
navigational experience in the PPA involve the modulation of mid-level features from 
navigationally important stimuli and to test whether the mnemonic representations of 
anterior PPA are implemented through the associative coding of mid-level features from co-
occurring stimuli, including object categories in scenes and distinct views of places (14, 31). 
 
Complex mid-level features may be the currency of the ventral visual stream (35, 36), and 
approaches for making sense of mid-level features are crucial for advancing our 
understanding of visual cortex. Here we show that when computational models of mid-level 
feature tuning in visual cortex are combined with methods for revealing their interpretable 
properties, these methods reveal how cortical selectivity profiles naturally span multiple 
levels of stimulus complexity and they provide insight into the category-selective 
organization of the ventral stream. More broadly, our computational modeling framework 
paves the way for examining the behavioral significance of mid-level features in scene- and 
landmark-processing and for exerting control over representational states in the cortical 
scene network through targeted visual stimulation (51, 52).  
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MATERIALS AND METHODS 
 
fMRI data processing. We analysed data from the publicly available BOLD5000 dataset 
(https://bold5000.github.io), which contains 3T BOLD fMRI data in four subjects who viewed 
between 2,952 and 4,916 unique natural scene images depicting real-world environments 
and objects (29). This dataset was designed to sample fMRI activations to a large and 
diverse set of natural scenes. To maximize stimulus diversity, most images in this dataset 
were presented a single time over the course of the experiment. Stimuli were presented for 
1 sec followed by a 9 sec interstimulus interval. In the scanner, subjects performed a 
valence judgment task, responding with how much they liked the image using the metric: 
“like”, “neutral”, “dislike”. See (29) for a more detailed description of this dataset.  
 
All functional data were preprocessed using fMRIPrep (53), which performed 3D motion 
correction, distortion correction, and co-registration to the T1 anatomical image. After 
preprocessing, we estimated the activation to each image using a series of general linear 
models that included a single regressor for each trial and another regressor for all other 
trials. This procedure has been shown to be more accurate for estimating activation 
magnitudes in event-related designs with high signal to noise (54). We implemented this 
general linear modeling procedure using the function 3DLSS in AFNI (55). These activation 
estimates were used as the predictands for our CNN encoding models.  
 
ROIs were identified using four localizer runs. First, a group-based parcel derived from a 
large number of subjects was warped to each subject’s native space to act as an anatomical 
constraint (56). Bilateral ROIs were identified within the parcel in each hemisphere by 
identifying the top 200 most activated voxels from the localizer contrast. PPA, OPA and RSC 
were identified using the scenes > objects contrast, LOC was identified using the objects > 
scenes contrast, and EVC was identified using the objects > scrambled contrast. In total, 
each subject had 400 voxels in each ROI. 
 
Encoding models. We constructed voxelwise encoding models on top of the last 
convolutional layer of an AlexNet CNN that was pretrained on ImageNet 
(https://pytorch.org/hub/pytorch_vision_alexnet/). Our modelling procedure involved 
pooling and reweighting of the CNN responses from layer 5 (after ReLU) to predict the 
image activation estimates from BOLD5000 (Fig. 1A). We applied global max pooling to 
obtain a single activation for each feature channel in layer 5, and we passed these feature 
activations to a linear regression layer that was trained to predict the image-evoked fMRI 
activations as a weighted sum of the CNN feature activations. We trained the linear 
regression layer using LASSO (L1 penalized) regularization. A 10-fold cross validation 
procedure was used to search for the optimal regularization penalty in each voxel. The 
penalty parameter was selected from 20 values on a log-scale from 1e-4 to 1e4. After 
identifying the optimal penalty parameter for each voxel, we learned a set of regression 
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weights using this penalty parameter and the full set of fMRI data. Together, the truncated 
CNN (up to layer 5), followed by max pooling, and the regression layer define an image-
computable encoding model of mid-level feature tuning for each voxel.  
 
