
Deep-learning based retinal fluid segmentation in optical
coherence tomography images using a cascade of ENets

Loizillon Sophie1,2,*, Meurée Cédric1 �, Breuil Camille1 �, Faucon Timothée1, Lambert
Arnaud1

1 AISCREENINGS, Paris, France
2 Bordeaux-INP, Bordeaux, France

�These authors also contributed equally to this work.
* sophie.loizillon@aiscreenings.com

Abstract

Optical coherence tomography (OCT) is a non-invasive, painless and reproducible
examination which allows ophthalmologists to visualize retinal layers. This imaging
modality is useful to detect diseases such as diabetic macular edema (DME) or age
related macular degeneration (AMD), which are associated with fluid accumulations. In
this paper, a cascade of deep convolutional neural networks is proposed using ENets for
the segmentation of fluid accumulations in OCT B-Scans. After denoising the B-Scans,
a first ENet extracts the region of interest (ROI) between the inner limiting membrane
(ILM) and the Bruch’s membrane (BM), whereas the second ENet segments the fluid in
the ROI. A random forest classifier was applied on the segmented fluid regions to reject
false positive. Our framework was trained on three different datasets with several
diseases such as diabetic retinopathy (DR) and AMD. Our method achieves an average
Dice Score for fluid segmentation of 0.80, 0.83 and 0.83 on the UMN DME, UMN AMD
and Kermany datasets respectively.

Introduction 1

Over the last decades, different approaches have been proposed to automatically 2

segment fluid in OCT images. As fluid accumulations are often considered as 3

biomarkers of retinal diseases, their accurate segmentation is crucial for the diagnosis of 4

different pathologies, as well as for the evaluation of the effectiveness of a treatment. 5

Three types of fluid accumulation can occur in the retina: intraretinal fluid (IRF), 6

subretinal fluid (SRF), and pigment epithelial detachment (PED). 7

8

Early papers on segmentation in OCT used methods based on thresholds and graph 9

theory. Wilkins et al. [1] proposed an algorithm based on intensity thresholds for fluid 10

segmentation in OCT images. The disadvantage of this approach is that it requires high 11

image quality, which is a well known challenge in the medical imaging field. Rashno et 12

al. [2] used the graph cut method to segment fluid accumulations. These classical image 13

processing algorithms have the inconvenience of a high computational time, which did 14

not allow ophthalmologists to include them in their daily workflow. 15

16

These aspects, together with the development of the field of machine learning over the 17

last decades, have led to the publication of papers on fluid segmentation in OCT based 18
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on machine learning methods. Random forest classification [3], kernel regression [4] and 19

fuzzy level set [5] methods have been implemented to perform fluid segmentation. These 20

methods involve the training of a classifier by extracting a large number of textural, 21

structural or positional features from OCT images. Machine learning approaches have 22

allowed significant improvements in segmentation results over classical image processing. 23

24

In recent years, deep learning methods have been more specifically used in medical 25

image processing. The U-Net architecture presented by Ronnenberger et al. [6] has 26

provided a real breakthrough in biomedical image segmentation. Inspired by the Fully 27

Convolutional Network (FCN), U-Net combines deep semantic and spatial information 28

through encoding and decoding blocks linked by skip connections. This architecture has 29

achieved outstanding results in many medical image segmentation tasks and has been 30

used for OCT segmentation, whether for fluid region segmentation [7], retinal layer 31

segmentation [8], drusen segmentation [9], or intraretinal cystoid fluid segmentation [10]. 32

Lu et al. [7], winners of the Retinal OCT Fluid Challenge (RETOUCH), used a U-Net 33

to segment the three different types of fluid in B-Scans. Venhuizen et al. [10] proposed a 34

cascade of two U-Nets with one extracting the region of interest and the second 35

segmenting the fluid regions. Chen et al. [11] integrated squeeze and excitation (SE) 36

blocks into the classical U-Net structure to only keep the useful feature maps for fluid 37

regions segmentation. Roy et al. [12] implemented a new fully convolutional architecture 38

inspired by U-Net, called ReLayNet, to segment both retinal layers and fluid 39

accumulations in OCT images. Other FCN-based architectures such as Seg-Net and 40

