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Copy number alterations are a significant driver in can-
cer growth and development, but remain poorly characterized
on the single cell level. Although genome evolution in cancer
cells is Markovian through evolutionary time, copy number al-
terations are not Markovian along the genome. However, ex-
isting methods call copy number profiles with Hidden Markov
Models or change point detection algorithms based on changes
in observed read depth, corrected by genome content, and do
not account for the stochastic evolutionary process. We present
a theoretical framework to use tumor evolutionary history to
accurately call copy number alterations in a principled man-
ner. In order to model the tumor evolutionary process and ac-
count for technical noise from low coverage single cell whole
genome sequencing data, we developed SCONCE, a method
based on a Hidden Markov Model to analyze read depth data
from tumor cells using matched normal cells as negative con-
trols. Using a combination of public datasets and simulations,
we show SCONCE accurately decodes copy number profiles,
with broader implications for understanding tumor evolution.
SCONCE is implemented in C++11 and is freely available from
https://github.com/NielsenBerkeleyLab/sconce.
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1. Introduction

In cancerous cells, somatic driver and passenger single nu-
cleotide polymorphisms (SNPs) and copy number alterations
(CNAs) accumulate over time. CNAs are extremely common
across cancer types (1, 2).

Many large scale cancer studies are done with bulk sam-
ples, and many methods and evaluation techniques (3, 4) have
been developed to identify copy number alterations in bulk
sequencing, especially for low coverage data (5) and tumor
heterogeneity deconvolution (6). However, bulk sequencing
averages mutations across many cells and loses the granu-
larity and detail single cell sequencing (SCS) can provide.
Using single cell sequencing, we can evaluate these muta-
tions on a cell by cell level and treat each cell as an individ-
ual in a population. However, the SCS process is technically
challenging and produces noisy low coverage data, due to
challenges like cell dissociation, small amounts of starting
DNA, and non uniform whole genome amplification (7). Al-
though the rapidly increasing availability of single cell RNA

sequencing (scRNA-seq) of tumors can yield insights into tu-
mor subpopulations (8) and relevant biological pathways and
processes (9, 10), using scRNA-seq for calling CNAs is lim-
ited to areas of the genome that are expressed at the time
of sequencing and does not directly measure genomic copy
number. However, single cell whole genome DNA sequenc-
ing data promises to circumvent these problems, despite the
inherent noisiness of the data.

The main components of CNA calling are detecting con-
tiguous regions of the genome with the same ploidy, called
segments, and determining the absolute copy number, or
ploidy, of each segment. Previous approaches to calling
CNAs using single cells have been based on Hidden Markov
Models (HMMs) and change point detection (11). For ex-
ample, HMMcopy use a Hidden Markov Model to segment
tumor genomes using GC and mappability corrected tumor
reads, normalized by matched normal cells. Although HMM-
copy was originally designed for array comparative genomic
hybridization data (12, 13), it’s been widely used for single
cell sequencing data (11, 13).

CopyNumber was also designed for microarray use, and
uses normalized and log transformed copy number measure-
ments rather than raw read counts to detect breakpoints from
changes in genome coverage. However, although this method
outputs segments, it does not output absolute copy number
calls. One strength of CopyNumber, however, is that it can
be run in individual and multi sample modes. In the multi
sample mode, breakpoints are forced to be shared across all
samples (14).

AneuFinder, which was designed for calling CNAs in sin-
gle cell whole genome sequencing data, uses a trained HMM
to model copy number state using a negative binomial distri-
bution (15). In newer versions, Aneufinder uses change point
detection analysis to find changes in read coverage (16). To
determine absolute copy number, each segment is normalized
and scaled such that the mean bin count matches a known
ploidy, which is determined from a DNA quantification tech-
nique, such as flow cytometry (17). If overall ploidy is not
known, a scalar is fit such that all segments get an integer
copy number (15).

Ginkgo uses variably sized bins for GC correction and re-
moves outlier "bad" bins based on a fixed set of diploid cells
(18), then employs circular binary segmentation (19) to de-
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tect breakpoints in normalized read counts and scales ploidy
estimates to call absolute copy number. Ginkgo can also clus-
ter cells and build phylogentic trees (18).

The method SCNV automatically identifies and uses
diploid cells as a null error model, and adapts SeqCBS (20)
for use in single cells by pooling diploid cells, calibrating
model cutoffs using the pooled diploid cells, and discretizing
copy number calls (21). SCNV then uses a bin free method
based on change point detection on two nonhomogeneous
Poisson processes (20) to segment the genome and identify
CNAs. This allows for greater resolution of CNAs which
might be obscured by choice of bin size boundaries (21).

