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Abstract12

One major question in neuroscience is how to relate connectomes to neural ac-13

tivity, circuit function, and learning. We offer an answer in the peripheral olfactory14

circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) con-15

nected through feedback loops with interconnected inhibitory local neurons (LNs).16

We combine structural and activity data and, using a holistic normative framework17

based on similarity-matching, we propose a biologically plausible mechanistic model18

of the circuit. Our model predicts the ORN → LN synaptic weights found in the19

connectome and demonstrate that they reflect correlations in ORN activity pat-20

terns. Additionally, our model explains the relation between ORN → LN and LN21

– LN synaptic weight and the arising of different LN types. This global synaptic22

organization can autonomously arise through Hebbian plasticity, and thus allows23

the circuit to adapt to different environments in an unsupervised manner. Func-24

tionally, we propose LNs extract redundant input correlations and dampen them25

in ORNs, thus partially whitening and normalizing the stimulus representations in26

ORNs. Our work proposes a comprehensive framework to combine structure, ac-27

tivity, function, and learning, and uncovers a general and potent circuit motif that28

can learn and extract significant input features and render stimulus representations29

more efficient.30
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Significance31

The brain represents information with patterns of neural activity. At the periphery, due to the32

properties of the external world and of encoding neurons, these patterns contain correlations, which33

are detrimental for stimulus discrimination. We study the peripheral olfactory neural circuit of the34

Drosophila larva, that preprocesses neural representations before relaying them to higher brain35

areas. A comprehensive understanding of this preprocessing is, however, lacking. Here, we propose36

a mechanistic and normative framework describing the function of the circuit and predict the37

circuit’s synaptic organization based on the circuit’s input neural activity. We show how the circuit38

can autonomously adapt to different environments, extracts stimulus features, and decorrelate and39

normalize input representations, which facilitates odor discrimination downstream.40

Introduction41

Thanks to technological advances in connectomics (Eichler et al., 2017; Scheffer et al., 2020) and42

neural population activity imaging (Aimon et al., 2019), more and more neural circuits will soon43

be characterized anatomically and physiologically at unprecedented scale and detail. However, it44

is not clear what insights can be obtained from combining such datasets and how to use them45

to advance our understanding of brain computation. To address this, we focus on the peripheral46

olfactory system of the Drosophila larva - a small and genetically tractable circuit for which a47

connectivity (Berck et al., 2016) and comprehensive activity imaging (Si et al., 2019) datasets are48

already available.49

This circuit is an analogous, but simpler version of the well-studied olfactory circuit in adult50

flies and vertebrates (Wilson, 2013). It contains 21 olfactory receptor neurons (ORNs), each ex-51

pressing a different receptor type with a different odor sensitivity profile (Fig. 1A). ORN axons are52

reciprocally connected to a web of multiple interconnected inhibitory local neurons (LNs) through53

feedforward excitation and feedback inhibition. The connectome dataset contains not just the pres-54

ence or absence of a connection between two neurons but also the number of synaptic contacts in55

parallel (Berck et al., 2016), which is an estimate of the connection strength, since synaptic con-56

tacts do not vary significantly in size in the Drosophila (Scheffer et al., 2020). The activity dataset57

contains the responses of ORNs to 34 odors at 5 dilutions (Fig. 2A) and has been obtained by58

imaging Ca2+ concentration in their somas (Si et al., 2019).59

Previous studies addressed the role of the inhibitory feedback provided by LNs in transform-60

ing the neural representation of odors from ORN somas to projection neurons (PNs), which are61

postsynaptic to ORNs. In adult Drosophila, this circuit was suggested to perform gain-control and62

divisive normalization (Olsen et al., 2010; Olsen & Wilson, 2008), which equalizes different odor63

concentrations and decorrelates input channels. In the zebrafish larva, an analogous circuit was64

suggested to whiten the input leading to pattern decorrelation which helps odors discrimination65

downstream (Friedrich, 2013; Wanner & Friedrich, 2020).66
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However, the underlying mechanistic principles of computation are still not elucidated. For67

example, whereas different types of LNs have different connectivity patterns with ORNs in the68

Drosophila larva (Berck et al., 2016), the role of different LN types, their multiplicity, and their69

specific connectivity is not understood. Also, the peripheral olfactory circuit exhibits synaptic70

plasticity in response to olfactory environment changes (Arenas et al., 2012; Das et al., 2011;71

Devaud et al., 2001; Sachse et al., 2007; Sudhakaran et al., 2012), but the functional role of such72

plasticity is unclear.73

To address these shortcomings, we use a combination of data analysis and modeling and develop74

a holistic theoretical framework that links circuit structure, function, activity data, and learning.75

Our contribution is fourfold. (1) We find that the ORNs → LN synaptic weights vectors reflect76

features of the independently acquired ORN activity patterns dataset (Fig. 2, 3, 4). (2) Building77

upon the similarity matching framework (Pehlevan et al., 2018), we develop a novel, biologically78

realistic, normative circuit model incorporating activity-dependent synaptic plasticity. (3) The79

model, driven by the ORN activity dataset, predicts the following observations in the structural80

dataset: the ORNs → LN synaptic weights (Fig. 4), the emergence of LNs groups (Fig. 4), and81

the relationship between feedforward ORN → LN and lateral LN - LN connection (Fig. 5). (4)82

Using our model, we characterize the circuit computation (Fig. 6, 7), and propose that LNs play83

a dual role in rending the neural representation of odors in ORNs more efficient and extracting84

useful features that are transmitted downstream. Furthermore, we show that the synaptic weights85

enabling this computation can be learned by the circuit in an unsupervised manner.86

In this study, we further our understanding of LNs and their computations. We highlight the87

importance of minutely organized ORN - LN and LN - LN connection weights, which allows LNs88

to encode different significant features of input activity and dampen them in ORN axons. The89

transformation from the representation in ORN somas to that in ORN axons consists of a partial90

equalization of the PCA variances, which enables a more efficient stimulus encoding (Barlow, 1961).91

Indeed, this results in a decorrelation and equalization of ORNs and odor representations, which92

correspond to two fundamental computations in the brain: partial ZCA (zero-phase) whitening93

(Bell & Sejnowski, 1997; Kessy et al., 2018) and divisive normalization (Carandini & Heeger,94

2012). In essence, we uncover an elegant neural circuit motif that can, via associative Hebbian95

plasticity, adapt to different stimuli environment and learn to extract features as well as to perform96

two critical computations. Thus, we present a framework that allows to quantitatively link synaptic97

weights in the structural data with the circuit’s function and with the circuit adaptation to input98

correlations, thus making a crucial step towards more integrated understanding of neural circuits.99
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Fig. 1. Circuit connectivity and LN types

A Scheme of the ORN-LN circuit. Each of the D ORNs is depicted as a two-compartment unit with a soma

(circle) and an axonal terminal (rectangle). The differently colored half circles on the left represent different

chemical receptor types. K inhibitory local neurons (LNs, pentagons) reciprocally connect with ORN axons and

between themselves. ORN axons and LNs transmit information further downstream (dashed lines). Red lines with

arrowheads and blue lines with open circles represent excitatory and inhibitory connections, respectively. xi, yi,

and zi represent the activity of ORN somas, axons, and LNs, respectively.

B Feedforward ORNs → LN connection weight vectors, wLN (colored lines), and average feedforward ORNs →
LN type connection weight vectors, wLNtype (black lines, mean ± s.d.) for each LN type (see also Fig. S2A).

C Correlation coefficients r between all wLN. L: left, R: right. KS L R is the Keystone with the soma positioned

on the left side of the larva, connecting with the ORNs of the right side, and vice-versa for KS R L. Since Picky

0 receives synaptic input mainly on the dendrite, here we only use the connections synapsing onto the dendrite.

D Average rectified correlation coefficient 〈r+〉 (r+ := max[0, r]) between LN types calculated by averaging the

rectified values from (C) in each rectangle with white border, excluding the diagonal entries of the full matrix.
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Results100

ORN-LN circuit101

ORNs in the Drosophila larva carry odor information from antennas to the antennal lobe. There it102

is reformatted and handed over to PNs which transmit it to higher brain areas like the mushroom103

body and the lateral horn (Berck et al., 2016). LNs, which synapse bidirectionally with ORN axons104

and PN dendrites, strongly contribute to this reformatting through presynaptic and postsynaptic105

inhibition, as mainly shown in the adult fly (Asahina et al., 2009; Chou et al., 2010; Kim et al.,106

2015; Laurent, 2002; Nagel et al., 2014; Olsen et al., 2010; Olsen & Wilson, 2008).107

Here, we focus on the circuit and computation presynaptic to PNs, i.e., occurring from ORN108

somas to ORN axons driven by LN inhibition. Specifically, we study the sub-circuit formed by109

all D = 21 ORNs and those 4 LN types (on each side of the brain) that provide direct inhibitory110

feedback onto the ORNs (Berck et al., 2016) (Fig. 1A, S1). The 4 LN types include 3 Broad Trio111

(BT) neurons, 2 Broad Duet (BD) neurons, 1 Keystone (KS, bilateral connections) neuron and 1112

Picky 0 (P0) neuron (Fig. S1, S2A). This amounts to 8 ORNs - LN connections per side (3 BTs,113

2 BDs, 2 KSs, and 1 P0s), and 16 on both sides.114

We use the number of synapses in parallel between two neurons as a proxy of the synaptic115

weight w because synapses in the Drosophila larva have been found to be of similar sizes (Scheffer116

et al., 2020; Takemura et al., 2013) and synaptic size correlates with strength (Holderith et al.,117

2012). In the linear approximation, the contribution of a connection to the postsynaptic neuron118

activity apost is proportional to the product of w and the presynaptic neuron activity apre, i.e.,119

apost ∝ w · apre.120

We focus our analysis on the feedforward ORNs → LN connection weight vectors, wLN, whose121

D = 21 components are w’s corresponding to the connections from different ORNs onto the same122

post-synaptic LN rather than the feedback LN → ORNs. Because all the components of such123

a weight vector share the same post-synaptic neuron their effect on the post-synaptic activity124

is directly comparable, i.e. the coefficient of proportionality in aLN ∝
∑

iwLN,i · apre,i is the125

same. Conversely, the ws from one LN onto all 21 ORNs are not directly comparable among each126

other, because each connection affects a different postsynaptic ORN, which potentially has different127

electrical properties. Yet, the feedforward and feedback connection vectors are somewhat correlated128

(Fig. S2).129

While Berck et al., 2016 divided the LNs into the above types based on their neuronal lineage,130

morphology, and qualitative connectivity, we also find that such types are innervated differently131

by ORNs (Fig. 1B). Indeed, the average correlations within LN type is higher than between LN132

types wLN (Fig. 1C,D). Thus, for a part of our study (Fig. 2, 3, 4A,B) we use the 4 average133

wLNtype = 1
n

∑
LN∈LNtype wLN, where n is the number of connection vectors for that LN type.134
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Odor representations in ORNs are aligned with ORNs→ Broad Trio connectivity weight135

vector136

Several studies proposed that the LNs could facilitate decorrelation of the neural representation137

of odors (Friedrich, 2013; Friedrich & Laurent, 2001; Friedrich & Wiechert, 2014; Giridhar et al.,138

2011; Gschwend et al., 2015; Wanner & Friedrich, 2020). To perform such decorrelation, the circuit139

needs to be adapted to or “know about” the correlations in the activity patterns (Simoncelli &140

Olshausen, 2001). We investigated if this is the case in this olfactory circuit by testing whether the141

wLNtype contain signatures of ORN activity patterns.142

An ensemble of ORN activity patterns
{
x(t)
}
data

(t = 1, ..., 170) was obtained using Ca2+143

fluorescence imaging of ORN somas in response to a set of 34 odorants at 5 dilutions (Si et al.,144

2019) (Fig. 2A). These odorants were chosen from the components of fruits and plant leaves from145

the larva’s natural environment to stimulate ORNs as broadly and evenly as possible, with many146

odorants activating just a single ORN at the lowest concentration (i.e., the highest dilution).147

Activity patterns x(t) elicited by different odorants are correlated with the synaptic weight148

vector wBT to a different degree (Fig. 2B-D), yet are such correlations statistically significant?149

To determine this, we first calculate the Pearson correlation coefficients r between the four wLNtype150

and the ensemble of
{
x(t)
}
data

(Fig. 2E). Each wLNtype exhibits a different “connectivity tuning151

curve” shape (Fig. 2F), wBT being the most broadly aligned to the x(t) of this stimuli set,152

wP0 the most sharply aligned to a few x(t), and the wBD and wKS the most weakly aligned. To153

test if the wLNtype are significantly aligned with the ensemble
{
x(t)
}
data

, we compare the relative154

cumulative frequency (RCF) of r in the data with the RCFs of r obtained after randomly shuffling155

the entries of each wLNtype (Fig. 2G,H). We use the maximum deviation from the mean RCF from156

shuffled connection vector to measure significance and find that only wBT is significantly aligned157

to
{
x(t)
}
data

(Fig. 2H,I).158

Furthermore, we find that wBT is significantly aligned with the first PCA direction of
{
x(t)
}
data

159

(Fig. S6A,B), but none of remaining wLNtype significantly aligned with any of the top 5 PCA160

directions (Fig. 3). We choose to compare with the top 5 (instead of 4, as the number of wLNtype)161

PCA directions of
{
x(t)
}
data

to cover more activity direction, thus accounting for the fact that this162

activity dataset does not have the same statistics of odors as the true larva environment, and likely163

has a different order of PCA directions. We performed PCA without centering
{
x(t)
}
data

, to avoid164

any preprocessing on the activity data and mimic what the circuit is experiencing. The first PCA165

direction is thus relatively close to the mean activity direction.166
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odors at different dilutions
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Fig. 2. Alignment of ORNs → LN connectivity weight vectors with odor representations in ORN activity

A Activity patterns
{
x(t)

}
data

at ORN soma in response to 34 odors at 5 dilutions from Si et al., 2019. Different

odors are separated by vertical gray lines. For each odor, there are 5 columns corresponding to 5 dilutions:

10−8, ..., 10−4. See Fig. S3 for odor labels and scaled x(t).

