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10 Abstract 

11 Understanding the controls of mass transport of photosynthates in the phloem of plants 

12 is necessary for describing plant carbon allocation, productivity, and responses to wa- 

13 ter and thermal stress. While several hypotheses about optimization of phloem struc- 
 

14 ture and function, and limitations of phloem transport under drought have been tested 

15 both with models and anatomical data, the true impact of radial water exchange of phloem 

16 conduits with their surroundings on mass transport of photosynthates has not been ad- 
 

17 dressed.  Here the physics of the Münch mechanism of sugar transport is re-evaluated to 

18 include local variations in viscosity resulting from the radial water exchange in two di- 

19 mensions (axial and radial). Model results show that radial water exchange pushes su- 

20 crose away from conduit walls thereby reducing wall frictional stress due to a decrease 
 

21 in sap viscosity and increasing sugar concentration in the central region of the conduit. 

22 This leads to increased sugar front speed and axial mass transport for a wide range of 

23 phloem conduit lengths and allows sugar transport to operate more efficiently than pre- 
 

24 dicted by previous models. A faster front speed leads to higher phloem resiliency under 

25 drought because more sugar can be transported with a smaller pressure gradient. 
 
 

26 1 Introduction 
 

27 The efficiency of photosynthate transport from the production sites (sources; usu- 
 

28 ally leaves) to areas of consumption or storage (sinks) within the vascular tissue known 

29 as the phloem is drawing significant attention in plant physiology. The implications of 

30 efficient photosynthate transport range from local impacts on tissue or plant health and 

31 growth to ecosystem-scale effects on carbon and water cycling because of the potential 
 

32 link between phloem transport and stomatal control of photosynthesis (Nikinmaa et al. 

33 2013), and a possible link between phloem transport failure and plant mortality under 

34 drought (Sevanto et al. 2014). Consequently, several models for phloem transport and 
 

35 the connection between phloem structure and function, as well as for the potential weak 

36 points in the transport system have been formulated (Münch 1930, Phillips & Dungan 

37 1993, Thompson & Holbrook 2003, Jensen et al. 2009, 2012, Sevanto 2014). The most 

38 commonly accepted concept under which all these models operate is that phloem vas- 
 

39 culature is optimized for efficient transport of soluble organic compounds (mostly sug- 

40 ars) produced during photosynthesis approximately as described by the pressure-flow hy- 

41 pothesis or Münch mechanism (Münch 1930).  In the pressure-flow hypothesis, transport 
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42 is initiated in leaves when sugars and other metabolic products are loaded into the phloem. 

43 Once in the phloem, sugars and water molecules are driven to move through the phloem’s 

44 complex network of narrow but elongated, interconnected, cylindrical living cells (sieve 

45 tubes) spanning the length of the plant following pressure gradients. High sugar concen- 
 

46 tration at the loading site (leaves) draws water from the xylem, the tissue supplying wa- 

47 ter to the leaves or other surrounding tissues by osmosis towards the phloem. At the sinks, 

48 sugars are unloaded from the phloem to growing or storage cells, and water is released 
 

49 back to the xylem or other surrounding tissues. The loading and unloading at sources 

50 and sinks build a pressure gradient in the phloem creating a system where plant water 

51 and photosynthate transport over long distances occurs without active pumping. This 

52 cycle of pressure buildup and transport without active pumping endowed the phloem sys- 
 

53 tem with the label miracle of ingenuity (van Bel 2003). 
 

54 The simplicity, plausibility, and intuitive appeal of the Münch mechanism lead to 

55 its proliferation in mathematical models (Nikinmaa et al. 2013, Jensen et al. 2016). It 
 

56 is routinely used to connect plant carbon sources and sinks, and their concomitant con- 

57 trols in a future CO2 enriched climate (Mencuccini & Hölttä 2010, Fatichi et al. 2019), 

58 and it has been used to explain aspects of plant hydraulic failure during drought (Sav- 

59 age et al. 2017, Konrad et al. 2018, Huang et al. 2018, Sevanto 2018, Salmon et al. 2019) 
 

60 and extreme cold temperatures (Swanson & Geiger 1967, Wardlaw 1968). The direct con- 

61 sequence of those two abiotic stresses should be a decrease in the overall phloem flow rate 

62 because the viscosity of a sucrose solution increases significantly with the drought-induced 
 

63 increase in sugar concentration required for osmoregulation (Hölttä et al. 2009) and with 

64 decreasing temperature. 
 

65 However, the Münch mechanism is not free from controversy.  The main critique 
 

66 stems from the fact that the sieve tubes seem to have too low of a hydraulic conductance 

67 along the phloem to allow sugars to be transported from leaves to roots in the largest 

68 and longest of plants (Curtis & Scofield 1933, Lang 1979, Fensom 1981, Knoblauch et al. 

69 2016, Liesche & Schulz 2018). These studies also report lower leaf sucrose concentration 
 

70 in tall trees compared to shorter vegetation. When interpreted using simplified trans- 

71 port models for hydraulic conductance, this suggests that the Münch mechanism can- 

72 not produce effective transport in tall plants because the driving force for sucrose trans- 

73 port is lower for a longer path length. To resolve the issues of inadequate conductance 
 

74 and too low-pressure gradient to efficiently drive flow in tall plants, it has been suggested 
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75 that rather than exchanging water and sugars only at the extreme source and sink ends 

76 of the phloem pathway, as suggested by the original Münch mechanism, sugars and wa- 

77 ter could be exchanged at different locations along the pathway essentially forming a ”re- 

78 lay” system to facilitate transport (Lang 1979). While plausible, and based on model- 
 

79 ing studies, also effective in increasing transport capacity (Hölttä et al. 2009), there cur- 

80 rently is no clear evidence for unloading and reloading of sugars from and to phloem con- 

81 duits along the transport pathway. There is, however, an increasing amount of evidence 
 

82 that water might readily be exchanged between the conduits and their surroundings along 

83 the entire length of the pathway (Knoblauch & Oparka 2012, Knoblauch & Peters 2017, 

84 Stanfield et al. 2017). 
 

85 Answering the question of whether and how easily phloem conduits exchange wa- 

86 ter with their surroundings outside the primary loading and unloading zones at sources 

87 and sinks is becoming necessary for evaluating the validity of the Münch mechanism, and 

88 because it determines how phloem transport is affected under stress (Sevanto 2014, 2018). 
 