SCOPE uses a Poisson latent factor model, based on
CODEX (22), to normalize read counts, and then uses a log-
likelihood ratio test across multiple samples (23) to detect
shared breakpoints, with the segmentation stopping rule de-
fined by a cross-sample modified Bayes Information Crite-
rion (24). This allows SCOPE to use cell specific and shared
sample information to better estimate technical noise (25).

CHISEL phases SNP haplotypes (26) of fixed size, and
uses cell specific read depth ratios and allele specific frequen-
cies to cluster bins across cells in order to call allele specific
copy numbers. This allows CHISEL to call CNAs that are
aligned with the observed allelic balance, but also makes it
prone to errors caused by allelic drop out from low sequenc-
ing coverage (27).

SCICoNE corrects read counts for GC and mappability
across bins and cells, then uses a likelihood based model to
detect breakpoints shared across cells by combining adjacent
bins with similar copy number states. SCICoNE then builds a
CNA based tree without the infinite sites assumption, allow-
ing for an arbitrary number of CNAs at a site (28). However,
the CNA calling procedure precedes and is independent of
the tree reconstruction (29).

All of these methods, except for SCNV, require dividing
the reference genome into adjacent bins of variable or uni-
form size. All methods use bin or cell specific GC and map-
pability corrections to adjust read counts and mask out "bad"
bins that exhibit extremely high or low coverage due to cen-
tromeres, telomeres, or highly repetitive regions. However,
only SCNV and SCOPE utilize detailed bin specific cover-
age information from diploid cells, and none are based on
explicit stochastic models of tumor evolution. An objective
of this paper is to develop models for CNA calling based on
explicit models of tumor evolution. The rationale is that the
use of such explicit models of evolution might improve in-
ferences similarly to what has been observed in models of
molecular evolution used in phylogenetics (30–32).

Because tumor cells evolve forward in time from an an-
cestral diploid state through mutations that only depend on
the current state of the cell, copy number alterations are in-
herently governed by a (possibly time-inhomogenous) tem-
poral Markov process. However, the read distribution ob-
served along the length of the genome (the spatial process) is
not Markovian. To realize this, consider a mutation within a
segment of DNA with ploidy 4 that reduces the ploidy from
4 to 3. When moving from the left to the right along the

length of the genome, the ploidy would then go from 4->3-
>4. There are two transitions (breakpoints) caused by the
same single CNA. In many other situations, the rate of mu-
tation from 3->4 (as in the second breakpoint) might be low,
however, because the chromosome previously was in state 4,
the rate of transition back from 3 to 4 is in fact high in our
example. The process along the length of the genome is not
Markovian because copy number alterations may have finite
length and each mutation may induce two breakpoints.

Even though the spatial process is not Markovian, the
HMM framework is computationally convenient. An aim
of this paper is, therefore, to develop Markovian approxima-
tions of the spatial process that can be used for inference.
We present SCONCE (Single Cell cOpy Numbers in Can-
cEr), a method based on modeling the temporal Markovian
evolutionary process and deriving a best approximating spa-
tial HMM from this process. SCONCE also uses diploid data
as a null to model the technical noise in single cell sequenc-
ing data and can robustly learn model parameters and detect
copy number alterations. We show on simulated data that the
method more accurately estimates the ploidy states of a cell
than previous state-of-the-art methods, and we analyze real
data to show that the observations from simulated data are
mirrored by similar differences among methods in analyses
of real data.

2. Theory and Methods

2.1. Simulations. In order to robustly evaluate SCONCE,
we provide two simulation models, one based on line seg-
ments and one based on bins. In particular, the line segment
model simulates the evolutionary process behind CNAs with-
out assuming any bins, but treating the genome as a line seg-
ment. The binned model divides the genome into discrete
bins when simulating the evolutionary process. We consider
the line segment process to be the more realistic evolutionary
model. Of note, the provided simulation models are derived
differently from the Hidden Markov Model, described in Sec-
tion 2.3. We simulate data and estimate parameters and copy
number calls under different models, to avoid biasing method
comparisons towards our method. See Supplement S1 for full
simulation details.

2.2. Simulation Datasets. We simulated 4 datasets under
the line segment model and 6 datasets under the binned model
in order to generate a variety of types and quantity of copy
number events. Specifically, each dataset had 100 tumor cells
and 100 diploid cells, where read counts from diploid cells
were averaged together to form the null model. See Supple-
ment S1.4 for full simulation parameter values.