B wBT superimposed with ORNs activity patterns x(A) and x(B) in response to the ligands 2-heptanone (odor A)

and 2-acetylpyridine (odor B) at dilution 10−4.

C-D Scatter plot representation of (B). wBT is more strongly tuned to x(A) (r = 0.6) than to x(B) (r = 0.14).

E Correlation coefficients between wLNtype with the x(t) from (A) (see also Fig. S4A).

F LN “connectivity tuning curves”: correlation coefficients sorted in decreasing order from (E) for each wLNtype.

G Red line: relative cumulative frequency (RCF) of the correlation coefficients r of the first row of (E). Black

line and gray band: mean ± s.d. from the RCFs generated by 10,000 instances of shuffling the entries of wBT.

Bin size: 0.02.

H Same as (G) with the mean RCF subtracted. We define the maximum deviation as the maximum negative

difference between the true and the mean RCF of correlation coefficients.

I RCF maximum deviation and log10 of false discovery rate (FDR, Benjamini and Hochberg, 1995) adjusted

p-values for each wLNtype (see also Fig. S4B). *: significance with FDR at 5%.
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Next, to test whether the connection vectors wLNtype might be linear combinations of the PCA167

directions of
{
x(t)
}
data

, we examine the alignment of the subspace spanned by the 4 wLNtype and168

the one spanned by the top 5 PCA directions of
{
x(t)
}
data

(Fig. S5). We define a measure169

0 ≤ Γ ≤ 4, approximately representing the number of aligned directions between these 2 subspaces170

(Methods) and find Γ ≈ 2. This value significantly deviates from the expected Γ from subspaces171

generated by 4 and 5 Gaussian random normal vectors in 21 dimensions (p < 10−4) and subspaces172

generated from the 4 connectivity vectors with shuffled entries and the 5 original activity vectors173

from PCA (p < 0.01). Approximately 1 more dimension is significantly aligned between the 2174

subspaces than expected by random, supporting the results from Fig. 3C.175
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Fig. 3. Alignment of wBT with the top PCA direction of ORN activity patterns
{
x(t)

}
data

A wBT superimposed in the 1st PCA direction of
{
x(t)

}
data

.

B Scatter plot representation of (A).

C Correlation coefficient r between the top 5 principal directions of
{
x(t)

}
data

and the four wLNtype (see also Fig.

S6C,D,G). Two-sided p-values were calculated by shuffling the entries of each wLNtype. 50,000 permutations

used. *: significance with FDR at 5%.

In summary, we find that wBT is adapted to ORNs activity patterns
{
x(t)
}
data

as demonstrated176

by (1) the significant alignment of wBT with individual activity patterns x(t), (2) the significant177

alignment of wBT with the top PCA direction of
{
x(t)
}
data

, and (3) by a significantly large Γ.178

This supports the idea that the circuit is at least partially adapted to ORN activity patterns. This179

analysis fails, however, to reveal the relation between ORN activity and LNs other than BT.180

A normative and mechanistic model of the ORN-LN circuit181

A detailed bottom-up modeling of the circuit requires the knowledge of the multiple unavailable182

physiological parameters such as ion channel distributions and neural morphologies. We therefore183

take here a route that circumvents these unknowns and harvests the benefits of normative ap-184

proaches: similar to physics, we guess the circuit cost function, derive the governing equations, and185

see if their predictions agree with experiments.186

Similarity-matching objective functions have been shown to be capable of extracting PCA sub-187

spaces and can be optimized by biologically plausible neural circuits with Hebbian synaptic learning188

rules (Pehlevan et al., 2018). Motivated by the result that the ORN-LN circuit might be adapted189

to at least one PCA direction of the input, we postulated a similarity-matching inspired objective190
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function (equation (18)), such that its online optimization equations maps onto the neural dynam-191

ics of the ORN-LN circuit (equations (19), (20)) and Hebbian plasticity update rules for ORN-LN192

and LN-LN synapses (equation (21)). Biologically, the circuit synaptic weights could be “learned”193

either over evolutionary time scales, and/or during the animal lifetime.194

Given a set of T inputs
[
x(1), ..., x(T )

]
=
{
x(t)
}
t=1...T

representing the activity patterns of ORN195

somas, the model provides us with the learned connection weights between D ORNs and K LNs:196

W = [w1, ..., wK ] as well as between LNs: M = {mi,j}i,j=1...K . mi,i relates to the leak term of LN197

i. [w1, ..., wK ] and M set the input-output relationship of the circuit and determine the activity198

patterns of ORN axons:
{
y(t)
}
t=1...T

and LNs:
{
z(t)
}
t=1...T

. In addition to K, the number of199

LNs, the model contains only one effective parameter ρ characterizing the strength of the feedback200

inhibition.201

We consider two models. First is a Linear Circuit LC-K, (equations (19), arising from the202

unconstrained objective function (18)), for which we derived an analytical solution for [w1, ..., wK ],203

M,
{
y(t)
}

, and
{
z(t)
}

(Supplementary Information). Although linearity might be an over-204

simplification of the biological reality, it allows us to build up intuition. Second is a Non-Negative205

Circuit, NNC-K, (equations (20), arising from objective function (18), containing non-negativity206

constraints on the ORN axon and LN activity), which might be more biologically plausible. The207

results below for the NNC arise from numerical simulations.208

Predictions of the ORN - LN connection weight vectors209

We start by analyzing the prediction of our model in terms of circuit connectivity. In the LC-K, the210

{wk}k=1...K span the subspace of the top K PCA directions of the input
{
x(t)
}

(Supplementary211

Information):212

wk =
K∑
i=1

ak,iui (1)

where {ui}i=1...K are the top K PCA directions of the dataset
{
x(t)
}

, {ai,j}i,j=1...K are coefficients213

such that all wk are linearly independent. Thus, the wk in the LC do not necessarily correspond214

to specific PCA directions and are not orthogonal, and there is a degree of freedom in the {ai,j},215

making the solution of the optimization not unique. Such synaptic organization assure that LNs216

in the LC extract the top K PCA subspace of the input (below). This structural prediction is217

tested and only partially verified in the data above (Fig. 3): the first PCA direction of
{
x(t)
}
data

218

significantly aligns with wBT, but there is no full alignment between the connectivity {wLNtype}219

and activity ORN principal subspaces.220

Next, we study the predictions of the NNC-4 (K = 4 as the number of LN types). We nu-221

merically optimize the objective function (18) with
{
x(t)
}
t=1...T

=
{
x(t)
}
data

(Fig. 2A), K = 4,222

ρ = 1 and obtain
{
y(t)
}

,
{
z(t)
}

, and [w1, ..., w4] (Fig. S6C). Intuitively, the {wk} relate to cluster223

centers in soft K-means or to features in non-negative matrix factorization and the z
(t)
k are the224
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Fig. 4. Prediction of the connectivity with the NNC and emergence of LN types

A Correlation coefficient r between the four wk from NNC-4 (ρ = 1) and the four wLNtype (see also Fig.

S6C,D,F-H). One-sided p-values were calculated by shuffling the entries of each wLNtype. 50,000 permutations

used. *: significance with FDR at 5%.

B Bottom: maximum correlation coefficient (mean ± s.d.) of the four wk from NNC-4 with the four wLNtype for

different values of ρ. Top: number of wLNtype significantly correlated with at last one wk from NNC-4 (FDR at

5%). 50 numerical simulations of NNC-4 for each value of ρ.

C Correlation between the wLN on the left and right sides of the larva brain.

D Same as (C) for the eight wk arising from NNC-8 and with ρ = 0.1, 0.35, 1, 10. wk ordered with hierarchical

clustering.

E Mean rectified correlation coefficient 〈r+〉 from (C) (blue band delimited by the value for left and right circuit)

and from NNC-8 (black line, mean ± s.d.). One 〈r+〉 is obtained by averaging all the rectified values in a matrix

in (C) or (D), excluding the diagonal. For the NNC-8 and a given value of ρ, we run 50 simulations. Each

simulation can give rise to a different set of wk, we thus plot the mean ± s.d. of all the 50 〈r+〉 for a given ρ.

soft-clustering membership coefficients of x(t) (below).225

Three of the four wk align significantly with the wLNtype (BT, BD, and P0, Fig. 4A). This226

result is robust for ρ < 3.1 (Fig. 4B): all numerical optimization converge to the same
{
y(t)
}

,227 {
z(t)
}

, and {wk} for the input
{
x(t)
}
data

and given ρ. This can partially be attributed to the non-228

negativity constraint in NNC, which removes an intrinsic symmetry of the LC model. Although229

wKS is the least aligned to the found wk, NNC-5 has one wk aligned with wKS too (Fig. S6H).230

In summary, the ORN → LN connection weights predicted by the NNC model trained on ORN231

activity data
{
x(t)
}
data

largely explain the wLNtype of the connectome. Thus, several LNs are232

adapted to statistical features of these ORN activity patterns.233
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Emergence of LN groups in the NNC234

In the connectome LNs are grouped by type and several wLN are similar (Fig. 1B-D, 4C). Do LN235

groups naturally emerge in our model? In the LC, the {wk}k=1...K spans a K-dimensional subspace236

(given enough independent dimensions in the input
{
x(t)
}

). All wk are thus different. Therefore,237

in the LC, LN types emerge, but no similar LNs. In the NNC with small ρ, however, the objective238

function (18) leads to the symmetric non-negative matrix factorization (SNMF) objective function239

between
{
x(t)
}

and
{
z(t)
}

(Supplementary Information), which corresponds to a soft clustering240

of x(t) by z(t). Thus, each component in z(t) discovers and encodes the presence of a sparse feature241

of x(t) (Pehlevan & Chklovskii, 2015). In that case, when the number of significant sparse features242

in
{
x(t)
}

is smaller than K, several components of z(t) (i.e., LNs) encode a similar feature. Our243

simulations for NNC-8 (K = 8 as the number of LNs on each side of the larva) with
{
x(t)
}
data

and244

ρ = 0.1 indeed give rise to groups of similar wk (Fig. 4D). Conversely, for larger ρ, the wk become245

more decorrelated (Fig. 4D, ρ = 10). To study how the resemblance of the wk changes with ρ,246

we calculated the average rectified correlation coefficient 〈r+〉 between all the wk for different ρ247

(Fig. 4D,E). At ρ = 0.35, 〈r+〉 of the NNC-8 matched that of the connectome. This value of ρ248

should not, however, be interpreted as a “true” value for the actual biological circuit, because the249

true ORN activity patterns
{
x(t)
}

that the larva experienced is unknown - in fact changing
{
x(t)
}

250

and ρ are two independent means of influencing the model circuit synaptic weights. In summary,251

within reasonable parameter ranges, the NNC reproduces yet another property of the biological252

circuit: the emergence of LNs that can be grouped by type.253

Relation between LN-LN and feedforward ORNs → LN connection weights254

The ORN - LN circuit also contains inhibitory reciprocal LN - LN connections (M = {mLNi, LNj},255

Fig. 5A) whose role is not fully understood. Our model predicts that M and W = [w1, ..., wK ]256

are related thus (Supplementary Information):257

M ∝
√

W>W (2)

Where > is the matrix transpose. This relationship is exact for the LC and approximate for the258

NNC. First, it predicts that the matrix M is symmetric, i.e., that the synaptic weight of LNi259

→ LNj is equal to that of LNj → LNi. This is indeed approximately true in the connectome,260

except for the P0, which inhibits KS, but is not strongly inhibited by them (Fig. 5A). Second,261

as predicted by the relationship (2), we find, in the connectome, a significant correlation between262

the entries of M and
√

W>W for the left and right sides of the larva (excluding the diagonal263

entries, since the connectome does not provide the values corresponding to the diagonal of M264

of the model circuit) (Fig. 5). This suggests that the ORN-LN and LN-LN connections are265

meticulously co-organized to perform the circuit’s function. Intuitively, LN-LN interaction could266

be interpreted as LNs competing with each other for activation. During circuit learning, without267
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LN-LN connections, all LNs would learn the same most significant direction of the input data.268

Thus, these lateral connections ensure that LNs span more than a single direction of the ORN269

activity space. After learning, LN-LN connections constitute an essential part of the computation270

(below, Fig. S11).271

In summary, the NNC model accurately predicts several key features of the connectome: the272

wLNtype connection weights, the emergence of LN groups, and the relationship between ORNs →273

LN and LN - LN connections weights.
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Fig. 5. Relation between LN-LN (M) and ORNs → LN (W) synaptic counts in the connectome

reconstruction

A LN-LN connections synaptic counts M on the left and right sides of the larva.

B W>W with W = [wLN1, ..., wLN8] on the left and right sides. Thus each entry is w>LNiwLNj, the scalar product

between 2 ORNs →LN connection weight vectors wLN.

C
√

W>W, i.e., the square root of the matrices in (B).

D Entries of M vs entries of
√

W>W, excluding the diagonal, for both sides. r: Pearson correlation coefficient.