89 Theoretically, if no water exchange occurs, plants run a risk of blocking phloem flow by 

90 viscosity increase and reduced pressure gradient under drought conditions because higher 

91 amounts of sugar are needed in the phloem conduits at the loading and unloading zones 

92 for osmoregulation against the declining water potential of the xylem and the surround- 
 

93 ing tissues. If water exchange occurs readily along the entire transport pathway, the flow 

94 may not be restricted by the same constraints that stem from the original interpreta- 

95 tion of the Münch mechanism (Phillips & Dungan 1993, Sevanto 2014, Sevanto et al. 2014, 
 

96 Sevanto 2018). In particular, the effects of viscosity buildup can be ameliorated because 

97 of the diluting effects of radial water flow velocity, the focus of the work here. 
 

98 Experimental challenges in measuring water and solute fluxes within the phloem 
 

99 (Curtis & Scofield 1933, Housley & Fisher 1977) has led to reliance on mathematical mod- 

100 els of simplified phloem transport to understand transport mechanisms in the phloem. 

101 As expected when employing such models, values of one or more variables may not be 

102 well constrained or are uncertain, possibly by several orders of magnitude. This fact is 
 

103 often used to justify (overly) simplified description of transport physics in models. These 

104 simplifications might lead to biased mass fluxes and estimates for total transport. An 

105 alternative to the simplification approach is to assess the effects of the simplification on 
 

106 the results, and in the case of phloem transport, test whether the pressure-flow hypoth- 

107 esis predicts increases or decreases in sugar mass flux when these simplifications are re- 
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108 laxed or re-addressed. If increases in mass flux can be demonstrated upon re-addressing 

109 key simplifications used with the Münch mechanism, the contradictions with some ob- 

110 servations might be explained by the effects of these model simplifications lending fur- 

111 ther support to the Münch mechanism. 
 

112 Irrespective of the physics of phloem transport, phloem anatomical structure is as- 

113 sumed to have evolved to optimize sugar transport.  Within the confines of the Münch 

114 mechanism, this optimization arises because of trade-offs between benefits of increasing 
 

115 sugar concentration (c) and its impact on the mass flux J. Increasing c increases flux 

116 (J) because the osmotic pressure driving water movement increases approximately lin- 

117 early with c (Van’t Hopf equation); however, increasing c is accompanied by a nonlin- 
 

118 ear increase in dynamic (and kinematic) viscosity thereby enhancing the viscous forces 

119 that oppose movement (drag) thereby reducing J. In most phloem transport models to- 

120 day, viscosity is treated either as a constant or it is allowed to vary with loaded sugar 

121 concentration assuming that radial water flow does not significantly affect sugar concen- 
 

122 tration or viscosity. Theoretical representation of J along with a number of scaling ar- 

123 guments results in a maximal sugar flux Jmax at around c = 20% (Jensen et al. 2013) 

124 independent of the sieve tube geometric properties. Interestingly, upon averaging across 

125 species and experiments, the operating c = 20% was reasonably confirmed and appears 
 

126 independent of properties of the sieve tube geometry or the loading mechanism (passive 

127 versus active) in plants. The scatter in reported values of c around c = 20%, however, 

128 was substantial (Jensen et al. 2013) with many species operating at c < 20%. This low 
 

129 loaded sugar concentration value has also been used to argue against the validity of the 

130 Münch mechanism, especially in tall trees (Knoblauch & Oparka 2012), since it leads to 

131 a decrease in mass flux as predicted by the simplified physics. Therefore, it remains open 

132 whether plant sugar transport actually operates sub-optimally, or whether alternatives 
 

133 or modifications to the Münch mechanism are necessary to explain long-distance yet sub- 

134 optimal sugar transport. 
 

135 Motivated by these issues, we ask to what degree refinements and addressing the 
 

136 model simplifications in the description of the transport physics within the Münch mech- 

137 anism enhance J above and beyond expectations from earlier theories. To address this 

138 question generically, an idealized, unsteady, two-dimensional, osmotically driven pipe flow 
 

139 governed by the physics of the Münch hypothesis is considered.  No attempt is made to 

140 represent all the complexities of the geometry of the phloem tissue or in the loading and 
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141 unloading mechanisms of sugars. Instead, the main novelty here stems from the inclu- 

142 sion of the simultaneous effects of concentration-dependent viscosity where local changes 

143 in viscosity with c (axially and radially) are allowed. It is shown that including such ad- 

144 justments to viscous stresses lead to significant enhancement in the magnitude of the mass 
 

145 flux, especially in long tubes, when compared to prior one-dimensional (axial) models 

146 (Thompson & Holbrook 2003, Jensen et al. 2016) and globally averaged Poiseuille mod- 

147 els (Jensen et al. 2013). Moreover, this enhancement in J is shown to be accompanied 
 

148 by a reduced pressure gradient driving the flow. Thus, the work here adds support to 

149 the Münch hypothesis by offering a new perspective regarding the contribution of co- 

150 ordination between axial and radial flow to J. 
 

151 Before describing the new representation of viscous stresses within the context of 

152 the Münch hypothesis, some comments and clarifications about efficient sugar transport 

153 and its relation to c are illustrated through the occurrence of a maximum sugar flux J = 

154 Jmax at a well-defined c in globally averaged Poiseuille models. That measured sugar 

155 concentration in the leaves of tall trees is lower than this c corresponding to maximum 

156 sugar flux was the basis for some critique of the Münch hypothesis (Knoblauch et al. 2016). 

157 It is to be noted that the c corresponding to Jmax in globally averaged Poiseuille mod- 

158 els is shown not to be sensitive to the phloem hydraulic properties or even tube geom- 
 

159 etry. Hence, the occurrence of such a c is weakly connected to phloem hydraulics as later 

160 discussed. 
 