2.3. Hidden Markov Model. In order to simultaneously
segment the tumor genome and call absolute copy numbers,
we use a Hidden Markov Model along the length of the
genome. We define the state space of the HMM as the in-
teger tumor ploidy in a given genomic bin, from 0 up to a
user specified k (suggested k = 10), and the alphabet as the
integer observed tumor read depth in that bin.
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2.4 Joint evolutionary process process of two bins forward in time

We model emission probabilities for tumor read counts
per bin with a negative binomial distribution (interpreted
here as an overdispersed Poisson). We incorporate the mean
diploid read count for each bin into the emission probabili-
ties, in order to normalize for technical noise and sequencing
bias. Let the tumor read depth in window i for tumor cell A
be represented by random variable XiA, such that

E(XiA) = λiA =
(
ρiA×

µi
2

)
×sA+ε

XiA ∼NegBinom
(
λiA,σ

2
iA = aλ2

iA+ bλiA+ c
)

where ρiA is the ploidy in window i for cellA, µi is the mean
diploid read depth in window i, ε is a constant sequencing er-
ror term, sA is a cell specific library size scaling factor, and
{a,b,c} are constants learned from diploid data, such that
the emission probability for an observed read depth, xiA, is
given by the specified negative binomial distribution. See Li-
brary Size Scaling Factors for sA calculations and Negative
Binomial Mean and Variance Calculations for {a,b,c} calcu-
lations.

For the HHM, the initial probability vector is defined as
the steady state distribution of the Markov chain. The log-
likelihood of the observed tumor data is calculated using the
forward algorithm and summed across all chromosomes for a
given cell. The HMM is reset to the initial probability vector
at the beginning of each chromosome to maintain chromoso-
mal independence.

2.4. Joint evolutionary process process of two bins
forward in time. In Supplement S1, we described two prin-
cipled models of CNA evolution. However, neither of these
models have the property that they are Markovian along the
length of the genome. To construct an approximating process
that is Markovian, we will first construct a process affect-
ing two bins. This process will effectively be similar to the
described binned process, but it is parameterized slightly dif-
ferently out of convenience. From this description of the joint
evolution of two bins, we will then derive the approximating
Markov process used for HMM inference of copy number
state.

Consider two adjacent bins in the genome on one lineage,
(U,V ) ∈ {(0,0),(0,1), . . . ,(k,k)}, where U is the ploidy in
bin i, and V is the ploidy in bin i+ 1. The ploidies in these
bins change through evolutionary history according to rate
parameters {α,β,γ}:

α= rate of ±1 CNA
β = rate of any CNA
γ = rate ratio of CNAs affecting both U and V

These rates are encoded in a transition rate matrix Q:

q(U,V ),(U ′,V ′) =

γ(α+β) if (U ′,V ′) =
{

(U +n,V +n)
(U −n,V −n)

,n= 1

γβ if (U ′,V ′) =
{

(U +n,V +n)
(U −n,V −n)

,n > 1

α+β if (U ′,V ′) =


(U +n,V )
(U −n,V )
(U,V +n)
(U,V −n)

,n= 1

β if (U ′,V ′) =


(U +n,V )
(U −n,V )
(U,V +n)
(U,V −n)

,n > 1

0 otherwise

From this rate matrix Q, the time dependent transition
probabilities P are calculated via the matrix exponential as

P(U,V ),(U ′,V ′)(t) = eQt

This gives the probability of observing a transition from
(U,V ) to (U ′,V ′) in time t.

2.5. Discrete process (Markovian approximation)
along the genome. We convert the forward-in-time process
for two bins into a Markov model along the length of the
genome with transition probability matrix Mt = {mi,i′,t},
i, i′ ∈ S, i.e. we identify the probability of moving from
state i to i′ along the genome, after a given evolutionary
time t. Under the assumption that the cell has an ancestral
diploid state at time t = 0, we set (U,V ) = (2,2) and
(U ′,V ′) = (i, i′). By normalizing over all states W in S, the
one-step transition probabilities of the discrete approximat-
ing Markov process along the length of the genome are given
by

mi,i′,t =
P(2,2),(i,i′)(t)∑

W∈SP(2,2),(i,W )(t)

This time dependent transition matrix approximates a
non-Markovian process using an evolutionary time-informed
HMM. The advantage of using this model over more generic
HMMs is that information about the ancestral diploid state is
included in the model specification allowing more accurate
inference of ploidy state. While the model is only an ap-
proximation, as it ignores the non-Markovian nature of any
realistic model of CNA changes along the genome, we will
evaluate it using the aforementioned non-Markovian simula-
tion models.