One-sided p-value calculated by shuffling the entries of each wLN.

274

Computation in the LC: partial equalization of PCA variances in ORN axons and275

extraction of principal subspace by LNs276

Next, we examine the computation performed by the LC model. The computation is imple-277

mented dynamically through the ORN - LN loop and converges exponentially to a steady state278

(equation (19)). Given inputs
{
x(t)
}

, we consider the twofold output of the circuit: the con-279

verged representations in ORN axons
{
y(t)
}

and in LNs
{
z(t)
}

, both transmitted downstream.280

Although LNs are usually thought of only performing local computations, here LNs also project281

to several types of neuron like uni- and multi-glomerular PNs (Berck et al., 2016). Because the282

circuit is adapted to its input
{
x(t)
}

, the transformations from x(t) to y(t) and z(t) are related283

to the statistics of
{
x(t)
}

and are naturally expressed using the PCA directions {ui} and vari-284

ances
{
σ2X,i

}
(i = 1, ...,D) of uncentered

{
x(t)
}

. Formally, given the autocorrelation matrix285

ΣX := E
[
x(t)x(t)>] = 1

T

∑T
t=1 x(t)x(t)> =

∑D
i=1 σ

2
X,iuiu

>
i = UΛ2

XU>, σ2X,i and ui are the eigen-286
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values and eigenvectors of ΣX , respectively (σX,i

√
T = sX,i is also the ith singular value of

{
x(t)
}

),287

U = [u1, ..., uD], and ΛX = diag(σX,1, ...,σX,D). We write the odor representations in ORN somas288

in this basis and find (Supplementary Information):289

x(t) =

D∑
i=1

v
(t)
i σX,iui (3)

y(t) =
D∑
i=1

v
(t)
i σY ,iui =

D∑
i=1

σY ,i

σX,i
uiu

>
i x(t) (4)

z(t) = Q
K∑
i=1

v
(t)
i

ρ

γ
σY ,iui = Q

K∑
i=1

ρ

γ

σY ,i

σX,i
uiu

>
i x(t) (5)

290

with

{
σY ,i

(
1 + ρ2σ2Y ,i

)
= σX,i 1 ≤ i ≤ K (6a)

σY ,i = σX,i K + 1 ≤ i ≤ D (6b)

where v
(t)
i = 1

σX,i
u>i x(t) are the coefficients of x(t) in the orthogonal basis {σX,iui} and Q is a291

(K ×K) orthonormal (rotation) matrix and is a degree of freedom of the optimization.292

On the dataset level, we find ΣY =
∑D

i=1 σ
2
Y ,iuiu

>
i = UΛ2

Y U> where ΛY = diag(σY ,1, ...,σY ,D).293

Thus, the activity patterns in ORN axons
{
y(t)
}

have the same principal directions {ui} as
{
x(t)
}

294

but with modified PCA variances (portrayed in Fig. 6A,B with D = 2 and K = 1). The variances295

of the last D −K PCA directions of
{
x(t)
}

remain unaltered in
{
y(t)
}

, whereas the variances of296

top K directions (as the number of LNs) are diminished according to equation (6a) (Fig. 6C,D),297

because LNs (
{
z(t)
}

) encode (a rotated version of) the top K principal subspace of
{
x(t)
}

(equation298

(5)) and inhibit it in the ORN axons (
{
y(t)
}

). From the top K principal directions, those with299

relatively large variances are shrunken with a cubic root (σY ,i ≈ 3
√
σX,i/ρ2), whereas those with300

relatively small variance remain virtually unchanged. Indeed, in the latter case, LNs are weakly301

activated and inhibition is almost inexistent.302

For a LC with the same number of LNs as ORNs (i.e., D = K), this computation leads to a303

flatter spectrum of
{
σ2Y ,i

}
relatively to the one of

{
σ2X,i

}
, which can be quantified by the coefficient304

of variation, CVσ (Supplementary Information). Although for K < D only the top K principal305

direction are shrunken, in most cases it also leads to a decrease of CVσ (see below).306

This computation is a partial (Zero-phase) ZCA-whitening. By definition, a multivariate307

random variable A is white if its autocovariance matrix is proportional to the identity matrix:308

E
[
(A−E[A]) (A−E[A])>

]
∝ I, which implies that all the PCA variances (i.e., eigenvalues of309

the autocovariance matrix) are equal. For the LC, the CVσ of
{
σ2Y ,i

}
is smaller than the CVσ310

of
{
σ2X,i

}
(see also Fig. 7E below). Although these are formally the variances of the PCA on311

uncentered data, because the mean of
{
x(t)
}
data

is close to 0, flattering the spectrum of
{
σ2i
}

312

causes the flattening of the spectrum of the eigenvalues of the autocovariance matrix too, leading313

to partial whitening. Finally, since the principal directions of
{
y(t)
}

and
{
x(t)
}

are the same, the314
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Fig. 6. Computation in the LC

A Example dataset
{
x(t)

}
with D = 2 generated randomly from a zero-centered multivariate Gaussian and by

removing points with negative coordinates. Depicted the PCA directions of
{
x(t)

}
multiplied by the s.d. of that

direction.

B Transformation from
{
x(t)

}
to
{
y(t)

}
by LC-1 (K = 1) with ρ = 1. Depicted the PCA directions of

{
x(t)

}
and

{
y(t)

}
multiplied by the s.d. of that direction.

C-D Transformation of the s.d. of PCA directions from
{
x(t)

}
to
{
y(t)

}
in the LC on linear and logarithmic

axes.

transformation contains no rotation and is thus “zero-phase”, as ZCA-whitening.315

LC and NNC computation on the ORN activity dataset316

Finally, to elucidate the computation of this circuit on odor representations, we study the compu-317

tation of the LC and the NNC on
{
x(t)
}
data

. We set the parameter regulating the strength of the318

inhibition ρ = 2 to distinctly portray the input-output transformation. Given the input of ORN319

activities
{
x(t)
}
data

, we calculate
{
y(t)
}

and
{
z(t)
}

with K = 1 and K = 8 using the analytical320

formula for the LC and by optimizing the objective function (18) for the NNC.321

In the LC, LNs encode the top K principal subspace of
{
x(t)
}

(above, Fig. S7B). In the322

NNC, the computation in LNs approximates SNMF for small ρ (Supplementary Information)323

which performs soft clustering and sparse feature discovery (Pehlevan & Chklovskii, 2015). LNs324

thus encode features of the odor representations in ORN (Fig. S7C-G), that are transmitted to325

downstream brain areas.326

Next we show that in LC and NNC the transformation from
{
x(t)
}

to
{
y(t)
}

is a partial ZCA-327

whitening and a divisive normalization as reflected in the partial equalization of the PCA variances328
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(Fig. 7E), the decrease of channel (i.e., ORN) and pattern (i.e., neural representations of odors)329

correlations (Fig. 7J-O, S9), and the lack of rotation of the output (Fig. S8E). Fig. 7A-C330

shows the activity in ORN somas and the computed activity in ORN axons for LC-8 and NNC-8.331

The LC produces strongly negative values in
{
y(t)
}

, which might not be biologically plausible.332

We next compared the spectrum of
{
σ2X,i

}
and

{
σ2Y ,i

}
, since this characterizes whitening and the333

computation in LC affects this aspect (Fig. 7D). As expected, in the LC only the top K principal334

directions of the input are dampened. For the NNC, however, we find that all directions are335

dampened, even for K = 1. This can be attributed to the non-negativity constraint on the output336 {
y(t)
}

and
{
z(t)
}

in NNC, which potentially affects all stimuli directions. We find a flattening of337 {
σ2Y ,i

}
spectrum both in LN and NNC as seen in the smaller CVσ (Fig. 7E) demonstrating that338 {

y(t)
}

is more white that
{
x(t)
}

. Changing the number of LNs does not affect the NNC as much339

as the LC. However, changing ρ greatly influences the strength of the dampening (Fig. S10).340

Although in the LC the principal directions of
{
x(t)
}

and
{
y(t)
}

remain the same, their order341

changes, because only a fraction of them are shrunken (Fig. S8A,B). For the NNC, however,342

there is only a slight mixing between principal directions of similar strength, but their order mainly343

remains (Fig. S8C,D).344

As expected from a flatter {σY ,i}, we observe that channels and patterns are more decorrelated345

in the output
{
y(t)
}

in the NNC (Fig. 7J-O) and in the LC (Fig. S9) than in the input, which346

is coherent with partial whitening. The strength of decorrelation increases with ρ (Fig. S10).347

Next, we study the effect of the circuit computation on channel and pattern activity Euclidean348

norms, which reflect the total channel and total pattern activity. We find that both LC and NNC349

dampen the channels with strong norms and leave the weaker channels largely unaffected, thus350

decreasing the CV of channel norms (Fig. 7F,G). This allows the information to be more evenly351

distributed among channels, an important property of efficient coding. Similarly, the circuit par-352

tially equalizes the norms of activity patterns (Fig. 7H,I). This slightly removes the concentration353

information from the signal. These effects are similar to a divisive normalization-type computation,354

also reported in Drosophila (Carandini & Heeger, 2012; Olsen et al., 2010).355

Finally, we aim at better understanding the role of LN-LN connections. We study the compu-356

tations performed by the converged LC and NNC, with the off-diagonal elements in M set to 0357

(Fig. S11). We find that this manipulation mixes the output principal direction in relation to the358

input and also increases the total level of inhibition. Thus, LN-LN connection helps to reduce the359

amount of rotation in the neural representation, regulate the amount of inhibition, and maintain360

the predicted computation.361

In summary, the analysis of the LC and NNC predicts that the ORN-LN circuit performs362

the following computation on the odor representation in ORNs: it most strongly dampens the363

most prominent directions of the input dataset and thus flatten the PCA variance spectrum. This364

results in an output in ORN axons that is more white, decorrelated, and more equalized channels365

and patterns. This allows a more efficient neural representation and improves odor discrimination366
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downstream.367
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Fig. 7. Functional consequences of LC and NNC: partial whitening, normalization, decorrelation

(continued on next page)
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Fig. 7. (continued)

A Input (ORN soma) activity patterns
{
x(t)

}
data

for all odors at dilution 10−4. Instead of ∆F/F0 as units of

activity, we use arbitrary units (a.u.), which stand for appropriate activity units at the neurons level.

B Output
{
y(t)

}
for the input of (A) for the LC-8.

C Same as (B) for NNC-8.

D Variances of
{
x(t)

}
data

and
{
y(t)

}
in the principal directions of uncentered

{
x(t)

}
.

E PCA variances of
{
x(t)

}
data

and
{
y(t)

}
, scaled by their mean.

{
y(t)

}
has a smaller span of variances than{

x(t)
}

. See Fig. S8 for the relation between the principal directions of
{
x(t)

}
data

and
{
y(t)

}
.

F Euclidean norm of the 21 channels in output
{
y(t)

}
(ORN axons) vs in the input

{
x(t)

}
data

(ORN somas).

G Box plot of the channel norms scaled by their mean, CV on top.

H Euclidean norm of the 170 activity pattern in output
{
y(t)

}
vs in the input

{
x(t)

}
data

.

I Box plot of the activity patters norms (only for dilution 10−4) scaled by their mean, CV on top.

J ORNs correlations in the input
{
x(t)

}
data

.

K ORNs correlations in the output
{
y(t)

}
of the NNC with K = 8.

L Histogram for the channel correlation coefficients from (J-K), excluding the diagonal (n=210).

M Activity vector (i.e., pattern) correlation in
{
x(t)

}
data

.

N Activity vector correlation in
{
y(t)

}
of NNC-8.

O Histogram for the pattern correlation coefficients from (M-N), only for dilution 10−4 (n=561) (see also Fig.