161 In prior work (Jensen et al. 2013), the sugar mass flux J (kg s−1) was assumed to 

162 be only advective and given by 
 

163 J(c) = Q(c) ρ(c) c, (1) 
 

164 where Q(c) is the volumetric flow rate (m3 s−1), ρ(c) is the density of the phloem sap 

165 that varies with c, and c is the sucrose concentration inside the sieve tube as before. In 
 

166 this approach, the driving force for Q and the constraints on it are now formulated to 

167 be c dependent. The maximal flux Jmax emerges when solving for c at the critical point 

168 ∂J/∂c = 0. For c > 0, the existence of this single critical point is virtually guaran- 

169 teed provided the water flux ρ(c)Q(c) non-linearly decreases with increasing c. For lam- 
 

170 inar flows in tubes, the Hagen-Poiseuille (HP) equation for Q and the resulting J can 

171 be expressed as (Jensen et al. 2013) 
 
 
 

172 

 
Q = Xf 

∆P 
µ(c) 

 
; J = Xf 

∆P 
ν(c) 

µ(c) 
c;  ν(c) = , (2) 

ρ(c) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.24.461704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461704
http://creativecommons.org/licenses/by/4.0/


Sugar translocation in the

–8–

 

 
8

 

 
 

Figure 1: Histogram showing the reported number of species (ordinate) operating at the 

measured phloem sugar concentration (co) values (abscissa) taken from (Jensen et al. 

2013). Solid red line (c0 ∼ 21.8 %) denotes the average concentration for active loading 

species and dashed red line (c0 ∼ 14.8 %) denotes the average concentration for passive 

loading species. Inset figure shows the computed normalized flux J/Jmax for the globally 

averaged Poiseuille models where the solid black line denotes a concentration dependant 

pressure gradient (through the osmotic relation) and black dashed line denotes an exter- 

nally imposed constant pressure gradient. 
 
 
 
 
 

173 where Xf is a geometric factor that varies with L and a, ∆P is the pressure difference 

174 inside the tube that drives the flow (and need not be only osmotic), µ(c) is the concentration- 

175 dependent dynamic fluid viscosity that increases exponentially with c (Bouchard & Granjean 

176 1995), and ν(c) is the kinematic viscosity that also increases with c. With increasing c, 
 

177 the rise in µ(c) far exceeds any increase in ρ(c) so that the functional relations of µ(c) 

178 and ν(c) with c are assumed to be the same (within a constant ρ). For an order of mag- 

179 nitude illustration, increasing c from 10% to 50% increases ρ by a factor of 1.2 whereas 
 

180 µ(c) increases by a factor of 4. Because ν(c) increases non-linearly with c as discussed 

181 before, a maximum J = Jmax must exist at a corresponding optimal c value that is in- 

182 dependent of Xf . Moreover, the existence of this maximum is not predicated based on 

183 the precise details of the osmotic controls on ∆P . Returning to Jmax, for a preset Xf , 

184 the hydraulic conductance of the tube Kt can be related to the inverse of viscosity us- 

185 ing Kt = Xf /µ(c). Independent of whether osmotic effects on ∆P are fully represented, 
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186 a Jmax associated with an optimal c can be derived (numerically here) and graphically 

187 shown in figure 1, and it can vary significantly depending on the model presentation within 

188 the range of observed values (Jensen et al. 2013). 
 

189 The Van’t Hopf relation approximating the ∆P solely from osmotic potential (solid 

190 line in figure 1 inset) is given by 
 
 
 

191 ∆P ∝ 
RgTρ(c) 

Ms 

 
c, (3) 

192 where Rg is the gas constant, T is the absolute temperature and Ms is the molar mass 

193 of sugar. Similar results with a single Jmax but at lower optimum loading sugar concen- 

194 tration (dashed line in figure 1 inset) are produced using an externally supplied constant 

195 pressure difference that varies from 1 to 2 MPa with no concentration dependency. This 

196 analysis demonstrates that the existence of a Jmax is not tightly connected with the Münch 

197 hypothesis in the following sense: the precise functional dependence of ∆P on c is not 

198 necessary for the existence of a Jmax. Hence, the fact that a Jmax exists for a certain 

199 c is not particularly informative about how axial-radial coordination in the phloem op- 
 

200 erates and what the role of radial viscosity in this coordination is. 
 
 

201 2 Results 
 

202 This section discusses the effect of including viscosity variations in the flow equa- 

203 tions on mass flux J. First, a comparison between the constant viscosity model in 2-D 

204 (called the Poiseuille model hereafter) and the globally averaged Poiseuille model used 
 

205 to generate the results in figure 1 is presented. This comparison shows the effect of prob- 

206 lem set-up and dispersion effects (molecular and Taylor dispersion), which are included 

207 in the 2-D Poiseuille (and the 2-D model with variable viscosity) model. Second, the ef- 
 

208 fect of viscosity is discussed by comparing the 2-D model with variable viscosity (called 

209 generalized model heareafter) and the Poiseuille model in 2-D (i.e. the two end-member 

210 cases discussed is section 4.1). Finally, the enhancement of mass transport due to local 

211 coordination between axial and radial movement is presented using the generalized model 
 

212 simulations. 
 
 

213 2.1 Effect of dispersion and problem set-up on J variations with co 
 

214 A comparison between the globally averaged Poiseuille model (Jensen et al. 2013) 

215 and the Poiseuille model in 2-D that excludes local viscosity effects by using a constant 
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Figure 2: Normalized flux J/Jmax as a function of the initial concentration c0 for the 

Poiseuille model in 2-D in a closed tube. The five-tube lengths (L in m) are shown using 

different colors. 
 
 
 
 
 

216 viscosity that depends on c0 (Jensen et al. 2016) while keeping molecular diffusion is pre- 

217 sented in figure 2. The relation between J/Jmax and c0 appears to be similar in shape 

218 to the one obtained from the globally averaged Poiseuille model shown in figure 1. De- 

219 spite the qualitative agreement, three differences are observed. First, the optimal sugar 

220 concentration at which J/Jmax = 1 is larger for the Poiseuille model than the globally 

221 averaged Poiseuille model for any conduit length (shown in figure 1). Second, there is 

222 an increase in the J/Jmax versus c0 curvature with increasing c0 at low c0 (i.e. slow rise 

223 in the normalized flux for low initial concentrations), and third, the optimal point J/Jmax = 

224 1 is different for different tube lengths in each case with short tubes reaching J/Jmax = 

225 1 at higher c0 than long tubes (figure 2). Recall that the optimal point for the globally 

226 averaged Poiseuille model was not affected by the tube length L (not shown). The first 
 

227 two differences between the models are due to the problem set-up where the closed tube 

228 assumption requires higher c0 to drive the flow as expected. Optimal point difference is 

229 attributed to dispersion and molecular diffusion not explicitly resolved in the simplified 

230 analysis. 
 