Deeplabv3+ have also been used for fluid segmentation in B-Scans showing good 41

results [13] [14]. 42

43

Recently, the Efficient Neural Networks (ENet) architecture, which was initially 44

developed for real-time semantic segmentation, has been trained on biomedical images 45

for the segmentation of aneurysms, prostate and skin lesions [15] [18]. ENet contains 46

only half the number of parameters of the U-Net architecture for similar performances. 47

To our knowledge, ENet has not yet been used for fluid segmentation in OCT B-Scans. 48

49

In this paper, we present a novel approach to automatically segment and quantify fluid 50

in OCT B-Scans. Our pipeline is composed of a preprocessing step which uses the 51

BM3D algorithm to reduce the speckle noise. Then, a cascade of deep convolutional 52

neural networks using ENets is trained to extract the region of interest (ROI) and to 53

segment the fluid pixels in the ROI mask. To complete our segmentation pipeline, we 54

refine the results with a post-processing step by using a random forest classifier. 55

56

This article is organized as follows: the research materials and methods are described in 57

the second section, including the details of our pipeline implementation and its 58

application to the automatic segmentation of retinal fluids in OCT images. The third 59

section is dedicated to the segmentation and quantification results. Finally, the fourth 60

and fifth sections present the discussions and conclusions, respectively. 61

Materials and methods 62

Datasets 63

For the present study, three public OCT datasets were employed to train and test our 64

method. Two of them were created by the University of Minnesota (UMN) [2] [20]. The 65

OCT volumes were acquired with a Heidelberg Spectralis imaging system for 29 66

subjects with DME and 24 with AMD. Each B-Scan averages 12 to 19 frames with a 67
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resolution of (5.88 x 3.87) µm/pixel. The accumulations of fluid were manually 68

segmented by two UMN ophthalmologists. 69

70

The Kermany dataset consists of 530 OCT volumes divided into three categories: DME, 71

DRUSEN and NORMAL [21]. The images were also acquired with a Heidelberg 72

Spectralis imaging system and manual fluid segmentation was performed by three 73

trained graders and approved by two ophthalmologists. For each volume, the number of 74

B-Scans varied from 1 to 13, with most volumes containing only one or two. 75

Segmentation Pipeline 76

Our pipeline for retinal fluid segmentation and quantification in OCT images consists of 77

five steps, as shown in Fig 1: 1) preprocessing of the OCT B-Scans by means of the 78

BM3D algorithm; 2) segmentation of the ROI located between the ILM and the BM; 3) 79

segmentation of the pixels associated with fluid accumulations using a convolution 80

neural network; 4) post-processing of the binary fluid segmentation mask using a 81

random forest classifier; 5) 2D fluid surface quantification.

Fig 1. Proposed method for fluid segmentation and quantification in OCT
B-Scans.

82

Preprocessing 83

Speckle noise is the main factor which degrades the quality of OCT images. This 84

granular and multiplicative noise impacts the performance of automatic analysis in 85

OCT images. Based on the literature, we investigated three algorithms in order to 86

reduce the speckle noise in B-Scans. We implemented the Block Matching and 3D 87

Filtering (BM3D) algorithm proposed by Dabov et al [17], which is one of the most 88

powerful image denoising methods with its collaborative filtering. We also tested the 89

Non Local Means (NLM) algorithm presented by Buades et al. [19] which exploits the 90

presence of similar features within an image. For the NLM and BM3D, we used a seach 91

window of 21 pixels and a patch size of 7. Finally, we implemented the median filter (as 92

1D filter of 5 pixels). 93

ROI Segmentation 94

Based on Venhuizen et al. [10] method, we decided after having denoised the B-Scans to 95

perform a segmentation between the ILM and BM layers, where fluid accumulation can 96

be located. We investigated four architectures encountered in the literature: the U-Net, 97

SEU-Net, Seg-Net and ENet in order to identify the most efficient one for the ROI 98

segmentation in OCT B-Scans. Each architecture takes as input a B-Scan preprocessed 99

by the BM3D algorithm and generates as output a binary segmentation mask of the 100