S9). ρ = 2 in the whole figure.
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Discussion368

Combining the Drosophila larva olfactory circuit connectome, ORN activity data, and a new norma-369

tive model, we advance the understanding of sensory computation and adaptation, quantitatively370

link ORN activity statistics, functional data and connectome, and make testable predictions. Our371

work uncovers and characterizes a simple and potent neural circuit architecture capable of adap-372

tive data preprocessing and feature extraction, which, as an independent computational unit, could373

arise in other brain areas and be useful for machine learning and signal processing. Finally, our374

normative approach provides a general framework to understand circuit computation (Bahroun375

et al., 2019; Golkar et al., 2020) and could be applied to more connectomes (Eichler et al., 2017;376

Scheffer et al., 2020).377

Circuit computation, partial ZCA-whitening, and divisive normalization378

We propose that the circuit’s effect on neural odor representation in ORNs correspond to partial379

ZCA-whitening and divisive normalization (DN) (Fig. 6, 7). Such computations, which reduce380

correlations originating from the sensory system and the environment, have appeared in efficient381

coding and redundancy reduction theories (Atick & Redlich, 1992; Barlow, 1961; Carandini &382

Heeger, 2012; Linsker, 1988; Plumbley, 1993; Simoncelli & Olshausen, 2001). Partial whitening383

is indeed a solution for mutual information maximization in the presence of input noise (Atick &384

Redlich, 1990). In this circuit too, we suggest that a pure whitening transformation might not be385

desirable, as it could lead to noise amplification. Thus, keeping low-variance signal directions of the386

input unchanged and damping larger ones might accord with mutual information maximization.387

Our conclusions are in line with reports of pattern decorrelation and/or whitening in the olfactory388

system in zebrafish (Friedrich, 2013; Friedrich & Laurent, 2001; Friedrich & Wiechert, 2014; Wanner389

& Friedrich, 2020) and mice (Giridhar et al., 2011; Gschwend et al., 2015).390

Infinitely many whitening transformations exist - indeed, a rotated white signal remains white.391

ZCA-whitening, where the output is not rotated relatively to the input, might be advantageous over392

other flavors of whitening because it is the optimal whitening transform that minimizes the distance393

between the original and the whitened signal (Kessy et al., 2018). Since inputs (i.e., spike rates)394

are non-negative, this property of ZCA-whitening will reduce the amount of negative deviations395

and lessen the distortion of the computation that arises from the non-negative constraint on neural396

activity.397

On the other hand, the computation in our model also resembles DN, a ubiquitous computation398

in the brain (Carandini & Heeger, 2012) which was suggested for the analogous circuit in the399

adult Drosophila (Olsen et al., 2010; Olsen & Wilson, 2008). In its simplest form, DN is defined400

as Yj = γ
Xn
j

σn+
∑
kX

n
k

, where Yj is the response of the neuron j, Xi is the driving input of the401

neuron i, and γ, σ, and n are positive parameters. DN captures two effects of neuronal and circuit402

computation: (1) the saturation of a neural response with increasing input up to a maximum spiking403
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rate γ, which mainly arises from neuron’s biophysical properties; (2) dampening of the response of a404

given neuron when other neurons also receive input, usually originating from lateral inhibition (but405

see Sato et al., 2016). In our model, aspect (1) of DN is absent, but could readily be implemented406

with a saturating non-linearity. However, signatures of (2) are especially apparent in the saturation407

of the pattern output norm for increasing input norm (Fig. 7H). This saturation occurs because408

inputs with higher norms correspond to inputs at higher odor concentrations and with a higher409

number of active ORNs. Because such input directions are more statistically significant in our410

dataset, these stimuli that are more strongly dampened by LNs (which encode those directions)411

than those with few ORNs active. Thus, our model presents a possible linear implementation of a412

crucial aspect of DN, which in itself is a nonlinear operation.413

The basic form of DN equalizes the channels and performs channel decorrelation, but not pattern414

decorrelation (Friedrich & Wiechert, 2014; Olsen et al., 2010; Wanner & Friedrich, 2020), which415

appears in our model. However, a modified version of DN, which includes different coefficients for416

the driving inputs in the denominator (Westrick et al., 2016), performs pattern decorrelation too,417

as seen in our circuit. The proposed neural implementations of DN usually require a multiplication418

by the feedback (Heeger, 1992; Westrick et al., 2016), which might not be as biologically realistic419

as our circuit implementation.420

Several neural architectures similar to ours have been proposed to learn to decorrelate channels,421

perform DN, or learn sparse representations in an unsupervised manner (Atick & Redlich, 1993;422

King et al., 2013; Koulakov & Rinberg, 2011; Olshausen & Field, 1997; Pehlevan & Chklovskii,423

2015, 2016; Westrick et al., 2016; Wick et al., 2010; M. Zhu & Rozell, 2015). These studies, however,424

either do not have an objective function, or have a different circuit architecture or synaptic learning425

rules.426

Roles of LNs427

LNs form a significant part of the neural populations in the brain, have multiple crucial compu-428

tational functions, and have extremely diverse morphologies and excitabilities (Chou et al., 2010;429

Hattori et al., 2017). We propose a dual role for LNs in this olfactory circuit: altering the odor430

representation in ORNs and extracting ORN activity features, which can be used downstream431

(Berck et al., 2016). In the olfactory system of Drosophila and zebrafish, LNs perform multiple432

roles like gain control, normalization of odor representations, pattern and channel decorrelation433

(Friedrich, 2013; Friedrich & Wiechert, 2014; Olsen et al., 2010; Olsen & Wilson, 2008; Wanner &434

Friedrich, 2020; P. Zhu et al., 2013), roles that are in line with our results. Also, in Drosophila the435

LN population expands the temporal bandwidth of synaptic transmission and temporally tune PN436

responses (Kim et al., 2015; Nagel et al., 2014; Nagel & Wilson, 2016), which was not addressed437

here.438

In topographically organized circuits such as visual periphery or auditory cortex, several LN439

types uniformly tile the topographic space and each LN type has its own role and selectivity (e.g., in440
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the retina (Masland, 2012)). In non-topographically organized networks, however, the organization441

and selectivity of LNs is still a matter of research and controversy (Chou et al., 2010; Hong &442

Wilson, 2015). We have included 4 LN types in the studied subcircuit (Fig. 1). Several LN types443

contains multiple copies of LNs, with similar connection weights, and thus presumably similar444

roles. In the LC model, the K LNs span a K-dimensional subspace of activity, thus each LN has445

a different connectivity and would form a type of its own. In the NNC model, large ρ lead to446

different LNs, whereas smaller ρ lead to the formation of LN groups (Fig. 4C-E). Thus based on447

our study and the different connectivity patterns of LNs in the connectome (Berck et al., 2016),448

we suggest that in the Drosophila larva LN types extract different features of ORN activity and449

are thus differently activated in response to different input directions (and glomeruli) and also450

different ORNs are differently inhibited by different LNs. This seems at odds with the results of451

Hong and Wilson, 2015 who found that the activation of the LN population appears invariant to452

odor identity. However, the latter study imaged several LNs simultaneously and thus might have453

missed the selectivity of individual LNs.454

What are the features being extracted by LNs? The Broad Trio, whose connection weight455

vector aligns to the first PCA direction of ORN activity and to a w of the NNC model (Fig. 3,456

4A,B), could potentially encode the mean ORN activity, and thus be related to the global odor457

concentration (Asahina et al., 2009). Other LNs, whose connectivity aligns with the w of the458

NNC model, might encode features of odors, like aromatic vs long carbon chain (Si et al., 2019), or459

specific information influencing larva behavior (Berck et al., 2016). What is the function of multiple460

“copies” of LNs within each type? Firstly, LNs might differentiate further as the larva grows, and461

as the circuit continues learning. Secondly, several LNs might help expand the dynamical range of462

a single LN.463

The connectome reveals that the circuit also includes LN-LN connections, which arise naturally464

in our approach. We suggest that LN-LN connections constitute a crucial part of learning and LN465

differentiation, as well as performing partial ZCA-whitening and normalization. Our model also466

correctly predicted how LN-LN connections co-organize with the ORN-LN connections (Fig. 5).467

To our knowledge, the role of LN-LN connections and their relationship to ORN-LN connections468

has not been addressed previously in such circuits.469

In summary, our study highlights the significance of the different ORN-LN and LN-LN connec-470

tion strengths and argues that LNs are minutely selective and organized to extract features and471

render the representation of odors more efficient.472

Learning and ORN activity statistics473

Using ORN activity dataset (Si et al., 2019), our NNC model could predict to a large extent the474

connection weight vectors found in the connectome (Fig. 4A-B). This suggests that the circuit475

is adapted to ORN activity patterns (Fig. 2, 3, 4). How could the connectivity prediction be476

successful, when the ORN activity dataset was mainly chosen to uniformly and broadly activate all477
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ORNs and not to match the true larva odor environment, in terms of odor identity, frequency, and478

intensity? One possibility is that, given an ORN activity dataset large enough, certain generic cor-479

relations between ORNs always appear, giving rise to the same robust features in the connectivity.480

These correlations could be caused by intrinsic chemical properties of ORN receptors. Moreover,481

the exact odor statistics would also alter the connection weights, but to a lesser extent than the482

former effect. Thus, given an activity dataset closely mimicking the larva natural odor environment,483

the model predictions of the connectome might further improve.484

Are those synaptic weights learned during the animal lifetime or are they encoded genetically,485

i.e., “learned” over an evolutionary time span? A genetic origin is undoubtedly present, given486

that several LNs types (e.g., Keystone and Picky) differ by their connectivity to specific neurons487

outside the studied circuit and seem to be linked to different hard-wired animal behaviors (Berck488

et al., 2016). Additionally, several studies reveal that glomeruli sizes (and thus ORN-LN or ORN-489

PN synaptic weights) or activity vary depending on the environment where the Drosophila grows490

up (Arenas et al., 2012; Das et al., 2011; Devaud et al., 2001; Sachse et al., 2007; Sudhakaran491

et al., 2012). This feature would equip the circuit with a potent mechanism to adapt to evolving492

natural environment. Additionally, synaptic count and innervation variability arises for Drosophila493

brought up in similar environments (Chou et al., 2010; Tobin et al., 2017), indicating the potential494

imprecision of the development and/or learning. Resolving connectomes of larva raised in different495

odor environments, probing the synaptic plasticity present in the network, and recording ORN496

responses to the full ensemble of odors present in its environment would help clarify the influence497

of learning and of genetics.498

In conclusion, our work uncovers a canonical circuit model that could robustly adapt to different499

environments in an unsupervised manner, while maintaining the critical computations of partial500

whitening, normalization, and feature extraction. Our comprehensive normative approach, which501

contains only one effective parameter, predicted the structural organization based on input activity,502

and found in the connectome the signatures of circuit function and adaptation to ORN pattern503

statistics. Such an approach could provide important insights into more complicated adaptive504

neural circuits, whose structural and activity data is becoming available.505
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Methods506

ORN activity507

We use the average maximal Ca2+ ∆F/F0 responses among trials for the activity data as in Si508

et al., 2019. For the ORN 85c in response to 2-heptanone, and for the ORN 22c in response to509

methyl salicylate, we only have responses to dilutions ≤ 10−7. Because the ORN responses are510

very similar for dilutions 10−7 and 10−8 and are already saturated (for this cell we have responses511

down to dilutions of 10−11), we set the missing response for dilutions 10−6, 10−5 and 10−4 as the512

response for 10−7.513

RCF distribution of correlation coefficient and significance testing514

Given a vector a ∈ RD, we define the mean ā, the centered vector ac, and the centered normalized515

vector â:516

ā :=
1

D

D∑
i=1

ai (7)

ac := a− ā (8)

â :=
ac
||ac||

(9)

We call ŵ ∈ RD the centered and normalized ORNs→ LN synaptic weight vector w. Similarly, we517

define X̂ ∈ RD×T the centered and normalized ORN activity Xdata =
[
x(1), ..., x(T )

]
, where each518

column vector is centered and normalized.519

Each row of the matrix of correlation coefficients depicted in Fig. 2E is given by c := ŵ>LNtypeX̂.520

c is used to calculate the true relative cumulative frequency (RCF) of correlation coefficients in521

Fig. 2G: RCFc(x) := 1
T

∑T
i=1 1[−1,x](ci), where 1A(y) is the indicator function of a given set A.522

We define the random variables w′, c′ and RCF ′. w′ is generated by shuffling the entries of a523

connectivity vector ŵ:524

w′i := wσ(i) (10)

c′ := ŵ′>X̂ (11)

RCF ′c(x) :=
1

T

T∑
i=1

1[−1,x](c
′
i) (12)

Where σ(i) is a random permutation operator. We define RCF
′
(x) (Fig. 2G, black line) as the525

mean RCF ′(x) arising from all RCFs that come from shuffled ŵ. Next, we define, the maximum526
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negative deviation δ′ random variable as:527

δ′ := max
x

[
RCF

′
(x)−RCF ′(x)

]
(13)

Finally, we define p-value = Pr (δ′ ≥ δtrue). The p-value is thus the proportion of RCFs generated528

with random shuffling of entries of ŵ that deviate from the mean RCF more than the true RCF.529

Numerically, these calculations were done by binning the RCF function into 0.02 bins and530

generating 10000 instances of shuffled ŵ.531

Number of aligned dimensions between two subspaces532

Given a Hilbert space of dimension D, we define Ω - a measure of dissimilarity between 2 subspaces533

SA and SB generated by the matrices of linearly independent KA and KB column vectors: A ∈534

RD×KA and B ∈ RD×KB :535

Ω := ‖PA −PB‖2F (14)

= Tr
[
P2
A

]
+ Tr

[
P2
B

]
− 2 Tr [PAPB] = dim [SA] + dim [SB]− 2 Tr [PAPB] (15)

=KA +KB − 2 Tr [PAPB] (16)

Where PA, PB ∈ RD×D are the projectors onto the subspaces SA and SB, respectively, F stands for536

the Frobenius norm, Tr is the matrix trace, and KX = dim(SX) is the dimensionality of a subspace537

SX . We assume KA +KB ≤ D. We have that |KA−KB| ≤ Ω ≤ KA +KB. The projection matrix538

can be obtained thus PA = A
(
A>A

)−1
A>, or via QR factorization: QR = A, PA = QQ>.539

Intuitively, for two very similar subspaces, the projection PAv of an arbitrary vector v onto SA540

will be very similar to the projection PBv vector v onto SB, thus PAv ≈ PBv and Ω will be small.541

Conversely, if the subspaces are very different, the projections PAv and PBv will also be different542

and Ω will be large.543

We now define the more intuitive measure:544

Γ := (KA +KB − Ω) /2 (17)

which is a proxy of the number of aligned dimensions in the two subspaces. Indeed 0 ≤ Γ ≤545

min(KA,KB). For 2 perpendicular subspaces, Γ = 0 and for 2 fully aligned subspaces Γ =546

min(KA,KB).547

In the main text we have A = [wBT, wBD, wKS, wP0] and B is the matrix with the top 5 PCA548

loading vectors of {x(t)} as columns, KA = dim [SA] = 4, KB = dim [SB] = 5 and D = 21.549
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Objective function for the ORN-LN circuit550

We choose a normative-theoretical approach to study the ORN-LN circuit. It has the advantage551

of providing analytical expressions describing different aspects of the computation and the circuit552

architecture. Studying the circuit’s computation is then equivalent to studying the optimum of a553

cost function.554

We first define the following variables: an input X =
[
x(1), ..., x(T )