 

231 2.2 Effect of a concentration-dependent viscosity on J (c
0
) 

 
232 Typical phloem conditions are used to generate the results in both models: a = 

233 10µm, k = 5 × 10−14msPa−1 and D = 4 × 10−10m2s−1. The tube length L was varied 

234 from 0.1 to 10 m to describe small and large plants or trees, respectively. The initial sugar 

0.1 
1 
2 
5 
10 
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235 concentration inside the tube c0 was varied from 100 to 1800 mol m−3, which does not 

236 significantly affect the applicability of the Van’t Hopf relation and the Newtonian fluid 

237 approximation (to detect the largest signature of viscosity effects on J/Jmax see supple- 

238 mental materials and methods S3 for results on larger variation in c0 (up to 2450 mol 

239 m3 ) where the viscosity effects may be overestimated). In this range of values, the nor- 

240 malized flux for the generalized model (not shown) exhibits a similar behavior for the 

241 L = 0.1 m as the Poiseuille case here. However, with increasing L, the optimal point 

242 where J/Jmax = 1 was not reached for the range of c0 studied (not shown). Interest- 

243 ingly, the normalized flux over a wider range of c0 for L = 2m (selected for illustration) 

244 shows that an optimal point does exist for the generalized model as well but c0 must op- 

245 erate well outside the range of the Van’t Hopf approximation (see supplemental figure 

246 S1B). The fact that J/Jmax = 1 was not attained in the generalized model for the range 

247 of c0 selected here may lead to the erroneous conclusion that the inclusion of local vis- 

248 cosity changes retards sugar transport. The normalization by Jmax hides some facts about 

249 the magnitude of J, which is much higher for the generalized model for the same c0. 
 

250 Resolving the local changes in viscosity results in an increase in the overall con- 

251 ductivity of the tube above and beyond the 2-D Poiseuille model (figure 3A). The gen- 

252 eralized model appears to have far higher J than the Poiseuille model at a given c0 for 

253 all tube lengths except for L = 0.1m where the two models are almost indistinguish- 

254 able. The effect of the tube length is present in both models where an increase in L leads 

255 to an increase in the flux J until a certain value is reached after which J starts to de- 
 

256 crease with increasing L (for example, in the generalized model, J when L = 10m is 

257 lower than J when L = 5m for the same c0 as discussed next). An interesting obser- 

258 vation is that the value of L for which there is a loss of conductivity (the sugar flux de- 

259 creased for the same initial concentration c0) is different for both models, L = 5m for 

260 the generalized model and L = 2m for the Poiseuille model. The importance of vari- 

261 able viscosity can be evaluated by the relative difference in sucrose fluxes 

Jg − Jp     
262 

 
 

  Jg + Jp   
, (4) 

263 where the subscripts ’g’ and ’p’ denote generalized and Poiseuille, respectively (figure 

264 3B). The results show that e increases with L and c0 as expected. This is because the 

265 c0 affects the overall viscosity value itself and L affects the development of the velocity 

266 profile over which viscosity gradients are allowed to buildup and increase with increas- 

e =

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.24.461704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461704
http://creativecommons.org/licenses/by/4.0/


Sugar translocation in the

–12–

 

 
12

267 ing L. The increase in actual mass flux magnitude due to the inclusion of a variable vis- 
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Figure 3: (a) Sugar mass flux J (Kg s−1) as a function of the initial phloem sugar con- 

centration c0 for the generalized model (cross markers) and the Poiseuille model 

(triangle markers). Inset plot shows the flux for the viscosity effect (difference between 

both mod- 

els). (b) Relative difference in sucrose fluxes e = |Jg − Jp|/(Jg + Jp) as a function of the 

initial concentration c0. Different tube lengths are presented using different colors. 

 
 
 
 
 

268 cosity can be approximated by subtracting the flux of the Poiseuille model from the gen- 
 

269 eralized model (Fig 3A inset). As expected, this effect increases with increasing L. 
 
 

270 2.3 Two-dimensional flow results 
 

271 To understand why the increase in mass flux occurs for the generalized model (vis- 
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272 a-vis the Poiseuille), the 2-D simulations are used to illustrate the radial-axial flow and 
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273 their coordination. These simulations show the local effect of concentration gradients on 

274 flow velocity components affected by viscosity and its gradients. Model results show that 

275 the computed axial and radial velocities are higher in magnitude because of a lower vis- 

276 cosity near the conduit walls (figures 4A, 4B, 4C). Additionally, the pressure gradient 
 

277 driving the flow is lower compared to the constant viscosity case (Fig 4D). The results 

278 presented here are for initial concentration c0 = 800 mol m−3 and L = 2m for the time 

279 when the sugar front is located at about 30% of the conduit length, chosen for illustra- 
 

280 tion only. The time τ it took for the front to reach this location was different for the mod- 

281 els: τ = 170.5 for the generalized model and τ  = 204.2 for the Poiseuille model (i.e. 

282 in the Poiseuille model the flow is about 1.2 times slower). Despite this difference in flow 

283 velocity, the sugar front at this location appears similar in the models (4A). The high- 
 

284 est difference is near the front location. After this position, the difference appears to be 

285 enlarged partly due to concentrations being near zero after the fronts. The velocity pro- 

286 file, on the other hand, appears to be wider, and the difference between the models is 
 

287 higher after the front position (Fig 4B). The axial velocity is also higher in the gener- 

288 alized model compared to the Poiseuille model. 
 

289 The effect of local viscosity gradients generated by concentration gradients is more 

290 apparent in the radial velocity than the axial velocity as expected (figure 4C). This find- 
 

291 ing can be anticipated from equation (11) since the radial velocity profile is directly re- 

292 lated to viscosity gradients in the axial direction. These gradients are generated based 

293 on concentration gradients from the axial direction that are large, due to the wave na- 
 

294 ture of the problem (because the advection-diffusion equation has a wave shape espe- 

295 cially when it is advection-dominated). The relative difference e between the models is 

296 high near the front location. Moreover, the location of the maximum radial velocity is 

297 shifted further away from the membrane for the generalized model since the tube con- 
 

298 ductance has a new term that depends on non-local changes in the radial direction (i.e. 