ROI. This step has the advantage of removing all structures below the BM, including 101

the choroid, which can degrade the automatic analysis of OCT images. 102
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Fluid Segmentation 103

The second model of this pipeline generates a binary fluid segmentation mask. It takes 104

as input two images: the B-Scan preprocessed by the BM3D algorithm and the output 105

of the first model, namely the ROI mask. One of the major advantages of this approach 106

is that the model will be able to focus only on pixels that are likely to contain fluid. For 107

this segmentation task, we also tested the same four architectures to identify the most 108

relevant one. We compared our performances with several approaches encountered in 109

the literature: Rashno et al. [2] and Ganjee et al. [16] methods for the UMN DME 110

dataset, Rashno et al. [2] and Chen et al. [11] for the UMN AMD, and Ganjee et al. [16] 111

and Lu et al. [7] for Kermany. 112

Post-processing 113

After training our cascade of deep convolutional neural networks to segment fluid in 114

OCT images, we added a post-processing step to our segmentation pipeline. This step 115

improves the performance of our method by rejecting false positive detected pixels. 116

Three machine learning classifiers were identified in the literature: the random forest, 117

the support vector machine and the K-nearest neighbour methods. Each one was 118

trained by extracting the following properties from potential fluid regions: perimeter, 119

area, average intensity, variance of the intensity, orientation and eccentricity. 120

Quantification 121

Different machines are capable of acquiring OCT images. These can have different 122

resolutions. Thus, a quantification step is needed to compare segmentation results. Also, 123

most ophthalmologists use quantitative OCT biomarkers, such as the amount of fluid 124

accumulations to inform treatment decisions in individualized therapies. This is why we 125

decided to implement a 2D quantification step in our pipeline. To quantify the surface 126

of fluid in B-Scans, we first evaluate the number of detected fluid pixels thanks to the 127

segmentation map and then calculate the product between the number of detected 128

pixels and the pixel resolution. 129

Implementation 130

Our proposed method is a cascade of deep convolutional neural networks composed of 131

two ENets. It was originally developed for real-time semantic segmentation and the 132

architecture contains half the number of parameters of a U-Net for similar performances. 133

The ENet architecture is divided into five stages, three of which are dedicated to the 134

encoder and two to the decoder. Each stage is composed of convolution blocks with 135

short skipped connections known as bottleneck blocks. They consist of three 136

convolutional layers. A first 1 x 1 projection is used to reduce the dimensionality. Then, 137

a regular, dilated, or full convolution is performed. Finally, a 1 x 1 projection expands 138

the dimensionality of the image. Paszke et al. [15] decided to use an asymmetric 139

architecture because they believed that the encoder should be able to operate on lower 140

resolution than classification architectures. 141

142

The two ENets were trained using the Focal Tversky Loss (FTL) function defined in Eq 143

1. This loss function was used to address the issue of data imbalance for fluid 144

segmentation in OCT images and thus to achieve a better trade off between precision 145

and recall. 146

FTL =
∑
class

(1− TI)1/γ (1)
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The Tversky Index (TI) is a generalization of the dice score allowing more flexibility in 147

the balance between false positives and false negatives by means of the two scalar 148

hyperparameters α and β as shown in Eq 2. 149

TI =
TP

TP + αFN + βFP
(2)

where TP represents the true positive, FN the false negative and FP the false 150

positive pixels. 151

In Eq 1 , γ ranges from 1 to 3. We trained both ENets with γ > 1 so that the loss 152

function focuses more on less accurate pixel predictions. We performed an optimization 153

of hyperparameters including the α, β and γ coefficients by Random Search and 154

obtained the best results with α = 0.6, γ = 0.4 and γ = 4
3 . Indeed, using a higher value 155

of α improves the model performances by minimizing false negative predictions. 156

157

Thanks to the Random Search optimization, we set the learning rate of the Adam 158

optimizer at 10−4, the batch size at 32 and the spatial dropout rate of each bottleneck 159

at 0.12. The training process was stopped if the FTL didn’t decrease during 10 epochs. 160