]
of T samples, and outputs555

Y =
[
y(1), ..., y(T )

]
, Z =

[
z(1), ..., z(T )

]
. x(t) and y(t) are D-dimensional vectors, whereas z(t) are556

K-dimensional. x(t), y(t), and z(t) represent the activity of ORN somas (i.e., the inputs), ORN557

axons and K LNs, respectively. We postulate the following similarity-based objective function (e.g.,558

Pehlevan et al., 2018), which links the steady state activity of the outputs to that of the input:559

L = min
Y≥0

max
Z≥0

1

T 2

(
T

2
‖X−Y‖2F −

ρ2

4

∥∥∥∥Y>Y − γ2

ρ2
Z>Z

∥∥∥∥2
F

+
ρ2

4

∥∥∥Y>Y
∥∥∥2
F

)
(18)

Intuitively this objective function drives the activity of the ORN axons Y to be close to the activity560

of ORN somas X through the term ‖X−Y‖2F , it aligns the similarity between the activity of ORN561

axons and LNs through the term
∥∥∥Y>Y − γ2

ρ2
Z>Z

∥∥∥2
F

, and finally puts a 4th order penalty on the562

norm of Y through the term
∥∥Y>Y

∥∥2
F

. ρ and γ are two parameters. Scaling ρ is related to the563

strength of the dampening in Y and affects both the optima of Y and Z. Changing γ only scales564

Z, without affecting Y. Since γ does not fundamentally change the computation, we set γ = 1 in565

the whole paper.566

We consider two objective functions. One without the non-negativity constraints on Y and567

Z, representing the Linear Circuit (LC) model, and one with the non-negativity constrains as in568

equation (18), representing the Non-Negative Circuit (NNC) model. Non-negativity constraints569

account for the fact that neural activity is usually non-negative, or at least not symmetric in the570

negative and positive directions.571

In order to map the objective function to a neural circuit (Supplementary Information),572

we first introduce two auxiliary matrices W = 1
T YZ> and M = 1

T ZZ>, which naturally map573

onto ORNs - LNs and LNs - LNs synaptic weights, respectively. The objective function is thus574

optimized over the variables Y, Z, W, and M. We then consider the objective function in the575

“online setting”. In this situation one x(t) is presented at a time, the optimal y(t) and z(t) are576

found with the current W and M, and subsequently the W and M are updated. The optimal y(t)
577

and z(t) are found with gradient descent/ascent equations, which also correspond to the ORN-LN578

neural dynamics equations ((19) for the LC or (20) for the NNC). The gradient descent/ascent579

steps on W and M correspond to the Hebbian learning update rules equation (21).580
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Circuit neural dynamics581

When optimized online, the objective function (18) without the non-negativity constraints gives rise582

to the following differential equations describing the LC, whose steady state solutions correspond583

to the optima for y(t) and z(t) (Supplementary Information). These equations naturally map584

onto the ORN-LN neural circuit dynamics (dropping the sample index t for simplicity of notation):585 
τy
dy(τ)

dτ
= −y(τ) − γ2Wz(τ) + x

τz
dz(τ)

dτ
= −Mz(τ) + ρ2/γ2W>y(τ)

(19)

Where x, y and z are D, D, and K-dimensional vectors, and represent the activity (e.g., spiking586

rate) of the ORN somas, ORN axons, and LNs, respectively. τy and τz are neural time constants,587

τ is the local time evolution (not to be confused with the t sample index). The elements of the588

D ×K matrices ρ2/γ2W and γ2W contain the synaptic weights of the feedforward ORNs → LN589

and feedback LN → ORNs connections, respectively. Thus, the feedforward connection vectors are590

proportional to the feedback vectors, with a scaling factor ρ2/γ4. This assumption is reasonable591

considering the connectivity data (Fig. S1, S2B). Off-diagonal elements of the K ×K matrix M592

contain the weights of LN - LN inhibitory connections, whereas the diagonal elements are related593

to the LNs leak. In the absence of LN activity and at steady state, the equations satisfy y = x,594

i.e., ORN soma and axonal activities are identical. In the absence of input (i.e., x = 0) both y and595

z decay exponentially to 0, because of the terms −y(τ) and −Mi,izi(τ), respectively. In summary,596

these equations effectively model the ORN-LN circuit dynamics by implementing that (1) the ORN597

axonal activity is driven by the input in ORN somas x and inhibited by the feedback from the LNs598

thought the term −γ2Wz(τ) and (2) LN activity is driven by the activity in ORN axonal terminals599

by ρ2/γ2W>y(τ) and inhibited by LNs through the term −Mz(τ). ρ and γ are two parameters.600

In fact, a general system of differential equations describing this circuit architecture can be reduced601

to having just two parameters (Supplementary Information). Scaling ρ affects both the steady602

state solution of y and z, whereas scaling γ only scales z. Note that changing ρ in the objective603

function, will also give rise to different optimal W and M.604

When optimized online, the objective function (18) with the non-negativity constraints gives605

rise to the following equations describing the NNC:606 y(τ + 1) = max
[
0, y(τ) + ε(τ)

(
− y(τ)− γ2Wz(τ) + x

)]
z(τ + 1) = max

[
0, z(τ) + ε(τ)

(
−Mz(τ) + ρ2/γ2W>y(τ)

)] (20)

Where ε(τ) is the step size parameter and the max is performed component wise. Here τ is a discrete607

time variable. These equations can be seen as the equivalent to equations (19), but also satisfying608

constraints on the activity, such as yi(τ) ≥ 0, zi(τ) ≥ 0, ∀τ , i. Such constraints are implemented609

by formulating circuit dynamics in discrete time and using a projected gradient descent.610
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We call LC-K the linear circuit implemented by (19) and NNC-K the non-negative circuit611

implemented by (20), with K LNs. The actual biological circuit might exhibit a behavior somewhere612

between the LC and NNC. For the circuit studied here, we have D = 21 (number of ORNs), and613

K = 8 (number of LNs on one side of the larva) or K = 4 (number of LN types) or K = 1 (to build614

intuition).615

Mathematical description of synaptic plasticity616

When the objective function (18) is optimized online, we obtain the following updates for W and617

M after each presentation of a sample x(t) and convergence to optimal y(t) and z(t):618

W(t+1) = W(t) + ε1(t)
(
y(t)z(t)> −W(t)

)
M(t+1) = M(t) + ε2(t)

(
z(t)z(t)> −M(t)

) (21)

Where εi(t) are learning rates. We assume that the ORN soma activation x(t) in present long619

enough so that y(t)(τ) and z(t)(τ) reach steady state values. These equations represent Hebbian620

plasticity in W and M, which is a form of correlative unsupervised learning. This is justified by621

(1) the adaptation of the connectivity to statistics of the ORN activity found in our data, (2)622

the presence of activity-dependent plasticity in Drosophila (Arenas et al., 2012; Das et al., 2011;623

Devaud et al., 2001; Sachse et al., 2007; Sudhakaran et al., 2012), and (3) that glomeruli activity624

is best explained with glomerulus-glomerulus inhibitory connectivity that is proportional to the625

correlation between glomeruli (Linster et al., 2005). These equations (21) set the diagonal values626

of M by analogy to the off-diagonal ones.627

With appropriate learning rates, these synaptic update rules lead to:628

W→ E
[
ȳz̄>

]
, M→ E

[
z̄z̄>

]
(22)

Such W and M could potentially arise either over evolutionary time scales, or during the animal629

lifetime. In summary, based on the postulated objective function (18), we derived neural dynamics630

equation (equations (19) for LC, (20) for NNC) which map onto the ORN-LN circuit and biologically631

plausible Hebbian synaptic plasticity rules (equations (21)). This fully specifies the circuit, its632

synaptic weights, and its input-output relationship.633

Numerical simulation of the LC offline634

For the LC, we have the theoretical solution, so numerical simulations are not necessary to obtain Y.635

Also, there is a degeneracy in the solutions of Z, W, and M. However, to confirm the theoretical636

results, we did simulate the LC too. For that, we used the following equation, where the cost637
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function depends on Z only (Supplementary Information, equation (S49), with γ = 1):638

L = min
Z

1

T 2
Tr

[
T

2
X>X

(
IT +

1

T
Z>Z

)−1
+

1

4ρ2
Z>ZZ>Z

]
(23)

We used an algorithm similar to Kuang et al., 2012.639

Algorithm 1 Finding the minimum of

f(Z) = Tr

[
T
2 X>X

(
Z>Z
T + IT

)−1
+ 1

4ρ2
Z>ZZ>Z

]
1: Objective: find Z ∈ RK×T that minimizes f(Z).

2: Inputs:

3: X ∈ RD×T

4: K > 0: the number of dimensions of Z

5: ρ > 0: a constant encoding the strength of the inhibition by the LNs

6: 0 < σ < 1: acceptance parameter (usually 0.1)

7: α0 > 0: initial gradient step coefficient (usually 1)

8: 0 < β < 1: reduction factor (usually 0.1)

9: 0 < µ� 1: tolerance parameter (usually ≈ 10−6)

10: ncycle ≈ 500: number of steps after which one decreases the value of α0

11: Initialize:

12: Znew ∈ RK×N ∼ N (0, s.d.(X)/100)

13: i← 1

14: Iterate:

15: repeat

16: Z← Znew

17: α = α0

18: repeat

19: Znew = Z− α∇f(Z) . Find a potential new Z through a gradient descent step

20: ∆̂f = σ · sum[∇f(Z)� (Znew − Z)] . Acceptable decrease in f (negative number)

21: ∆f = f(Znew)− f(Z) . True decrease in f (negative number)

22: α← βα . Decrease the gradient descent step size for the next iteration, if it occurs

23: until ∆f < ∆̂f . Exit loop if the true decrease in f is larger than the acceptable one

24: if i mod ncycle = 0 then . Every ncycle, decrease the initial step size α0 by β

25: α0 ← βα0

26: end if

27: i← i+ 1

28: until |f(Z)− f(Znew)|/|f(Z)| < µ

29: Output: Znew
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Where � is an element-wise multiplication and the “sum” adds all the elements of the matrix.640

In the inner repeat loop of the algorithm, it can happen that because of limited numerical precision,641

no α is small enough to make a decrease in f (i.e., satisfy the condition ∆f < ∆̂f), in that case642

the inner and outer repeat loops stop and the current Z (not Znew) is outputted.643

∇f(Z) is given by:644

B :=
(
Z>Z/T + I

)−1
(24)

∇f(Z) = −ZBXX>B + ZZ>Z/ρ2 (25)

Finally, the expression for Y is (Supplementary Information, equation (S48)):645

Y = X

(
IT +

1

T
Z>Z

)−1
(26)

Numerical simulation of the NNC offline646

For the NNC, we do not have the analytical expressions of Y and Z. To minimize the objective647

function, we perform alternating gradient descent/ascent steps on Y and Z, respectively. We start648

from the expanded expression of the objective function (18) (with γ = 1):649

L = min
Y≥0

max
Z≥0

1

T 2
Tr

[
−TX>Y +

T

2
Y>Y +

1

2
Y>YZ>Z− 1

4ρ2
Z>ZZ>Z

]
(27)

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2021. ; https://doi.org/10.1101/2021.09.24.461723doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461723
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 2 Finding the minimum in Y and maximum in Z of

f(Y, Z) = Tr
[
−TX>Y + T

2 Y>Y + 1
2Y>YZ>Z− 1

4ρ2
Z>ZZ>Z

]
1: Objective: find Y ∈ RD×T+ and Z ∈ RK×T+ that optimize minY maxZ f(Y, Z).

2: Inputs:

3: X ∈ RD×T

4: K > 0: the number of dimensions of Z

5: ρ > 0: a constant encoding the strength of the inhibition by the LNs

6: 0 < σ < 1: acceptance parameter (usually 0.1)

7: α0 > 0: initial gradient step coefficient (usually 1)

8: 0 < β < 1: reduction factor (usually 0.1)

9: 0 < µ� 1: tolerance parameter (usually ≈ 10−6)

10: ncycle ≈ 500: number of steps after which one decreases the value of α0

11: Initialize:

12: Ynew ∈ RD×N+ ∼ abs[N (0, s.d.(X)/100)]

13: Znew ∈ RK×N+ ∼ abs[N (0, s.d.(X)/100)]

14: i← 1

15: Iterate:

16: repeat

17: Y ← Ynew

18: Z← Znew

19: α = α0

20: repeat

21: Ynew = [Y− α∇Yf(Y, Z)]+ . Find a potential new Y through a gradient descent step

22: ∆̂f = σ · sum[∇Yf(Y, Z)� (Ynew −Y)] . Acceptable decrease in f (negative number)

23: ∆f = f(Ynew, Z)− f(Y, Z) . True decrease in f (negative number)

24: α← βα . Decrease the gradient descent step size for the next iteration, if it occurs

25: until ∆f < ∆̂f . Exit loop if the true decrease in f is larger than the acceptable one

26: α = α0

27: repeat

28: Znew = [Z + α∇Zf(Ynew, Z)]+ . find a potential new Z through a gradient ascend step

29: ∆̂f = σ · sum[∇Zf(Ynew, Z)� (Znew−Z)] . Acceptable increase in f (positive number)

30: ∆f = f(Ynew, Znew)− f(Ynew, Z) . True increase in f (positive number)

31: α← βα . Decrease the ascent descent step size for the next iteration, if it occurs

32: until ∆f > ∆̂f . Exit loop if the true increase in f is larger than the acceptable one

33: if i mod ncycle = 0 then . Every ncycle, decrease the initial step size α0 by β

34: α0 ← βα0

35: end if

36: i← i+ 1

37: until |f(Y, Z)−f(Ynew, Z)|/|f(Y, Z)| < µ and |f(Ynew, Z)−f(Ynew, Znew)|/|f(Ynew, Z)| < µ

38: Output: Ynew, Znew 30
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In the case of the LC, the same algorithm holds, with all the rectifications [.]+ removed from the650

algorithm and the “abs” removed from the initiation. If in either of the inner repeat loops, no α is651

small enough to make a decrease/increase in f (i.e., satisfy the condition ∆f < ∆̂f or ∆f > ∆̂f),652

the iterations stop and the current Y and Z are the output of the algorithm.653

The gradients of f(Y, Z) are:654

∇Yf(Y, Z) = −T (X−Y) + YZ>Z (28)

∇Zf(Y, Z) = ZY>Y − ZZ>Z/ρ2 (29)

Numerical simulation of the circuits online655

For Fig. S11, we simulated the circuit dynamics for a given W, M, and X. For that purpose, to656

find ȳ and z̄, we performed gradient descent steps based on the discretized equations (19) for the657

LC or equation (20) for the NNC.658

Data and code availability659

All data in this study is published in Berck et al., 2016; Si et al., 2019 and is accessible online:660

https://github.com/samuellab/Larval-ORN, https://doi.org/10.7554/eLife.14859.019,661

https://doi.org/10.7554/eLife.14859.020.662

All the code used in this study is available here:663

https://github.com/chapochn/ORN-LN circuit664
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Fig. S1. Full ORN connectivity and circuit selection

A Heat map of the ORNs ↔ LN feedforward and feedback connections on the left side of the Drosophila larva.