299 ⟨Kt⟩r in equation (10)). Similar to the axial velocity profile, this non-local effect is also 

300 apparent in the radial velocity profile for the generalized model that has a wider veloc- 
 

301 ity range, when compared to the Poiseuille model. Moreover, due to a lower sugar con- 

302 centration near the membrane, the viscosity of the sap decreases leading to less resistance 

303 to the radial inflow of water (that is the driving force for osmotically driven flows) in the 

304 generalized model. This can be conceptually understood as a decrease in wall-friction 
 

305 when area-averaging the equations. 
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Figure 4: Results for a tube length L = 2m and sugar concentration c0 = 800 mol 

m−3 when the sugar front is located at approximately 30% of the domain. Due to 

cylindrical symmetry, only half of the domain in the radial direction R is shown. (a) 

concentra- 

tion profiles, (b) axial velocity profiles, and (c) radial velocity profiles for the generalized 

model (top), Poiseuille model (middle), and the relative difference (bottom), respectively. 

(d ) pressure (top figure), pressure gradient (middle figure), and their relative difference 

(bottom figure) for the generalized and Poiseuille models. The relative difference between 

the models is calculated by ec = | Cg−Cp | where the subscripts ‘g’ and ‘p’ denote general- 

ized and Poiseuille models, respectively. 
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306 The generalized model also has a smoother pressure field compared to the Poisseuille 

307 model (figure 4D). An interesting result in this figure is that the global pressure gradi- 

308 ent over the domain is smaller for the generalized model and yet the front travels at a 

309 higher speed. This paradoxical result can only be explained by the increase in conduc- 
 

310 tivity of the tube because of local viscosity effects being coordinated in radial and ax- 

311 ial directions. 
 
 
 
 

312 3 Discussion and concluding remarks 
 

313 The concentration-dependent viscosity has two effects on J - both leading to an 
 

314 increase in its magnitude. The first is that the smaller viscosity in the vicinity of the mem- 

315 brane wall (c at the membrane is set by clear water in the xylem) results in an increase 

316 in v into the pipe wall region. This increase has the effect of radially advecting sugar molecules 
 

317 away from the pipe walls and towards the pipe center. Because the axial velocity pro- 

318 file peaks in the pipe center yet the radial viscous stress is zero there, the overall mass 

319 flux is also increased. The second is that the increase in radial velocity near the pipe walls, 

320 when coupled to a zero radial velocity at the pipe center (as required by symmetry), must 
 

321 be accompanied by an increase in axial velocity gradients due to the incompressibility 

322 approximation. Thus, a speeding up of u is expected. The analysis of the axial pressure 

323 distribution further suggests that this effect is sensed over a broader region of L. This 

324 speeding up yields a faster front advancement of sugar away from the loading zone. Both 
 

325 mechanisms are operating in concert to increase J above and beyond Poiseuille’s model. 

326 That those two effects act together to enhance tube permeability affecting J, not the driv- 

327 ing force for water (i.e. pressure gradients) is also supported by the analysis here. For 

328 this reason, the Jmax analysis and its dependence on co leading to co ≈ 20% in Figure 

329 1 being not sensitive to Xf (as earlier shown) also cannot detect this coordination be- 

330 tween axial and radial flow. 
 

331 The importance of this finding is also highlighted when comparing typical concen- 

332 tration values for crops (that are mainly active sugar loaders) and trees (mainly passive 

333 loaders). From figure 1, active loaders have a higher concentration than passive loaders. 

334 For these high concentrations (for example, maize has c0 ∼ 50 %), the simplified Poiseuille 

335 model predicts an optimal length around 2 m where the generalized model predicts an 

336 optimal length around 5 m (shown in figure 3A). For low concentrations (for example 
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337 a pine tree), the generalized model shows more resilience for increasing phloem length 

338 when compared to the Poiseuille model (shown in figure 3B). 
 

339 To summarize, the effect of a concentration-dependent viscosity on sucrose trans- 
 

340 port in phloem allowed the flow to have a higher velocity for the same initial concentra- 

341 tion, especially for long tubes. In addition, it resulted in a lower pressure gradient driv- 

342 ing the flow along the axial direction. This finding contributes to the growing evidence 

343 that the pressure-flow hypothesis can provide the necessary mechanism for long-distance 
 

344 sugar transport as long as the complexity in transport physics is accommodated. It is 

345 to be emphasized that the work here showed that viscosity adjustments lead to conduc- 

346 tivity enhancement for sugar transport instead of pressure gradients for water flow. 
 

347 More negative xylem water tension requires a higher osmotic potential to maintain 

348 phloem transport in dry conditions (Sevanto 2014). During drought, the increase in op- 

349 timal sugar concentration operating range for J would allow plants to increase their su- 

350 crose concentration to potentially overcome those large tensions arising in the xylem with- 
 

351 out a substantial decrease in flow rate. Future work will focus on the effects of nonlin- 

352 ear xylem water potential on phloem transport by including sugar sources and sinks along 

353 the phloem path. 
 
 

 
354 4 Materials and methods 

 
355 To isolate the effect of a concentration-dependent viscosity on radial-axial flow co- 

356 ordination, many simplifications must still be invoked when representing the physics of 

357 translocation in a cylindrical tube. In all formulations considered here, it is assumed that 

358 i) the phloem vasculature can be approximated by a long slender tube of length L and 
 

359 radius a (ϵ = a/L << 1) with rigid semipermeable walls characterized by a constant 

360 permeability k that allows the exchange of water molecules but not sugars with the sur- 

361 roundings, ii) sieve plates have minimal effect on the flow and can be modeled as either 
 

362 an ’extra’ drag force uniformly acting along with L or ignored altogether, (iii) the bulk 

363 flow is at very low Reynolds number Re ∼ ρauµ−1        1 where u is a characteristic 

364 longitudinal velocity, µ the dynamic viscosity, and ρ the density, so that creeping flow 

365 is maintained throughout, iv) sugar sources and sinks are modeled as boundary condi- 
 

366 tions at the entry and exit end of the tube. Hence, water can be exchanged with the sur- 

367 roundings but not sugars thereby suppressing any enhancement due to a relay effect. 
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368 4.1 Variable Viscosity Model 
 

369 To derive the general model that includes concentration and viscosity variations 

370 in axial and radial directions, the governing equations under certain assumptions and 
 

371 simplifications are first analyzed in Cartesian coordinates. Then, the non-dimensional 

372 form of these equations, which are necessary for analyzing the numerical model results, 

373 are presented in cylindrical coordinates. The model to be presented in this section is con- 

374 sidered one ’end-member’ case in including a concentration-dependent viscosity. The other 
 

375 ’end-member’ case this model is compared to is the Poiseuille model that assumes a con- 

376 stant viscosity in the domain set by the initial loading concentration. An example of this 

377 model in a globally-averaged case is the model discussed by Jensen et al. (2013). Thomp- 
 

378 son & Holbrook (2003) present a different model that is between these ’end-member’ cases. 