We were interested in L1 regularization as a means of learning sparse encoding models that 
emphasize the CNN features that are most important for each voxel. However, we were 
unsure if L1-regularized regression would perform as well as L2-regularized or ordinary least 
squares (OLS) regression. We therefore evaluated the performance of different regression 
methods by running encoding-model analyses on the BOLD5000 dataset with 10-fold cross-
validation using OLS regression (without regularization), LASSO regression (L1 regularization) 
and ridge regression (L2 regularization). Although previous studies have typically used ridge 
regression when fitting voxelwise encoding models (32, 33), we found that LASSO 
outperformed both ridge and OLS (Supplementary Fig. 1, see Supplementary Fig. 10 for full 
OLS encoding model results). Thus, our encoding models benefited from a sparse 
regularization procedure that pushes some of the regression weights to zero and 
emphasizes the subset of feature activations that are most informative for each voxel.  
 
Encoding model performance was evaluated in two ways. First, we performed a new 10-fold 
cross-validation procedure on the BOLD5000 dataset while keeping the regularization 
penalty fixed (using the previously learned optimal penalty for each voxel). The cross-
validation scheme used for this evaluation was different from the cross-validation scheme 
that was used when selecting the regularization penalty. Supplementary Fig. 2A shows the 
mean Pearson correlations between the predicted activations and the observed activations 
across all cross-validation folds and all voxels in each ROI. Note that because the penalty 
parameter was learned on the same data, the performance estimates may be biased 
upwards. We therefore performed an additional stringent evaluation of encoding-model 
generalization performance using a separate set of fMRI data with new subjects and new 
stimuli, which is described below. It is also worth noting that the encoding models perform 
well above chance in the BOLD5000 dataset even when using OLS regression without 
regularization, which means that regularization is not required to achieve statistically 
significant performance (Supplementary Fig. 10). Furthermore, our results and conclusions 
do not depend on the specific values of the performance estimates in BOLD5000. It is 
already well-established that CNNs are state-of-the-art encoding models of fMRI responses 
in visual cortex (27). The primary goal of our analyses is to characterize the mid-level 
representations of these encoding models after they have been fit to fMRI data.  
 
Second, to rigorously test generalization performance, we used the trained encoding models 
from the BOLD5000 dataset to predict the fMRI activations to 81 object categories from a 
separate fMRI dataset with a different set of subjects. We used the fMRI data from Bonner 
& Epstein, 2021 (https://osf.io/ug5zd/), which included fMRI responses in four subjects who 
viewed images of isolated real-world objects from 81 different categories that were 
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presented on meaningless textured backgrounds. In the scanner, the subjects performed a 
simple oddball-detection task of pressing a button whenever a warped object was shown. 
See the original publication for a detailed description of these data (31). Each object 
category in this dataset contained 10 unique images, which were shown in a block design. 
We ran all images through our CNN encoding models and obtained the average activation 
across all 10 images for each object category. Our goal was to test whether these encoding 
model activations could predict the average univariate fMRI activation of our ROIs. For each 
ROI, we averaged the encoding model activations across all voxels in all subjects from 
BOLD5000 to obtain a single activation value for each object category, which we compared 
with the actual univariate fMRI activations averaged over all subjects in the Bonner & 
Epstein data. We observed a strong correlation between the predicted activations from our 
encoding models and the actual fMRI activations in all ROIs (Supplementary Fig. 2B). These 
findings demonstrate that the encoding models trained on the BOLD5000 dataset exhibit 
remarkable generalization performance across both subjects and stimuli when predicting 
the univariate activations of multiple ROIs (including PPA). Thus, our encoding models 
appear to capture key aspects of the mid-level feature tuning in these ROIs.   
 