We focus on the neurons, that synapse bidirectionally with ORNs (inside the red dashed rectangle): Broad Trios,

Broad Duets, Keystones, and Picky 0. These neurons are all LNs.

B Same as (A) for the right side.
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Fig. S2. ORN-LN connectivity, comparison feedforward with feedback

A ORNs → LNs feedforward connections weights wff
LN on both left and right sides of the antennal lobe with the

chosen LNs, ordered by LN class. The vectors wff
LN correspond to the columns of the depicted matrix.

B LN → ORNs feedback connections weights wfb
LN on both left and right sides of the antennal lobe with the

chosen LNs, ordered by LN class. The vectors wfb
LN correspond to the columns of the depicted matrix.

C Correlation coefficients between feedback LN → ORNs connection weight vectors wfb
LN.

D Average rectified correlation coefficient 〈r+〉 (r+ := max[0, r]) between LN types calculated by averaging the

rectified values from (C) in each rectangle with white border, excluding the diagonal entries of the full matrix.

The average correlation coefficient within a class is larger than the correlation coefficient across classes.

E Correlation coefficients between feedforward ORNs → LN wff
LN and feedback LN → ORNs wfb

LN connection

weight vectors. The Picky 0 LN is the only LN that has a separation between axonal and dendritic terminals. For

the feedforward ORNs → LN connections, we only include in the connection weight vector the synapses onto the

Picky 0 dendrite, and for the LN → ORNs connection, we only count the synapses from the Picky 0 axon.
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Fig. S3. ORN soma activity from Si et al., 2019

A ORN soma activity patterns
{
x(t)

}
data

in response to 34 odors at 5 dilutions acquired through Ca2+ imaging.

Different odors are separated by vertical gray lines. For each odor, there are 5 columns corresponding to 5

dilutions: 10−8, ..., 10−4. The odors and ORNs are ordered by the value of the second singular vectors of the left

and right SVD matrices of this activity data, after centering and normalizing. This data is obtained by averaging

the maximum responses of several trials to the same odor and dilution (as in Si et al., 2019).

B Same as (A), with each x(t) scaled between 0 and 1 to better portray the patterns.
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Fig. S4. Alignment of activity patterns x(t) in ORNs and ORNs → LN connectivity weight vectors wLN

A Same as Fig. 2E, for all the wLN and with all the odors labeled. Same odor order.

B Same as Fig. 2I, for all wLN.

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2021. ; https://doi.org/10.1101/2021.09.24.461723doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461723
http://creativecommons.org/licenses/by-nc-nd/4.0/


D=21 dim. space
of ORNs

5D PCA 
ORN 
activity
subspace
S

X

K= 4,
W connection
subspace S

W

A

0 2 4
~ # of aligned dimensions 

0

1

2

pr
ob

ab
ilit

y 
de

ns
ity

pv = 1e-04
pv = 5e-03

gaussian
shuffled
true

B

Fig. S5. Activity and connectivity subspace alignment

A Scheme representing the comparison of the 4-dimensional connectivity (SW ) and 5-dimensional activity (SX)

subspaces in 21 dimensions (D = 21, dimensionality of the ORN space).

B Number of aligned dimensions Γ between the 2 subspaces of (A) in the data (true, Γ = 1.9), from randomly

shuffling the connectivity vector entries (shuffled, mean Γ = 1.3) and from random normal vectors (Gaussian,

mean Γ = 1). pv: one-sided p-value.
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Fig. S6. Activity and connectivity

A Percentage of the variance of the ORN activity patters
{
x(t)

}
data

explained by the uncentered PCA. The top

4 and 5 PCA directions explain 71% and 76% of the variance, respectively.

B First 5 PCA loading vectors of
{
x(t)

}
data

.

C-D wk from NNC with K = 4, 5 and ρ = 1, ordered to resemble the PCA ordering.

E Same as Fig. 3C with all wLN.

F Same as (E), with wk from NNC-4 instead of PCA loading vectors.

G Same as (F), for NNC-5. The small number of significant points in (E-G) results from the higher number of

hypothesis tests, which decreases the adjusted p-values in the FDR multi-hypothesis testing framework.

H Same as Fig. 4A, for NNC-5.
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odors at different dilutions
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Fig. S7. Activity of LNs
{
z(t)
}

in the NNC and LC

A ORN soma activity patterns
{
x(t)

}
data

as in Fig. S3A.

B Activity in the LNs
{
z(t)
}

for the LC-8. Stimuli are aligned to the panel above. As mentioned in the text,{
z(t)
}

is undetermined up to an orthogonal matrix UZ . Here we set UZ = IK , i.e., identity matrix. For LC-K,

the response in LNs correspond to the first K row of this matrix, multiplied by any K ×K orthogonal matrix on

the left. Thus, the matrix depicted in this plot shows the potential activity in LNs for any LC-K with K ≤ 8.

C {zt} for the NNC-1. The activity of the LN approximately follows the total activity.

D
{
z(t)
}

for the NNC-2. One can see that the 2 LNs roughly clusters the sets of odors into those activating the

top ORNs and those activating the lower ORNs.

E-G
{
z(t)
}

for the NNC with K = 3, 4, 8. One observes a more sophisticated clustering of the data. As more

LNs are added, LN activity increases in sparsity. The activity in the LNs for the NNC is more sparse than for the

LC.
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Fig. S8. Input vs output principal directions in LC and NNC

A-D Scalar product between principal directions of uncentered
{
x(t)

}
data

and
{
y(t)

}
for the LC and NNC for

K = 1, 8. For the LC the identity of the principal directions in conserved, only their order change. For the NNC,

the principal directions are slightly mixed, but conserve the approximate ordering.
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Fig. S9. Decorrelation in the LC

A-H Same as Fig. 7J-O for the LC.
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Fig. S10. Input transformation by LC and NNC with ρ = 10

Same as Fig. 7 for ρ = 10. Note the even stronger dampening, flattening, and decorrelation.
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Fig. S11. Effect of removing off-diagonal entries in M for LC and NNC

A-B Same as Fig. 7D,E for the trained LC and NNC on
{
x(t)

}
data

, where the off-diagonal values of M are set

to 0 (LC’ and NNC’). Note that the values in LC’ in (A) do not monotonically decrease as in LC.

C-D Same as Fig. S8 for LC’-8 and NNC’-8. Note the increased mixture between the principal directions of{
x(t)

}
data

and
{
y(t)

}
.

E Correlation between the input
{
x(t)

}
data

and output
{
y(t)

}
for each channel (i.e., ORN) for LC-8 and LC’-8.

Note that in the LC-8, the output of each channel is more strongly correlated to its own input for the LC-8 than

for the LC’-8.

F Same as (E) for NNC-8 and NNC’-8.
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Supplementary Information823

In this supplement, we prove statements made in the results and methods sections:824

Section 1: we describe the objective function from equation (18), show the equivalence of scaling825

X and ρ (section 1.1) and show the resemblance of this circuit’s objective function with a whitening826

objective function (section 1.2).827

Section 2: we show that the objective function (18), when optimized online with or without828

non-negativity constraints, lead to the circuit dynamics (19) or (20), respectively, and to Hebbian829

learning rules (21). We then show the steady state solution to which the circuit dynamics equations830

(19) converge and show that the steady state is stable (section 2.2).831

Section 3: we show that a general system of differential equations describing the circuit contains832

two effective parameters and can be reduced to the form found in the main text in equation (19).833

Section 4: we analyze computation in LC and prove equations (4), (5), (6a), and (6b) in the834

main text from the main text. These results are proven in two ways (sections 4.1 and 4.2). Section835

4.3 discusses limiting cases of the computation for small and large values of ρ, and show the relation836

of NNC to SNMF (symmetric non-negative matrix factorization).837

Section 5: we prove the relationship between W and M, equation (2) in the main text.838

Section 6: we prove the relationship between W and X, equation (1) in the main text.839

Section 7: we prove that the CV of singular values in Y is smaller than in X for the LC when840

K = D.841

1 Objective function842

We postulate the following minimax objective function:843

L = min
Y

max
Z

1

T 2

(
T

2
‖X−Y‖2F −

ρ2

4u2

∥∥∥∥Y>Y − γ2

ρ2
Z>Z

∥∥∥∥2
F

+
ρ2

4u2

∥∥∥Y>Y
∥∥∥2
F

)
(S1)

Which can be expanded thus:844

L = min
Y

max
Z

1

T 2
Tr

[
−TX>Y +

T

2
Y>Y +

γ2

2u2
Y>YZ>Z− γ4

4u2ρ2
Z>ZZ>Z

]
(S2)

Where X, Y ∈ RD×T , Z ∈ RK×T with D the number of ORNs (21 for this olfactory circuit), K845

the number of LNs, T the number of data (sample) points, ρ a positive unitless constant, u a unit846

with the physical dimension as X, Y, and Z (e.g., spikes · s−1) (dropped for simplicity in the main847

text). X, Y and Z represent the activity of ORN somas, ORN axons, and LNs, respectively. We848

can interpret X as all the discretized activity of ORNs up to a certain point in their lifetime.849

Optimizing objective function (S2) leads to the linear circuit (LC) model. Adding the non-850

negativity constraints on Y and Z leads to the non-negative circuit (NNC) model.851
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1.1 Equivalence of scaling X and ρ852

Here, we show that scaling X is equivalent to scaling ρ in terms of circuit computation. It is easy853

to see that the transformation X → aX, Y → aY and ρ → ρ/a (for a 6= 0) leaves the objective854

function unaffected, i.e., this transformation is a symmetry of the optimization. Indeed:855

L = min
Y

max
Z

1

T 2
Tr

[
−TX>Y +

T

2
Y>Y +

γ2

2u2
Y>YZ>Z− γ4

4u2ρ2
Z>ZZ>Z

]
(S3)

= min
Y

max
Z

1

T 2
Tr

[
−Ta2X>Y +

T

2
a2Y>Y +

a2γ2

2u2
Y>YZ>Z− a2γ4

4u2ρ2
Z>ZZ>Z

]
(S4)

Let us explore the consequence of this symmetry. The output Y of the optimization is a function856

of X and ρ, thus we can define a function f such that: Y = f(X, ρ):857

Y = f(X, ρ) = arg min
Y

max
Z

1

T 2
Tr

[
−TX>Y +

T

2
Y>Y +

γ2

2u2
Y>YZ>Z− γ4

4u2ρ2
Z>ZZ>Z

]
(S5)

The symmetry implies:858

Y = f(X, ρ)⇔ aY = f(aX, ρ/a) (S6)

Thus:859

f(X, ρ) =
1

a
f(aX, ρ/a) and also f(aX, ρ) = af(X, aρ) (S7)

This means performing an optimization with an input aX, is equivalent to doing the optimization860

with input X and parameter aρ, and finally multiplying the obtained Y by a.861

It is worth noting though, that for a circuit with fixed W and M, scaling an input x by a factor862

a, simply scales the output y by the same factor a, since it is a linear transformation, at least for863

the circuit without the non-negative constraints.864

1.2 Limiting case and relation to whitening865

For the case when D = K, the optimum for Z is Z = ρ
γY and thus the middle term of the objective866

function (S1) drops, with and without non-negativity constraints on Y and Z. The objective867

function becomes:868

L = min
Y

1

T 2

(
T

2
‖X−Y‖2F +

ρ2

4u2

∥∥∥Y>Y
∥∥∥2
F

)
(S8)
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This objective function closely resembles the whitening objective function:869

L = min
Y
‖X−Y‖2F + λ

∥∥∥YY> − α2ID

∥∥∥2
F

(S9)

= min
Y
‖X−Y‖2F + λTr

[
YY>YY> − 2α2YY> + α4ID

]
(S10)

= min
Y
‖X−Y‖2F + λTr

[
Y>YY>Y − 2α2Y>Y

]
(S11)