379 In their work, they included local variations in viscosity inside the domain but only us- 

380 ing radially averaged equations (i.e. variations in viscosity along radial directions ignored). 

381 Due to the nonlinear relationship in the viscous stress between velocity and viscosity, area- 
 

382 averaging the equations leads to a simplified model that excludes the effect of this non- 

383 linearity. This issue can be resolved at the expense of solving the equations in axial and 

384 radial directions and frames the main approach here. 
 
 

385 4.1.1 Governing equations 
 

386 In a three-dimensional Cartesian coordinate system defined by longitudinal (x1 = 

387 x), lateral (x2 = y), and vertical (x3 = z) directions, water flow within the phloem 

388 satisfies the continuity equation 
 

 
389 

∂ρ 
+ 
∂(ρui) 

∂t ∂xi 
= 0, (5) 

390 where t is time, i = 1, 2, 3 describe direction xi, and ui is the instantaneous velocity 

391 along direction xi. Here, index notation is used with repeated indices implying summa- 

392 tion unless otherwise stated. The flow must also satisfy the conservation of momentum, 

393 which describes the force balance along direction xi, and is given as 
 

D(ρui) ∂ 
394 = 

Dt ∂xj 
σij, (6) 

 

395 where D(.)/Dt is the material derivative and σij are the nine components of the stress 

396 tensor. The σij of a Newtonian fluid can be approximated by 
 
 
 

397 σij = −pδij + µ 
∂uj 
∂xi 

+ 
∂ui 
∂xj 

 
, (7) 
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398 where p and µ are the local pressure and dynamic viscosity of the fluid, respectively, and 

399 the δij is the Kronecker delta (i.e. δij = 0 when i /= j but unity otherwise). This rep- 

400 resentation of σij is approximate and assumes that the stress tensor is symmetric (σij = 

401 σji) and the so-called second viscosity coefficient (or volume viscosity) is momentarily 

402 ignored (Panton 2006). 
 

403 In terms of fluid properties, ρ depends on c and strictly speaking cannot be treated 

404 as constant when c varies in time or along xi. However, this dependence is minor when 

405 compared to variations in µ as demonstrated earlier (see section 1) and variations in ρ 

406 will be assumed small for simplicity so that ∂ui/∂xi = 0. In this case, the σij repre- 

407 sentation given by equation (7) is reasonable (Panton 2006).  Another common assump- 

408 tion in phloem transport is that µ is constant set by the loading concentration. This ap- 
 

409 proximation is only applicable for small concentration values. However, in plants, c can 

410 range from 15% to 35% (and for maple trees even up to ≈ 50%). In this high concen- 

411 tration range, the dependence of viscosity on concentration has not been fully analyzed 
 

412 in the context of three-dimensional water and sugar transport. Some models include this 

413 dependence of µ on c in an area-averaged formulation (Thompson & Holbrook 2003, Jensen 

414 et al. 2016), but area-averaged formulations that evolve concentration axially and pre- 

415 sume uniform concentration along the radial direction cannot resolve radial-axial flow 
 

416 coordination to be studied here. Therefore, the model proposed here includes the depen- 

417 dence of µ on c in both axial and radial directions and tracks its consequences on the 

418 shape of the J − c relation as well as the magnitude of J across differing L and load- 

419 ing concentrations. 
 

420 In terms of flow properties, the low Reynolds number (Re    1) and small aspect 

421 ratio (ϵ ≈ 10−5) can be used to show that under the so-called lubrication theory (where 

422 the flow in one of the dimensions is significantly smaller than the others because of ge- 

423 ometric constraints), the momentum balance may be approximated by (now written in 

424 cylindrical coordinates) 

 
 
 

425 
∂u  r ∂p 

µ =  , 
∂r 2 ∂x 

∂p 
= 0, (8) 

∂r 
 
 

426 where x remains the axial direction with x = 0 situated at the loading zone, r is the 
 

427 radial direction with r = 0 defining the center of the tube, and u(x, r) and v(x, r) are 

428 the axial and radial velocity components respectively at any point (x, r). In supplemen- 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.24.461704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461704
http://creativecommons.org/licenses/by/4.0/


Sugar translocation in the

–21–

 

 
21

436 u(x, r) =
2 ∂x

rKt(x, r) dr + A(x), (9) 

0  Ktdr can be written as r ⟨Kt⟩r/2 where the 

u(x, r) =
4 ∂x

r ⟨Kt⟩r − a ⟨Kt⟩

0

429 tal materials and methods S1, the derivation of this formulation and all its assumptions 

430 are presented for completeness. 
 

431 To understand how viscosity gradients affect the flow, equation (8) can be written 

432 in a compact form. First, the tube conductance is re-defined as Kt = 1/µ as in section 

433 1 (the geometric factor Xf is absent since it is the result of radial averaging). Integrat- 

434 ing equation (8) in the radial direction while noting that the pressure p is only a func- 

435 tion of the axial position (as shown in supplemental materials and methods S1) leads to 

1 ∂p 
∫ r

 

 

437 where A(x) is an integration function that varies in x. Using the no-slip boundary con- 
 

438 dition on the longitudinal velocity component u(x, a) = 0 at the membrane surface set 

439 as r  =  a leads to A(x)  =  − 
 
a2⟨Kt⟩/4

  
(∂p/∂x) where ⟨Kt⟩ is the radially averaged 

∫ r 2 
 

 

441 subscript r denotes radial averaging until the current radial position (r ≤ a). Using this 

442 form, equation (9) describes the axial velocity 
 

1 ∂p    2 2 

444 where both terms ⟨Kt⟩r and ⟨Kt⟩ are functions of x but only ⟨Kt⟩r is a function of r. 