Semantic preference mapping. We developed an algorithmic approach to examine how the 
activations of our CNN encoding models were affected by the object classes present in an 
image. For this procedure, we made use of the ADE20K dataset, which contains 27,574 
images of real-world scenes from a diverse array of scene categories (37). The objects in 
each image of this dataset have been manually segmented and labeled by an expert human 
annotator. We used these segmentation masks to perform targeted occlusions of objects in 
images and assess how these occlusions affected the activation of the CNN encoding models 
(Fig. 1E). The logic of this procedure is that if an encoding model preferentially responds to 
certain categories of objects, then its responses will be strongly affected by occlusions of 
those objects. Our goal was to rigorously assess how the CNN encoding model activations 
were affected by the presence of these object categories in a large sample of images. We 
therefore examined all object categories that had at least 500 instances in the ADE20K 
dataset, which yielded a total of 85 categories (these are listed in Supplementary Table 1). 
For our targeted occlusions, we used the object segmentations to create the smallest oval 
mask that covered the target object. These masks contained random RGB values in each 
pixel, and the edges of these masks were blurred by morphological dilation using the Matlab 
function imdilate. We passed the occluded images to our CNN encoding models and 
calculated a difference score by subtracting the activation to the occluded image from the 
activation to the corresponding original images (without occlusion). We then calculated the 
mean of this difference score across all instances of an object category. The resulting metric 
indicates how strongly the responses of the encoding model are affected by the presence of 
a target object category in an image. We refer to this metric as a selectivity index. To ensure 
that our findings could not simply be attributed to the size of the occluders, we partialled 
out occluder size by regressing the selectivity indices against occluder size (i.e., mean 
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number of pixels) and retaining the residuals, which we used for all follow-up analyses. For 
univariate analyses of each ROI, we averaged the selectivity indices across all voxelwise 
models in all subjects. When performing PCA for each ROI, we concatenated the selectivity 
indices across all voxelwise models in all subjects.  
 
We performed analyses to assess the robustness of the results obtained from the semantic 
preference mapping procedure. We first ensured that our findings were not contingent on 
the specific shape of the occluder (i.e., oval) by repeating our analyses using rectangular 
occluders. We found that the mean selectivity indices in each ROI were highly consistent 
whether we used oval occluders or rectangular occluders (Supplementary Fig. 3; all r-values 
>0.7, all p-values<0.0001). We next evaluated whether the results of the semantic 
preference mapping procedure were consistent when using CNNs with different random 
initializations during pretraining. To do this, we examined 10 different instances of AlexNet 
trained on the CIFAR dataset using different random initializations (57) 
(https://osf.io/3xupm/). We performed our entire pipeline of training encoding models and 
performing semantic preference mapping using these 10 different instances of AlexNet, and 
we compared the resulting selectivity indices across all 10 instances. We found that the 
mean selectivity indices in each ROI were highly consistent across all 10 instances of AlexNet 
(the mean pairwise correlations were greater than 0.9 for all ROIs).  
 
Behavioral ratings of object properties. Fifty subjects were recruited online through the 
Prolific platform. This experiment was in compliance with procedures approved by the Johns 
Hopkins University Institutional Review Board. Subjects were asked to judge five object 
properties for a highlighted object in an image using a 7-point scale (Supplementary Fig. 4A). 
The judged object properties included curvature, real-world size, inanimate, manmade and 
fixedness. Each subject was presented with one image per each of the 85 object categories, 
with a total of 85 stimuli per subject. Stimuli were randomly chosen from the images used in 
the semantic preference mapping procedure. Subjects had the option of hovering a virtual 
magnifying glass over the image to enlarge any part of the image that was not clear. For 
each property, we used the average rating across all subjects in all follow-up analyses. As 
expected, some of these ratings covaried (Supplementary Fig. 5). We found that inanimate 
and manmade were highly correlated (r=0.91, p=1e-6), and we therefore decided to take 
the average of these two properties to create a combined manmade/inanimate rating.  
 
Variance partitioning. We used variance partitioning to evaluate the degree to which the 
object-property ratings explained unique or overlapping variance in the selectivity indices. 
We performed these analyses using the vegan package in R (58). In these analyses, multiple 
object properties were used to predict the selectivity indices. Through a series of 
regressions using different subsets of object properties, we obtained the unique and shared 
variance associated with all object properties (see Figs. 2 and 3). We also separately 
performed simple partial correlation analyses to assess the unique contribution of each 
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object property after partialling out all other object properties from the selectivity indices 
(see Supplementary Figs. 6 and 7).  
 