= min
Y
‖X−Y‖2F − 2α2λ ‖Y‖2F + λ

∥∥∥Y>Y
∥∥∥2
F

(S12)

For a fixed α, increasing λ will eventually lead to perfect whitening. The singular values of Y will870

then all be equal to α, and the left and right singular vectors will be the same as those of X.871

2 Online solution872

We show that the online algorithm to optimize the objective function (S2) can be mapped onto the873

architecture and neural dynamics of the olfactory neural circuit (Fig. 1A) with Hebbian plasticity.874

To find the online solution, we first introduce the unitless variables W ∈ RD×K and M ∈ RK×K :875

W =
1

Tu2
YZ>, M =

1

Tu2
ZZ> (S13)

and perform the Hubbard-Stratonovich transform of (S2):876

L = min
Y

max
Z

max
W

min
M

1

T
Tr

[
−X>Y +

1

2
Y>Y + γ2Y>WZ− γ4

2ρ2
Z>MZ

]
− u2γ2

2
Tr
[
W>W

]
+
u2γ4

4ρ2
Tr
[
M>M

]
(S14)

We then rewrite (S14) in vector notation, with each sample point written out separately, and invert877

the order of min max (Pehlevan et al., 2018):878

L = max
W

min
M

min
{y(t)}

max
{z(t)}

1

T

T∑
t=1

(
−x(t)>y(t) +

1

2
y(t)>y(t) + γ2y(t)>Wz(t) − γ4

2ρ2
z(t)>Mz(t)

)
− u2γ2

2
Tr
[
W>W

]
+
u2γ4

4ρ2
Tr
[
M>M

]
(S15)

Next we perform the optimization for each variable separately: y(t), z(t), W, and M. We879

consider the following case, which corresponds to the “online setting” for this objective function880

and alternate the optimization in {y(t), z(t)} and in {W, M}: as a new sample (i.e., stimulus, input)881

x(t) arrives, we find the values of z(t) and y(t) with the current values W(t) and M(t) and update882

W(t) and M(t) to W(t+1) and M(t+1) before the arrival of the next sample x(t+1). Biologically,883

this can be seen as first a convergence of neural spiking rates or neural electrical potential encoded884

through the variables y(t) and z(t), and second a synaptic weight update based on those steady885
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state activity values. At a given sample index t, the minimum in y(t) and the maximum in z(t) can886

be found by taking a derivative of (S15) with respect to y(t) and z(t), respectively:887

∂L
∂y(t)

=
1

T

(
−x(t) + y(t) + γ2W(t)z(t)

)
∂L
∂z(t)

=
1

T

(
γ2W(t)>y(t) − γ4

ρ2
M(t)z(t)

) (S16)

The minimum in y(t) and the maximum in z(t) can be reached by a gradient descent and ascent,888

respectively. We can thus write a system of differential equations whose steady state correspond to889

the optimum:890 
τy
dy(t)(τ)

dτ
= −y(t)(τ) − γ2W(t)z(t)(τ) + x(t)

τz
dz(t)(τ)

dτ
= −M(t)z(t)(τ) + ρ2/γ2W(t)>y(t)(τ)

(S17)

Where τ is the local time evolution variable. We rearranged the parameters so that the equation891

form is the same as in equations (19), which does not change the final steady state of the equations.892

Thus, we obtained equations to find the optima ȳ(t) and z̄(t) of the objective function. As explained893

in the main text, these question can directly be mapped onto the dynamics of the ORN-LN neural894

circuit.895

Next, we derived the updates for the variables W and M. By construction, the offline solution896

for W and M is given by (S13). Online - we compute a new W(t) and M(t) after each sample x(t)
897

is presented and ȳ(t) and z̄(t) are found. The gradient descent (respectively ascent) steps on these898

variables give the following updates (e.g., Pehlevan et al., 2018):899

W(t+1) = W(t) + η(t)

(
z̄(t)ȳ(t)>

u2
−W(t)

)

M(t+1) = M(t) +
η(t)

2ρ2ν

(
z̄(t)z̄(t)>

u2
−M(t)

) (S18)

where η(t) and ν are parameters of the gradient descent/ascent, and where ȳ(t) and z̄(t) are the900

steady states solutions of equations (S17) for given W(t) and M(t). This indeed corresponds to a901

local Hebbian synaptic update rules. Choosing η(t) and ν appropriately will lead to equation (21)902

from the main text.903

2.1 Circuit equations for the NNC904

In the case of the NNC, where we have objective function (18) instead of (S2), we get equation905

(S15) with non-negativity constraints:906

52

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2021. ; https://doi.org/10.1101/2021.09.24.461723doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461723
http://creativecommons.org/licenses/by-nc-nd/4.0/


L = max
W

min
M

min
{y(t)≥0}

max
{z(t)≥0}

1

T

T∑
t=1

(
−x(t)>y(t) +

1

2
y(t)>y(t) + γ2y(t)>Wz(t) − γ4

2ρ2
z(t)>Mz(t)

)
− u2γ2

2
Tr
[
W>W

]
+
u2γ4

4ρ2
Tr
[
M>M

]
(S19)

Here too, we perform the optimization for each variable separately: y(t), z(t), W, and M.907

However, because of the non-negativity constraints, the optima for y(t) and z(t) are not to be found908

at where the derivatives (S16) are zeros. We can, however, reach the optima by a projected gradient909

descent:910 y(t)(τ + 1) = max
[
0, y(t)(τ) + ε(τ)

(
− y(t)(τ)− γ2Wz(t)(τ) + x(t)

)]
z(t)(τ + 1) = max

[
0, z(t)(τ) + ε(τ)

(
−Mz(t)(τ) + ρ2/γ2W>y(t)(τ)

)] (S20)

where the max is performed component-wise. For the NNC, the updates on W(t) and M(t) (equa-911

tions (S18)) remain the same as for the LC.912

2.2 Steady state solution of the circuit dynamical equations for the LC and stability913

We can directly find the steady state solution of the circuit dynamics equations (S17) of the LC by914

setting the derivatives to 0. For M invertible, the steady state is (after dropping the index (t) for915

simplicity of notation):916 ȳ = (ID + ρ2WM−1W>)−1x

z̄ = ρ2/γ2M−1W>ȳ
(S21)

As mentioned above, the steady state for y does not depend on γ, whereas z does depend on γ.917

Note that the transformation from x to ȳ is symmetric: indeed, writing ȳ = Fx, we have that918

F = F>. This means that the transformation is diagonalizable. It will be shown below that this919

basis in which the transformation is diagonal corresponds to the PCA basis of X.920

Here we show that the fix point of equations (S17) is stable if W is maximum rank and M921

positive definite. We first rewrite the dynamical system:922 [
τydy(τ)/dτ

τydz(τ)/dτ

]
=

[
x

0

]
−

[
ID γ2W

−ρ2/γ2W> M

][
y(τ)

z(τ)

]
=

[
x

0

]
−A

[
y(τ)

z(τ)

]
(S22)

This system has a unique stable fix point if and only if A has only positive eigenvalues. To923
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investigate under which conditions this is the case, we write the eigenvalue equations for A:924 [
ID γ2W

−ρ2/γ2W> M

][
y

z

]
= λ

[
y

z

]
(S23){

y + γ2Wz

−ρ2/γ2W>y + Mz

= λy

= λz
(S24){

γ2Wz

ρ2/γ2W>y

= (λ− 1)y

= (M− λ)z
(S25)

We consider the case when λ 6= 1, as we are interested to see if λ could potentially be negative.925

y = (λ− 1)−1γ2Wz (S26)

=⇒ ρ2W>Wz = (λ− 1)(M− λ)z (S27)

W>W ∈ RK×K is a positive semi-definite matrix, it is positive definite if W is maximum rank (i.e.,926

rank K). Assuming that W is full rank, the matrix W>W on the left-hand side of the equation927

has only positive eigenvalues. The above equation does not have any solution z 6= 0 for λ < 0 if M928

is positive definite (which is true when constructed as the autocorrelator of z). Thus, W full rank929

and M positive definite are sufficient conditions for the dynamical system to always converges to a930

stable fix point.931

3 Circuit dynamics equations contains two effective parameters932

Here we show that, in its general form, the system of differential equation describing the olfactory933

circuit has just two effective parameters and can be reduced to equation (19) (or (20)) from the934

main text. Without lack of generality the system of differential equations yields:935 
τ1
dy(τ)

dτ
= −ay(τ) − bW1z(τ) + ax

τ2
dz(τ)

dτ
= −cMz(τ) + dW>

2 y(τ)

(S28)

Where we imposed that x = y in the case of no LN activity (i.e., z = 0), that a > 0, b > 0, c > 0,936

d > 0, and that all ORNs have similar response properties (i.e., same coefficient in front of each937

xi and yi). To extract the effective parameters, we compute the steady state solution of equations938

(S28) by setting the derivatives to zero. We find, for invertible M:939 
ȳ =

(
ID +

bd

ac
W1M

−1W>
2

)−1
x

z̄ =
d

c
M−1W>

2 ȳ

(S29)

54

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 25, 2021. ; https://doi.org/10.1101/2021.09.24.461723doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461723
http://creativecommons.org/licenses/by-nc-nd/4.0/


This shows that we only have two degrees of freedom: bd
ac and d

c . We define ρ2 := bd
ac and γ2 :=940

c
dρ

2 = b
a . This gives us:941 ȳ =

(
ID + ρ2W1M

−1W>
2

)−1
x

z̄ = ρ2/γ2M−1W>
2 y

(S30)

Now replacing these definitions into the original equations (S28) we get:942 
τ1/a

dy(τ)

dτ
= −y(τ) − γ2W1z(τ) + x

τ2/c
dz(τ)

dτ
= −Mz(τ) + ρ2/γ2W>

2 y(τ)

(S31)

By setting τy := τ1/a, τz := τ2/c we obtain equation (19) from the main text (when W1 = W2):943 
τy
dy(τ)

dτ
= −y(τ) − γ2W1z(τ) + x

τz
dz(τ)

dτ
= −Mz(τ) + ρ2/γ2W>

2 y(τ)

(S32)

Thus, scaling x, W1, W2 and M is equivalent to controlling just two effective parameter γ and944

ρ. Scaling τy and τz does not influence the steady state solutions.945

Increasing ρ increases the weight of feedforward connection, making the LN activity and the feed-946

back inhibition stronger. Increasing γ simultaneously increases the feedback connection strength947

and decreases the feedforward connection strength. Changing γ influences the steady state solution948

of z but not y. Thus, a manifold of circuits lead to the same steady state output y. In addition,949

the same differential equations can be implemented by different circuits. For example, multiplying950

a differential equation by a parameter does not alter the final steady state, but gives yet another951

implementation to the circuit as a scaling of the synaptic weights and of the time constant.952

4 Circuit computation953

To understand the computation performed by the olfactory circuit, we analyzed the optimization954

done by the objective function (S2), which corresponds to the linear circuit (LC). We use the955

singular value decomposition (SVD) for X, Y, and Z: X = UX S̃XV>X , Y = UY S̃Y V>Y , Z =956

UZ S̃ZV>Z , with the following convention: UX , UY ∈ RD×D, UZ ∈ RK×K , VX , VY , VZ ∈ RT×T ,957

S̃X , S̃Y ∈ RD×T , S̃Z ∈ RK×T , S̃X , S̃Y , S̃Z only have values on the diagonal. We call S ∈ RT×T the958

diagonal square matrix corresponding to the rectangular matrix S̃, with padded zeros. Only the959

first D columns in VX and VY and the first K in VZ contain relevant information about X, Y,960

and Z, respectively. The left singular vectors UX , UY , and UZ are also the principal directions of961

the uncentered PCA of X, Y, and Z, respectively. Whereas the values on the diagonal of S̃X , S̃Y ,962

and S̃Z are the square root of the variances of the corresponding PCA directions.963
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In the following, using two approaches, we prove that:964

Y = UX S̃Y V>X = UX S̃Y S̃
+
XU>XX (S33)

Z = ρ/γUZ S̃Y |KV>X = ρ/γUZ S̃Y |K S̃
+
XU>XX (S34)

965

with


sY ,i

(
1 +

ρ2

u2T
s2Y ,i

)
= sX,i 1 ≤ i ≤ K (S35a)

sY ,i = sX,i K + 1 ≤ i ≤ D (S35b)

UZ : a degree of freedom (S35c)

where A+ the Moore-Penrose pseudo-inverse of A and S̃Y |K is the matrix with the first K columns966

of S̃Y . This proves the relations (4), (5), (6a), (6b) in the main text.967

In other words, writing Y = FX, we have that F = F> = UX S̃Y S̃
+
XU>X , SY S+

X being a diagonal968

matrix. This signifies that the linear transformation F does not perform any rotation of the input.969

This explicit expressions for sY and sZ are:970

sY =
1

ρ


√

12T 3u6 + 81T 2u4ρ2s2X + 9Tu2ρsX

18


1
3

− 1

ρ

 2
3T

3u6√
12T 3u6 + 81T 2u4ρ2s2X + 9Tu2ρsX

 1
3

sZ =
ρ

γ
sY

(S36)

The behavior of sY is such:971

sY ≈


sX sX �

√
Tu
ρ (S37a)

3

√
Tu2

ρ2
sX sX �

√
Tu
ρ (S37b)

Note that because Z only appears as Z>Z in the objective function (S2), UZ is a degree of972

freedom of the optimization. Thus, for {Y, Z, W, M} a solution of the optimization, {Y, QZ,973