445 Equation (10) is different from the HP expression because the variable viscosity de- 

446 pends on c(x, r) that itself varies radially and axially. To be clear, this dependence is non- 

447 local because of the integral operator in the r direction. However, if a constant viscos- 

448 ity is used at a given x, ⟨Kt⟩r and ⟨Kt⟩ are equal to 1/µ, and the aforementioned con- 

449 servation of momentum equation becomes equivalent to the HP expression with an ad- 
 

450 justment. This adjustment is due to osmosis that generates a radial inflow of water lead- 

451 ing to ∂2p/∂x2 /= 0, which then leads to a variable pressure gradient instead of a con- 

452 stant one as is common in HP applications in pipes (Phillips & Dungan 1993). However, 

453 the partial ∂p/∂x not being constant does not violate or invalidate the HP equation as 
 

454 discussed elsewhere (Thompson & Holbrook 2003, Nakad et al. 2021). 
 

455 The effect of viscosity gradients is not directly apparent in equation (10). To make 

456 it explicit, the continuity equation (5) in cylindrical coordinates is now considered. It 
 

 
457 

 
 
 

458 

is given as  

∂u 1 ∂rv 
+ 

 

 
= 0. (11) 

∂x r ∂r 

440 tube conductance. Similarly, the term

443 , (10) 
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459 Here ρ variation with c is once again assumed to be small compared to the viscosity vari- 

460 ations with c as stated before. Using the expression for the axial velocity from equation 

461 (10) in the continuity equation (11), one can see how axial viscosity gradients impact the 

462 radial velocity v, which is not identically zero due to osmosis. Moreover, the viscosity 

463 gradient is not only the result of the area-averaged tube conductance ⟨Kt⟩ but also stems 

464 from the radially-averaged (or non-local) tube conductance ⟨Kt⟩r that depends on ra- 

465 dial position r. Equation (8) with equation (11) can be used to describe the flow of wa- 
 

466 ter characterized by u(x, r) (axial velocity) and v(x, r) (radial velocity) inside the tube 

467 as a function of position x, r. 
 

468 Equations (8) and (11), however, remain incomplete since there are two equations 
 

469 with three unknowns u, v, and p. This mathematical setup is in sharp contrast to flow 

470 in closed pipes where v = 0 everywhere due to the solid wall boundary condition at r = 

471 a and symmetry considerations at the pipe center. In phloem, osmosis necessitates a fi- 

472 nite v at the pipe walls while symmetry considerations alone result in v = 0 at the cen- 
 

473 ter of the pipe. Thus, the third equation that relates v to total pressure inside the tube 

474 must be provided by osmoregulation. This equation is best formulated as a boundary 

475 condition describing a flow through a porous media (a thin membrane here) at r = a. 

476 Such a boundary condition may be given by a Darcy-type formulation assuming a very 
 

477 low Reynolds number for the radial flow into or out of the pipe walls. This boundary 

478 condition yields an expression for v at r = a given by 
 
 

479 v|r=a = k(p − Π|r=a), (12) 
 
 

480 where Π|r=a is the osmotic potential at the membrane and k is the membrane perme- 

481 ability assumed constant and independent of v (i.e. no Forscheimer or quadratic correc- 

482 tions to Darcy’s law). This osmotic potential can be related to c using the Van’t Hoff 

483 relation, Π = RgTc(x, a) as before. This approximation is reasonable for low c and com- 

484 patible with the assumption that the density and molecular diffusion (discussed below) 
 

485 do not vary appreciably with c when compared to viscosity. 
 

486 The last equation needed to describe the physics of sugar transport is the conser- 

487 vation of solute mass, which is also needed to solve for u, v, and p. This equation is de- 
 

488 rived using Reynolds transport theorem that describes the movement of solutes (mainly 

489 sugar here) due to advection and molecular diffusion. In cylindrical coordinates, it is given 
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∂t 
+ 
∂x 

(uc) +
r ∂r

(rvc) = D
∂x2 + D

r ∂r
r
∂r

491

490 by 
 
 

 
 
 

∂c ∂ 1  ∂ 

 

 
∂2c 

 

1 ∂ ∂c 
 

 

 
 

492 where D = νSc−1 is the molecular diffusion coefficient of sugar in water assumed to 

493 be again insensitive to c variations when compared to ν, and Sc     1 is the molecular 

494 Schmidt number for sugars in water (usually of order 104). 
 

495 The final step for describing the physics of sugar transport is to specify the bound- 
 

496 ary and initial conditions. These are problem-specific and are selected here to illustrate 

497 one restrictive ’end-member’ case of flow in a closed tube with no sugar sinks. This case 

498 is dynamically interesting because sugar concentration keeps building up as no sugars 

499 are removed from the tube. The other ’end-member’ case is where sugars are instantly 
 

500 consumed at the end of the pipe (i.e c(L, r) = 0 and sugar sinks are treated as ’infi- 

501 nite’). This latter case is expected to lead to a much larger J in the tube, which is why 

502 the focus is on the more restrictive former case. In plants, c(L)/c(0) << 1 and thus 

503 osmotic gradients are much higher in the presence of sinks than those set by the closed 
 

504 tube assumption. Thus, the physics of closed tubes must require higher loading concen- 

505 trations to drive the water velocity, which is why they are more restrictive and thus dy- 

506 namically interesting from the perspective of exploring limitations on the Münch hypoth- 
 

507 esis. In a pipe closed at both ends u(x = 0) = u(x = L) = 0, water flow must accel- 

508 erate to a well-defined maximum and then decelerate to zero velocity along L. For ini- 

509 tial conditions selected here, sugar is released as an axially smooth function c(x, t = 0) = 

510 f (x) with no radial variation, meaning that radial diffusion is initially fast enough to en- 
 

511 sure a uniform distribution of sucrose along r. The closed tube assumption with no sinks 

512 requires sugar mass to be conserved inside the tube during the entire period resulting 

513 in 
 

∂c ∂c 
514 |x=0 = |x=L = 0, (14a) 

∂x ∂x 
 

515 
 
 
 

516 

∂c 
(vc)|r=a − D

∂r
|r=a = 0. (14b) 

 
 

517 Finally, a no-slip boundary condition at the membrane in the axial direction only, i.e. 

518 u|r=a  =  0, and symmetry considerations at the center of the tube, where v|r=0  =  0 

519 and ∂c/∂r|r=0 = 0, are all enforced. 