161

This segmentation pipeline was implemented using Python and the deep learning API 162

Keras. We used the scikit-learn library for median filtering, the NLM algorithm and the 163

post-processing machine learning classifiers. The BM3D library was also utilized to 164

preprocess the B-Scans. 165

Performance Analysis 166

Preprocessing Metrics 167

To quantify the quality of the preprocessed images, we evaluated several metrics which 168

can be divided into 2 groups: the intensity-based metrics which operate only on the 169

intensity of the distortions and the feature-based metrics, which measure quality based 170

on information or structures from the image. We utilized the Mean Square Error (MSE) 171

and the Peak Signal-to-Noise Ratio (PSNR) as intensity-based metrics. For the 172

feature-based metrics, we have chosen to focus on: the Structural Similarity Index 173

(SSIM), the Multi-scale Structural Similarity Index (MS-SSIM), the Visual Information 174

Fidelity (VIF) and the Universal Image Quality Index (UQI). 175

Segmentation Metrics 176

To evaluate the performance of fluid segmentation we used the Dice Similarity 177

Coefficient (DSC), which measures the similarity between the predicted segmentation 178

and the ground truth. The formula of the DSC is given in Eq 3. 179

DSC(S,GT) =
2 | S ∩GT |
| S | + | GT |

(3)

with S the segmentation result and GT the ground truth. 180

Three other metrics were evaluated as secondary metrics to validate our segmentation 181

models: the Intersection over Union (IoU), Precision and Recall. 182

183

Intersection over Union (IoU) evaluates the area of overlap between the predicted 184

segmentation and the ground truth divided by the area of the union between both 185

segmentation. 186

IoU(S,GT) =
| S ∩GT |
| S ∪GT |

(4)
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Precision describes the purity of our positive detections with respect to the ground 187

truth. 188

Precision =
TP

TP + FP
(5)

Recall describes the completeness of our positive predictions in comparison to the 189

ground truth. 190

Recall =
TP

TP + FN
(6)

We have also displayed a Receiver Operating Characteristic (ROC) curves for the 191

detection of B-Scans containing fluids between our model predictions and the ground 192

truths. It is a plot of the false positive rate (FPR) (x-axis) versus the true positive rate 193

(y-axis) for a number of different candidate threshold values between 0 and 1. The true 194

positive rate is also known as recall. The false positive rate is defined in Eq 7. 195

FPR =
FP

FP + TN
(7)

Quantification Metrics 196

To evaluate the 2D quantification performances, we used 2 metrics: Pearson’s 197

correlation coefficient (ρ) which reflects a linear relationship between two variables and 198

the coefficient of determination (R2) which explains to which extent the variability of a 199

factor can be caused by its relationship with another related factor. 200

Results 201

Preprocessing 202

We preprocessed all the B-Scans from the UMN and Kermany datasets with three 203

algorithms: BM3D, NLM and median filtering. The preprocessing results have been 204

summarized in Tab 1. 205

Table 1. Evaluation of three preprocessing algorithms to denoise OCT
B-Scans.

MSE PSNR SSIM MS-SSIM UQI VIF
Computation

time (s)
NLM 93 32 0.68 0.91 0.85 0.24 1.9

BM3D 83 34 0.67 0.90 0.84 0.25 17.23
Median
Filtering

32 31 0.76 0.94 0.85 0.33 0.002

206

The results of the feature-based metrics clearly show that the median filter allows a 207

better preservation of the image features associated with a short execution time, with a 208

SSIM and a VIF 8% higher than the other methods. However, the median filter does 209

not remove as much noise as the BM3D and NLM algorithms. Because of its good 210

ability to remove speckle noise according to its PSNR score, while preserving edges, we 211

decided to preprocess our B-Scans with the BM3D algorithm. 212
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ROI Segmentation 213

After having preprocessed the B-Scans with the BM3D algorithm to reduce the speckle 214

noise, we trained four different network architectures to determine the best one for 215

segmenting the ROI. We evaluated the models performances with several metrics as 216

reported in Tab 2.

Table 2. Evaluation of four architectures for ROI segmentation in OCT.