WQ>, QMQ>} is a solution as well, where Q ∈ RK×K is an orthogonal matrix. Consequently,974

there is a manifold of W, M, and Z that satisfies the optimization for the LC.975

4.1 Approach 1976

In this approach, we first perform the minimization in Z. Based on the similarity matching objective977

function results (Pehlevan et al., 2018), we know in the linear case that the right singular vectors978

of Y and Z are equal, and thus VY = VZ . We also know that the top K singular values of979

Y and γ/ρZ are equal (Z is K-dimensional, thus all other singular values of Z are 0), and thus980
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sZ,i = ρ/γsY ,i. The similarity matching term becomes:981

∥∥∥∥Y>Y − γ2

ρ2
Z>Z

∥∥∥∥2
F

=

∥∥∥∥VY S2
Y V>Y −

γ2

ρ2
VZS2

ZV>Z

∥∥∥∥2
F

(S38)

=

∥∥∥∥VY

(
S2
Y −

γ2

ρ2
S2
Z

)
V>Y

∥∥∥∥2
F

(S39)

= Tr

[(
S2
Y −

γ2

ρ2
S2
Z

)2
]

(S40)

=

D∑
i=K+1

s4Y ,i (S41)

And thus UZ does not appear in the optimization and is a free parameter. Also
∥∥Y>Y

∥∥2
F

=982 ∑D
i=1 s

4
Y ,i. Thus, the objective function (S1) becomes:983

L = min
Y

1

T 2

(
Tr

[
−TX>Y +

T

2
Y>Y

]
− ρ2

4u2

D∑
i=K+1

s4Y ,i +
ρ2

4u2

D∑
i=1

s4Y ,i

)
(S42)

= min
Y

1

T 2

(
Tr
[
−TX>Y

]
+
T

2

D∑
i=1

s2Y ,i +
ρ2

4u2

K∑
i=1

s4Y ,i

)
(S43)

Thus there is a fourth order penalty on the first K singular values of Y.984

We now replace the remaining X and Y by their SVD:985

L = min
Y

1

T 2

(
Tr
[
−TVX S̃XU>XUY S̃Y VY

]
+
T

2

D∑
i=1

s2Y ,i +
ρ2

4u2

K∑
i=1

s4Y ,i

)
(S44)

Based on von Neumann trace inequality, given a fixed S̃Y , the trace term is minimized when986

UY = UX and VY = VX . We are thus left with:987

L = min
{sY ,i}

1

T 2

(
−T

D∑
i=1

sX,isY ,i +
T

2

D∑
i=1

s2Y ,i +
ρ2

4u2

K∑
i=1

s4Y ,i

)
(S45)

Each sY ,i can be optimized independently. We take the derivative of (S45) with respect to sY ,i and988

equate it to 0. For i > K, we have sY ,i = sX,i. For i ≤ K:989

−TsX,i + TsY ,i +
ρ2

u2
s3Y ,i = 0 (S46)

sX,i = sY ,i

(
1 +

ρ2

Tu2
s2Y ,i

)
(S47)

This end the derivation.990
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4.2 Approach 2991

We first find the stationary point of the objective function (S2) in Y by taking the partial derivative992

of L with respect to Y:993

Y = X

(
IT +

γ2

Tu2
Z>Z

)−1
(S48)

where IT is the identity matrix of dimension T and replace this solution for Y into the objective994

function L:995

L = min
Z

1

T 2
Tr

[
T

2
X>X

(
IT +

γ2

Tu2
Z>Z

)−1
+

γ4

4u2ρ2
Z>ZZ>Z

]
(S49)

Next we replace X and Z by their SVD, use the property of the trace Tr(AB) = Tr(BA) and the996

property of orthogonal matrices UU> = U>U = I:997

L = min
Z

1

T 2
Tr

[
T

2
VXS2

XV>X

(
IT +

γ2

Tu2
VZS2

ZV>Z

)−1
+

γ4

4u2ρ2
S4
Z

]
(S50)

= min
Z

1

T 2
Tr

[
T

2
VXS2

XV>X

(
VZ(Tu2IT + γ2S2

Z)V>Z
Tu2

)−1
+

γ4

4u2ρ2
S4
Z

]
(S51)

= min
Z

Tr

[
1

2
VXS2

XV>XVZ(Tu2IT + γ2S2
Z)−1V>Z +

γ4

4T 2u4ρ2
S4
Z

]
(S52)

Since UZ does not appear in the minimization, it is a free parameter, i.e., it can be any orthogonal998

matrix. For fixed SZ , only the first term in the trace needs to be minimized. One can show that999

the optimal VZ is VZ = VX : based on von Neumann trace inequality, we know that Tr[AB] ≥1000 ∑N
i aibN−i+1 where ai and bi are the ordered singular values of A and B, respectively. Thus,1001

choosing VZ = VX will give us the lower bound of that inequality. Indeed:1002

Tr
[
VXS2

XV>XVZ(Tu2IT + γ2S2
Z)−1V>Z

]
= Tr

[
S2
X(Tu2IT + γ2S2

Z)−1
]

=
T∑
i

s2X,i

1

Tu2 + γ2s2Z,i

(S53)

Where sX,i and sZ,i are the values on the diagonal of SX and SZ , respectively. Thus, the highest1003

singular values of VXS2
XV>X match the lowest singular values of VZ

(
Tu2IT + γ2S2

Z

)−1
V>Z , giving1004

us the lower bound of the von Neumann inequality. Equation (S52) can now be simplified to:1005

L = min
{sZ,i}

T∑
i

(
1

2
s2X,i

1

Tu2 + γ2s2Z,i
+

γ4

4T 2u4ρ2
s4Z,i

)
(S54)

Each sZ,i can be minimized independently. By construction of SVD, we already have that sZ,i = 01006

for i > K. We thus consider 1 ≤ i ≤ K. To simplify notation, we drop the index i. We take the1007
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derivative of (S54) with respect to sZ,i and equate it to 0:1008

∂L
∂sZ

= 0 (S55)

− γ2

(Tu2 + γ2s2Z)2
s2XsZ +

γ4

T 2u4ρ2
s3Z = 0 (S56)

s2X =
γ2

ρ2
(Tu2 + γ2s2Z)2

T 2u4
s2Z (S57)

Which leads to, considering that singular values are positive:1009

sX =
γ

ρ
sZ

(
1 +

γ2

Tu2
s2Z

)
(S58)

We can now use the obtained solution for Z to find the solution for Y. We replace X and Z by1010

their SVD in relation (S48) and use that VX = VZ :1011

Y = UY S̃Y V>Y =X

(
IT +

γ2

Tu2
Z>Z

)−1
(S59)

=UX S̃XV>X

(
IT +

γ2

Tu2
VXS2

ZV>X

)−1
(S60)

=UX S̃XV>XVX

(
IT +

γ2

Tu2
S2
Z

)−1
V>X (S61)

UY S̃Y V>Y =UX S̃X

(
IT +

γ2

Tu2
S2
Z

)−1
V>X (S62)

Equating the SVD terms on the left and right sides we obtain UY = UX and VX = VY and1012

sY ,i = sX,i

(
1 +

γ2

Tu2
s2Z,i

)−1
(S63)

Thus, for i > K, we have sY ,i = sX,i (since sZ,i = 0), whereas for i ≤ K: sY ,i = γ
ρsZ,i (using1013

relation (S58) to replace sX). The relation analogous to (S58) is:1014

sX = sY

(
1 +

ρ2

Tu2
s2Y

)
(S64)

This ends the derivation.1015

4.3 Effect of ρ and relation to SNMF1016

Having the expression for the output Y, we can now describe the effect of ρ on the computation.1017

For ρ → 0, Z → 0, leading to X = Y, which means that the output is equal to the input and no1018

inhibition is taking place. On the other hand, for ρ → ∞, the lowest D −K singular values of Y1019

remain the same, whereas top K drop to 0, i.e., the top K singular values are totally suppressed.1020
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To better understand the behavior of the circuit for small ρ we do a first order expansion in ρ1021

of Y around X, i.e., Y = X + ρΞ. Replacing this expression for Y in the objective function (S2),1022

and keeping only the leading terms in ρ, the objective function becomes:1023

L = min
Z

∥∥∥γ2Z>Z− ρ2X>X
∥∥∥2
F

(S65)

Which corresponds to the basic similarity matching objective function (Pehlevan et al., 2018).1024

For the non-negative objective function, for small ρ we get Y = [X]+ and the objective function1025

simplifies to1026

L = min
Z≥0

∥∥∥γ2Z>Z− ρ2[X]>+[X]+

∥∥∥2
F

(S66)

Which corresponds to the symmetric non-negative matrix factorization (SNMF) objective function1027

and can also be implemented online by a neural circuit (Pehlevan & Chklovskii, 2015).1028

5 Relationship between W and M1029

Here we prove the relationship ρ2/γ2WW> = M2 for the LC.1030

One way to obtain this relationship is to start from the circuit dynamics (equations (S17)). The1031

steady state for z̄(t) is:1032

ρ2/γ2Wȳ(t) = Mz̄(t) (S67)

Multiplying by z̄(t)> on both sides, taking the average over all samples t, and using the definition1033

of W and M (equation (S13)):1034

ρ2/γ2WE
[
ȳ(t)z̄(t)>

]
/u2 = ME

[
z̄(t)z̄(t)>

]
/u2 (S68)

ρ2/γ2WW> = M2 (S69)

An alternative approach to find the above relationship is to use the definition of W and M1035

(equation (S13)) and the SVD decomposition of X, Y, and Z. We write out W and M:1036

W =
1

Tu2
YZ> =

1

Tu2
UY S̃Y V>Y VZ S̃

>
ZU>Z =

1

Tu2
UX S̃Y S̃

>
ZU>Z =

γ

Tu2ρ
UX|K Ŝ

2
ZU>Z (S70)

M =
1

Tu2
ZZ> =

1

Tu2
UZ S̃ZV>ZVZ S̃

>
ZU>Z =

1

Tu2
UZ Ŝ

2
ZU>Z (S71)

Where we used that VX = VY = VZ and UX = UY are orthogonal matrices and that sY ,i = γ
ρsZ,i1037

for i ≤ K and sZ,i = 0 for i > K. We call ŜZ ∈ RK×K the small square submatrix of the rectangular1038
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matrix SZ ∈ RK×N . UX|K ∈ RD×K is the submatrix with the first K columns of UX . Thus:1039

W>W =
γ2

T 2u4ρ2
UZ Ŝ

2
ZU>X|KUX|K Ŝ

2
ZU>Z (S72)

=
γ2

T 2u4ρ2
UZ Ŝ

4
ZU>Z =

γ2

ρ2
M2 (S73)

Taking the square root on both sides gives the relationship (2) in the results section.1040

6 Relationship between the statistics of ORN activity and ORN-LN connectivity1041

Based on the expressions for W and M (equations (S70) and (S71)) we can write W as:1042

W =
γ

Tu2ρ
UX|K Ŝ

2
ZU>Z =

γ

Tu2ρ
UX|KU>ZUZ Ŝ

2
ZU>Z =

γ

ρ
UX|KU>ZM (S74)

Where we used that U>ZUZ = IK . Where UX|K ∈ RD×K is the submatrix with the first K columns1043

of UX . As stated above, UZ is a free parameter and could be any orthogonal matrix.1044

In the case of a single LN, W is a column vector and corresponds to the first left eigenvector1045

of X. For multiple LNs, the column vectors of W span the same subspace as the top K loading1046

vectors of X, UX|K . However, because of the multiplication on the right by U>ZM, the connections1047

vectors do not necessarily correspond to specific PCA directions and are not orthogonal, but only1048

span the top K-dimensional PCA subspace. Thus, this relation above gives us the relationship1049

between the left eigenvectors of X, W, and M.1050

7 Decrease of the spread of the spectrum of singular values1051

Here we show that the coefficient of variation (CV, i.e., the spread) of singular values is smaller at1052

the ORN output (axons) than at the input (somas) in the LC model with the number of ORNs1053

equal to the number of LN. In that case, we have sX = sY

(
1 + ρ2

T s
2
Y

)
. As we have shown, for1054

small sX , we have sY ≈ sX and for large sX , we have sY ≈
(
T/ρ2sX

)1/3
. We call X a positive1055

random variable. We will show that for a 0 < α < 1, CV(X) ≥ CV(Xα), which mimics the case1056
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we have.1057

CV(X) ≥ CV(Xα) (S75)

⇔ σX
E [X]

≥ σXα

E [Xα]
(S76)

⇔
σ2X

E [X]2
≥

σ2Xα

E [Xα]2
(S77)

⇔
E
[
X2
]
−E [X]2

E [X]2
≥

E
[
X2α

]
−E [Xα]2

E [Xα]2
(S78)

⇔
E
[
X2
]

E [X]2
≥

E
[
X2α

]
E [Xα]2

(S79)

The last inequality can be proven by using Hölder’s inequality twice. First:1058

(
E
[
X2
] ) 1−α

2−α
(
E [Xα]

) 1
2−α ≥ E [X] (S80)

which leads to:1059

E
[
X2
]

E [X]2
≥

(
E
[
X2
] ) α

2−α

(
E [Xα]

) 2
2−α

(S81)

and second:1060 (
E
[
X2
] ) α

2−α
(
E [Xα]

) 2−2α
2−α ≥ E

[
X2α

]
(S82)

which leads to:1061 (
E
[
X2
] ) α

2−α

(
E [Xα]

) 2
2−α
≥

E
[
X2α

]
E [Xα]2

(S83)

Combining inequalities (S81) and (S83) proves inequality (S79) and ends the proof.1062
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