Analyses of contour orientations and rectilinear shapes. To test whether the encoding 
models preferred contours at specific orientations, we created minimal images with Gabor 
patches at different orientations, ranging from 0° to 165° in 15° intervals (see Fig. 4 and 
Supplementary Fig. 8). These images were 492-by-402 pixels in size and contained a single 
Gabor patch in the center that has a wavelength of 100 (100 pixels/cycle) with spatial 
frequency bandwidth of 1 and the spatial aspect ratio of 0.5. We also evaluated encoding 
model responses to minimal images containing simple geometric shapes. We created a 
series of stimuli that varied along a continuum from boxy to curvy (see Fig. 4 and 
Supplementary Fig. 9). These images were 720-by-720 pixels in size and contained a single 
shape in the center that spanned ~385 pixels in height and ~460 in width. 
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Supplementary Figure 1. Distribution of performance comparisons between regression 
methods. These plots show distributions of difference scores between the cross-validated 
prediction accuracies of voxelwise encoding models in the PPA that were trained using 
different regression methods. The difference scores were calculated by subtracting the 
prediction accuracy when using OLS (left panel) or ridge (right panel) from the prediction 
accuracy when using LASSO. These plots show that LASSO outperformed OLS and ridge in 
nearly all voxels. OLS: Ordinary least square. LASSO: Least absolute shrinkage and selection 
operator. 
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Supplementary Figure 2. Performance of CNN encoding models. A) Voxelwise encoding 
models were trained using each convolution layer of AlexNet followed by global max pooling 
and LASSO regression. Performance was assessed through 10-fold cross-validation on the 
BOLD5000 dataset. The average Pearson correlation of each voxel between the predicted 
and actual fMRI activations was computed across all folds of the cross-validation procedure. 
These violin plots show the distribution of encoding model performance across all voxels in 
all subjects for each ROI. B) A strong test of generalization performance was conducted by 
using the encoding models trained on BOLD5000 to predict the univariate activations of 
ROIs in a separate fMRI dataset with novel stimuli and different subjects. These analyses 
were performed using data from (31). Significant correlations between the predicted and 
actual fMRI responses were observed for all ROIs, showing that the encoding models trained 
on the BOLD5000 dataset exhibit strong generalization performance across both subjects 
and stimuli. *p<0.05, **p<0.01, ***p<0.001. p-value calculated by permutation test 
(N=10,000). CNN: Convolutional neural network.  
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Supplementary Figure 3. Robustness of the semantic preference mapping results to 
variation in occluder shape. Semantic preference mapping was conducted using both oval 
and rectangular occluders. These scatter plots show that for each ROI, the average 
selectivity indices from semantic preference mapping were highly similar regardless of 
whether the occluders were ovals or rectangles. ***p<0.001. p-value calculated by 
permutation test (N=10,000). 
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Supplementary Figure 4. Object property ratings. The image depicts the webpage interface 
from the object property rating experiments. The target object was highlighted with a red 
oval, and the rest of the image was faded. A virtual magnifying glass could be moved around 
to enlarge portions of the image. Subjects were asked to provide ratings using a slider for 
five properties of the highlighted object.  
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Supplementary Figure 5. Covariance of object property ratings. These scatter plot show all 
pairwise correlations between the object properties. *p<0.05, **p<0.01, ***p<0.001. p-
value calculated by permutation test (N=10,000). 
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Supplementary Figure 6. Univariate selectivity indices are correlated with interpretable 
object properties. A) These plots show correlations between the average selectivity indices 
and the object properties in all ROIs. The violin plots show distributions of the correlation 
values across 10,000 bootstrap resampling iterations. B) Partial correlation analyses were 
performed to assess the unique contribution of each object property after partialling out all 
other object properties from the selectivity indices. *p<0.05, **p<0.01, ***p<0.001. p-value 
calculated by permutation test (N=10,000). 
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Supplementary Figure 7. Principal components of the selectivity indices are correlated 
with interpretable object properties. A) These plots show correlations between the PCs of 
the selectivity indices and the object properties in all ROIs. The violin plots show 
distributions of the correlation values across 10,000 bootstrap resampling iterations. B) 
Partial correlation analyses were performed to assess the unique contribution of each 
object property after partialling out all other object properties from the selectivity indices. 
*p<0.05, **p<0.01, ***p<0.001. p-value calculated by permutation test (N=10,000). PC: 
Principal component 
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Supplementary Figure 8. Encoding models responses to contour orientations. The average 
univariate response of each ROI is plotted for stimuli containing Gabor patches at a range of 
angles from 0° to 165°. Error bars represent +/-1 SD across the units of each ROI.  
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Supplementary Figure 9. Encoding models responses to simple shapes. The average 
univariate response of each ROI is plotted for stimuli containing simple shapes that varied 
along a continuum from boxy to curvy. Error bars represent +/-1 SD across the units of each 
ROI.  
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Supplementary Figure 10. Performance of CNN encoding models trained on ordinary least 
squares (OLS). Voxelwise encoding models were trained using each convolution layer of 
AlexNet followed by global max pooling and OLS regression. Performance was assessed 
through 10-fold cross-validation on the BOLD5000 dataset in the same way as the encoding 
models trained on LASSO regression in Supplementary Figure 2. *** indicates p<0.001  
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Supplementary Table 1. Object categories used for semantic preference mapping. This 
table shows all 85 object categories used in the semantic preference mapping procedure, 
with the objects sorted in descending order based on the selectivity indices for each ROI.  