DSC IoU Recall Precision Number of parameters
U-Net 0.93 0.90 0.95 0.93 7 759 521

SEU-Net 0.94 0.88 0.97 0.93 8 634 913
Seg-Net 0.93 0.89 0.95 0.92 2 932 929

ENet 0.96 0.92 0.97 0.95 371 121

217

These results allowed us to identify the most interesting architecture for ROI 218

segmentation in B-Scans. Indeed, if the difference in DSC remains small between the 219

different architectures, the ENet contains only 371 121 trainable parameters. This 220

makes it possible to significantly speed up the training phase as well as its prediction 221

time. Automatic segmentation of a B-Scan using a ENet architecture takes 0.2 seconds 222

compared to 1.3 seconds for a U-Net. 223

Fluid Segmentation 224

Once we finished the preprocessing step of the OCT B-Scans with the denoising 225

algorithm BM3D and the ROI segmentation, we were able to perform fluid 226

segmentation. As we previously did for the ROI, we determined the best possible 227

architecture for segmenting fluid accumulations in OCT images. Therefore, we trained 228

four different architectures using the preprocessed and ROI segmented B-Scans from the 229

three datasets. Results are detailed in Tab 3.

Table 3. Evaluation of four architectures for fluid segmentation in OCT.

DSC IoU Recall Precision
U-Net 0.76 0.66 0.77 0.78

SEU-Net 0.78 0.69 0.79 0.80
Seg-Net 0.79 0.69 0.80 0.82

ENet 0.81 0.70 0.86 0.89

230

231

Thanks to this comparative analysis, we were able to identify the most interesting 232

network architecture for fluid segmentation in OCT B-Scans. Once again, the ENet 233

architecture gave us the best DSC with 81%. Fig 2 shows the segmentation results 234

obtained with the four different network architectures on a B-Scan from the UMN DME 235

dataset. 236
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Fig 2. Fluid regions segmentation results using different network
architectures. Segmentation maps with green pixels correspond to true positives, red
to false positives and blue to false negatives

Post-processing 237

We completed our segmentation pipeline with a post-processing step to reject false 238

positives. We tested three machine learning classifiers: the random forest, the support 239

vector machine and the k-nearest neighbors as shown in Tab 4

Table 4. Evaluation of four architectures for fluid segmentation in OCT.

Architecture Post-processing DSC IoU Recall Precision

ENet

– 0.81 0.70 0.86 0.89

RF 0.82 0.70 0.87 0.90

SVM 0.80 0.69 0.85 0.88

k-NN 0.81 0.70 0.87 0.90

240

Thus, the addition of a post-processing step based on the random forest machine 241

learning classifier allowed us to gain 1% of Dice Score. This step rejects several false 242

positives and therefore increases the recall score as shown in Fig 3.

Fig 3. Segmentation map without and with a post-processing step. On the
left the first segmentation map without any post-processing step and on the right the
post-processed segmentation map with a random forest classifier.

243
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Full Segmentation Pipeline 244

Once the models architecture was selected and the pipeline implemented, we 245

investigated its capability to generalize fluid segmentation for several diseases. The DSC 246

boxplot and the ROC curves of fluid detection are displayed in Fig 4. For each dataset, 247

the AUC was above 0.97, indicating an excellent detection accuracy regardless of the 248

type of pathology.

Fig 4. DSC boxplot for fluid segmentation and ROC curves for fluid
detection of three different datasets.

249

Finally, we compared our pipeline performances with approaches encountered in the 250

literature as shown in Tab 5. We observed an improvement of over 10% and 5% on 251

Rashno et al. [2] and Ganjee et al. [16] methods respectively for the UMN DME dataset. 252

A smaller improvement was obtained for the Kermany dataset with a gain of 4% and 253

1% compared with Ganjee et al. [16] and Lu et al. [7]. However, our pipeline did not 254

reach the state of art performance of Chen et al for the fluids segmentation on the UMN 255

AMD dataset.

Table 5. Comparison of Dice Similarity Coefficient results for the
segmentation of fluid in OCT.