, (13) 
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+ Pe (UC) + Pe (RV C) = ϵ
∂τ ∂X R ∂R ∂X2 +

R ∂R
R
∂R

520 4.1.2 Non-dimensional form and key dimensionless numbers 
 

521 To elucidate the key dimensionless numbers governing water and sugar movement, 

522 and make interpretation of the equations easier, this section describes the scaling anal- 
 

523 yses and the non-dimensional form of the equations used. To write the equations in di- 

524 mensionless form, the following scales were adopted: The x and r were scaled by the tube 

525 length L and radius a, respectively, leading to x = LX, r = aR. Time, and axial and 

526 radial velocity as well as pressure and concentration were scaled by their respective ini- 

527 tial values at x = 0 (subscript 0) leading to t = t0τ , u = u0U , v = v0V , p = p0P , 

528 c  =  c0C  and µ  =  µ0µ̃.  The dynamic viscosity µ was scaled by µ0, determined from 

529 c0 and T . This µ0 will also be used in a constant viscosity model (called the Poiseuille 

530 model hereafter) as a reference to assess the impact of accommodating variable viscos- 

531 ity in σij and its spatial gradients. Using these scales, the non-dimensional equations for 

532 the two velocity components and pressure are 
 
 
 

533 

∂U 1 ∂RV 
+ 

 
= 0. (15a) 

 
 

534 

 
535 

 
536 

∂X R 

∂U 
µ̃ = 
∂R 

∂R 

R ∂P 
 

 

2 ∂X 

 
 

(15b) 

537 V |R=1 = MP − C|R=1 (15c) 

538 where u0 = kRgT c0ϵ
−1, v0 = ϵu0, p0 = µ0Lu0a−2, and M  = kµ0L2a−3 is the Münch 

539 number defined as the ratio of axial resistance over radial resistance as discussed in (Jensen 

540 et al. 2009, Nakad et al. 2021). The complete scaling analysis for the Navier-Stokes equa- 

541 tions is shown in supplemental materials and methods S1. 
 

542 The non-dimensional form of the conservation of sugar mass, i.e. equation (6), is 
 

∂C ∂ 
 

 
1 ∂ 

2 ∂2C 
 

 
1  ∂ ∂C 

 
 

 

544 where t0 = a2D−1 is the radial diffusion timescale and Pe = v0aD−1 is the radial Peclet 

545 number defined by the ratio of radial advection to radial diffusion. This expression ex- 

546 plicitly shows the relative contributions of radial flow dynamics (through Pe) and sim- 
 

547 plified geometry (through the slender ratio ϵ) to mass transport. 
 
 

548 4.2 Model calculations 
 

549 The proposed model calculations provide the variations of J(x, r), c(x, r), u(x, r), 

550 v(x, r), and p(x, r) at every t. A description highlighting the numerical method used to 

543 , (16) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.24.461704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461704
http://creativecommons.org/licenses/by/4.0/


Sugar translocation in the

–25–

 

 
25

562

t̂

551 obtain the results is presented in supplemental materials and methods S2. To link a rep- 

552 resentative J with a c0 in a manner that allows comparison with the prior Jmax and op- 

553 timal c analysis, the following steps and approximations were taken in post-processing 

554 the model results. With a radial Peclet number Pe    1, it is reasonable to assume that 

555 the mass flow primarily occurs in the axial direction (Nakad et al. 2021). The molecu- 

556 lar diffusion can also be neglected since the axial Peclet number, defined by the ratio of 

557 axial advection to axial diffusion and derived from Pe by Pel = ϵ−2Pe, is large (i.e. 

558 Pel    1). Using these assumptions, the area-averaged sugar flux can be reasonably de- 

559 termined from post-processing time variations of the sugar front position xf . This front 

560 is also delineated from maximal |∂c(x, r)/∂x|. To determine xf , we fitted an exponen- 

561 tial relation between xf and t using (Jensen et al. 2009, Nakad et al. 2021) 
 
   

−t 
  

 
563 where l ≈ 0.2 is the initial sucrose front position, L = 1 is the length of the tube and 

564 xf is the front position all in non-dimensional form. Subtracting l from both sides of equa- 

565 tion 17, a linear relation between t and ln [(Xfinal − Xf ) /Xfinal] (where Xfinal = L− 

566 l ≈ 0.8 and Xf = xf − l) can be obtained. Hence, linear regression applied to the 2D 

567 numerical solution was then used to obtain the constant tˆ away from the entrance bound- 

568 ary condition. The front speed was determined as Us = dxf /dt. Finally, the mass flux 

569 was approximated by Jnum = QnumC where Qnum is the numerical volumetric flow 

570 rate. The Qnum was determined using approximated speed Qnum = AtUs where At is 

571 the cross-sectional area of the tube. We present results from the two-dimensional (2-D) 

572 model simulation for the axial velocity U , radial velocity V , concentration C, and pres- 

573 sure P in the dimensionless form to illustrate the effect of variable viscosity on radial 
 

574 and axial variations of these variables. The 2-D model with variable viscosity is here- 

575 after referred to as the generalized model. The model simulations were conducted us- 

576 ing MATLAB programming language (Mathworks, Natick, MA). 
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xf = L − (L − l) exp , (17) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.24.461704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.24.461704
http://creativecommons.org/licenses/by/4.0/


Sugar translocation in the

–26–

 

 
26

582 References 
 

583 Bouchard, C. & Granjean, B. P. (1995), ‘A neural network correlation for the varia- 

584 tion of viscosity of sucrose aqueous solutions with temperature and concentration’, 
 

585 LWT-Food Science and Technology 28(1), 157–159. 
 

586 Curtis, O. & Scofield, H. (1933), ‘A comparison of osmotic concentrations of supply- 

587 ing and receiving tissues and its bearing on the Münch hypothesis of the translo- 
 

588 cation mechanism’, American Journal of Botany pp. 502–512. 
 

589 Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. (2019), ‘Modelling carbon 

590 sources and sinks in terrestrial vegetation’, New Phytologist 221(2), 652–668. 
 

591 Fensom, D. (1981), ‘Problems arising from a Münch-type pressure flow mechanism of 

592 sugar transport in phloem’, Canadian Journal of Botany 59(4), 425–432. 
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