simPPA simOPA simRSC simLOC simEVC 

building skyscraper building animal building 
skyscraper building skyscraper person bookcase 
house bookcase house ball food 
bookcase house bookcase towel base 
base desk base stone sofa 
desk base road pillow fireplace 
computer computer sky shoe ball 
road sofa sea flag minibike 
fireplace fireplace desk figurine car 
floor floor field glass house 
stove stove  window pot desk 
 window road floor bucket, pail carpet 
sofa table fireplace telephone bicycle 
railing coffee table earth, ground basket road 
sky  window railing wall socket railing 
dresser carpet sidewalk fluorescent table 
table food computer spotlight sidewalk 
carpet dresser grass television floor 
coffee table railing stove candlestick coffee table 
boat boat swivel chair chandelier computer 
curtain sink sofa electrical switch armchair 
sidewalk armchair boat bicycle truck 
swivel chair curtain mountain streetlight toy 
armchair blind path sink blind 
column, pillar book fence trash bin book 
painting, picture sidewalk dresser stool jar 
food swivel chair table light boat 
truck monitor carpet air conditioner plant 
blind television coffee table tin can stove 
sink sky curtain minibike traffic light 
book toy armchair swivel chair electrical switch 
fence fence column, pillar poster umbrella 
monitor column, pillar car magazine wall socket 
stairway painting, picture truck toy candlestick 
bannister truck painting, picture jar sign 
television light stairway sign magazine 
sea magazine bush monitor trade name 
toy fluorescent bannister armchair light 
chandelier jar monitor traffic light glass 
car trash bin book umbrella trash bin 
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stool chandelier sink book tin can 
van bannister plant palm tree van 
fluorescent tin can blind stairs air conditioner 
magazine stool van curtain pot 
earth, ground stairway chandelier painting, picture fence 
poster electrical switch food awning dresser 
light candlestick television column, pillar curtain 
stairs air conditioner toy trade name streetlight 
jar basket poster bannister figurine 
plant traffic light palm tree van telephone 
path spotlight stool mountain  window 
awning stairs stairs plant bannister 
trash bin wall socket awning stairway awning 
tin can van fluorescent blind stairs 
sign sign magazine bush skyscraper 
basket bucket, pail person coffee table spotlight 
traffic light pillow tin can table palm tree 
air conditioner telephone jar truck stool 
candlestick streetlight basket dresser poster 
bucket, pail pot light car basket 
spotlight figurine traffic light stove fluorescent 
umbrella poster sign fence television 
streetlight awning umbrella computer monitor 
electrical switch plant trade name path bucket, pail 
telephone path trash bin sofa painting, picture 
wall socket sea bucket, pail boat shoe 
towel umbrella shoe food chandelier 
pillow towel streetlight carpet flag 
field glass towel railing earth, ground 
trade name bicycle stone  window pillow 
pot car pillow floor stairway 
figurine earth, ground air conditioner fireplace sink 
grass flag spotlight sidewalk column, pillar 
flag trade name candlestick grass grass 
bicycle shoe flag earth, ground swivel chair 
glass minibike figurine desk path 
shoe palm tree telephone sky person 
palm tree mountain electrical switch field field 
minibike field minibike sea towel 
bush bush pot base stone 
mountain grass wall socket skyscraper bush 
ball ball bicycle road mountain 
stone stone glass bookcase animal 
person person ball house sky 
animal animal animal building sea 
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