Dataset Paper Methods DSC

UMN DME
Rashno et al. Unsupervised 0.69
Ganjee et al. Unsupervised 0.75
Our Method Supervised 0.80

UMN AMD
Rashno et al. Unsupervised 0.82
Chen et al. Supervised 0.94
Our Method Supervised 0.83

KERMANY
Ganjee et al. Unsupervised 0.79

Lu et al. Supervised 0.82
Our Method Supervised 0.83

256

Quantification 257

We evaluated the performance of our fluid quantification step using two metrics: the 258

Pearson correlation coefficient ρ and the coefficient of determination R2. We could not 259

estimate the fluid surface for the Kermany dataset, because the resolution of the 260

B-Scans was unavailable. For the UMN datasets, comparison with assessment by expert 261

graders trained in retinal analysis showed a good correlation with automated 262
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quantification of fluid in B-Scans as reported in Tab 6. 263

Table 6. Evaluation of the quantification of fluid in OCT images.

Datasets ρ R2 Average difference
UMN AMD 0.98 0.97 0.009737 mm2

UMN DME 0.89 0.79 0.018163 mm2

264

Discussion 265

We present a fluid segmentation method on OCT B-Scans based on a cascade of deep 266

convolutional neural networks using ENets. To evaluate the performance of the 267

proposed method, we have compared it to the fluid segmentation methods encountered 268

in the literature. As shown in Tab 3, the proposed method achieves good results on 269

OCT B-Scans related to DME and AMD affected patients. On the UMN DME dataset, 270

we outperform the unsupervised approaches of Rashno et al. [2] and Ganjee et al [16] by 271

up to 10% for the dice score. Both papers proposed unsupervised approaches and 272

therefore tested their method on the whole dataset. They detailed their results for each 273

volume by taking the mean Dice Score of each B-Scan composing the volume. Thus, we 274

were able to compare our performance on our test set. Our method slightly improved 275

the results obtained by Ganjee et al. [16] with their unsupervised approach on the 276

Kermany dataset and matched the performance of Lu et al. [7]. However, this 277

comparison must integrate the fact that the dataset was unknown to Lu et al. as their 278

model was trained on another dataset provided by the Medical Image Computing and 279

Computer Assisted Intervention conference (MICCAI). We also evaluated our network 280

on AMD OCTs. We compared our performance on the 5 OCT volumes of our test set 281

with the one of Rashno et al [2] and found a very slight improvement in results of 1%. 282

We had more difficulties to compare our results to those of Chen et al. [11], who report 283

a mean Dice Score of 94%, because it was not made clear which OCT volumes were 284

considered in the training and testing phases of their work. To avoid these issues, we 285

have detailed our results for each volume to facilitate future comparisons in Tab 7. A 286

possible explanation for this discrepancy may be that Chen et al. limit themselves to 287

fluid segmentation in AMD, whereas our model seeks to generalize fluid segmentation to 288

different retinal pathologies.

Table 7. Mean Dice Score per volume for UMN AMD and DME test set.

UMN DME UMN AMD
Subject 1 2 3 4 5 6 1 2 3 4 5
Mean Dice 0.84 0.82 0.81 0.76 0.78 0.82 0.86 0.89 0.85 0.82 0.68

289

In order to assess the generalization and potential clinical application of the proposed 290

framework, it would be necessary to conduct in the future an additional experiment on 291

a clinical routine dataset. 292

Conclusion 293

In this paper, we have described a novel approach to automatically segment fluid in 294

OCT B-Scans. The proposed pipeline starts with a preprocessing step to reduce the 295
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speckle noise thanks to the BM3D algorithm. Then, it consists of a cascade of ENets 296

where the first one extracts the region of interest between the ILM and BM and the 297

second one segments fluid accumulations. We complete our network with a 298

post-processing step by training a random forest classifier to remove false positive pixel 299

detections and thus to improve our segmentation performances. The proposed method 300

showed good performances with a DSC over 80% on three different datasets associated 301

with different types of diseases. In the future, we plan to test our method on a ”real life” 302

dataset to assess the generalization and clinical benefit of the proposed framework. 303
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