2.6. Model Training. The model training has four steps. We
first estimate the constants, {a,b,c}, used to model the emis-
sion probabilities, from the diploid data. Second, for each tu-
mor cell, A, we quickly estimate an unconstrained transition
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matrix, initial probability vector, and library size scaling fac-
tor, sA, using a modification of the Baum Welch algorithm.
Third, the model rate parameters, {αA,βA,γA, tA}, are then
fit to the estimated transition matrix using least squares.
Fourth, the initial estimates for {sA,αA,βA,γA, tA} are re-
fined using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
optimization algorithm to maximize the forward loglikeli-
hood of the observed tumor read depths. See Supplement S2
for full model training details.

2.7. Real Data preprocessing. We applied SCONCE to a
published dataset, consisting of 34 diploid cells (as deter-
mined by cell sorting), and 4 tumor subpopulations (24, 24,
4, and 8 cells, respectively) from one triple negative breast
cancer patient (33), a cancer type with prevalent CNAs (34).

We first applied standard preprocessing and quality con-
trol steps to the sequencing data: trimming adapters and low
quality read ends (35, 36), removing low complexity and
short reads (37), and removing PCR duplicates (38). After
cleaning up the sequencing data, reads were aligned to the
reference genome (hg19) using bowtie2 (39), and reads with
q scores less than 20 were removed (40).

The reference genome was binned into uniformly sized
bins, and cell specific read depth was counted in each dataset
using bedtools (41). Per window read depth was aver-
aged across diploid cells, and the {a,b,c} constants for the
Negative Binomial distribution were calculated (see Supple-
ment S2.1 for full details).

2.8. Other methods. In order to evaluate the accuracy of
the inference procedure, we compared to HMMcopy (12, 13),
CopyNumber (14), and AneuFinder (15, 16). We limited our
comparison to methods that do not require bam files or SNPs,
as our simulation model does not create bam files or model
SNPs for simplicity. For both real and simulated datasets,
we used the averaged diploid cells as the matched normal
sample to determine the somatic copy number for each tumor
cell. To run HMMcopy, the HMMsegment function (default
parameters) was used to segment each cell, and copy numbers
were extracted from the resulting state element −1.

The normalized and log-transformed copy number esti-
mates from HMMcopy were used as input for CopyNum-
ber. Then, missing data were imputed, using the constant
method, and the winsorize function was used to remove
outliers. To run in single sample mode, the pcf function was
used with parameters return.est=T, normalize=T,
digits=6, and the exponentiated estimates element
was extracted for the copy number estimates. To run
in multi sample mode, the multipcf function was run
with parameters return.est=T, digits=6, and copy
numbers were similarly extracted from the exponentiated
estimates result. Additionally, because CopyNumber
does not output absolute copy number calls, we scaled Copy-
Number results to minimize the sum of squared differences
from the true ploidy in simulated datasets to create a ploidy
estimate for comparison purposes.

The procedure for running AneuFinder differed slightly
between simulations and real data. See Scripts to run other

methods for full scripts.

2.8.1. Simulations. Because our simulation model does not
incorporate GC or mappability into simulated read depth, we
did not use the GC and mappability corrections in HMM-
copy (and subsequently CopyNumber) in order to avoid over-
correcting. We used the averaged diploid read counts for
the matched normal sample to detect somatic CNAs only.
Similarly, in AneuFinder, we skipped the GC and mappa-
bility corrections by running the findCNVs function with
default parameters (method="edivisive", R=10,
sig.lvl=0.1), and extracting the copy.number ele-
ment from the model segments.

2.8.2. Real Data. With real data, we ran HMMcopy by first
doing read correction (correctReadcount, default pa-
rameters) on both the tumor data and averaged diploid cells,
then ran as described above.

To run AneuFinder, we ran the Aneufinder func-
tion with 250,000 binsize, all chromosomes, GC correction,
and hg19 assembly. As in simulations, copy number calls
were extracted from the copy.number element from the
edivisive model segments.

3. Results

3.1. GC content and mappability. Because GC content
and sequence mappability can bias read distributions, many
methods explicitly incorporate corrections for GC content
and sequence mappability. However, any technical noise
that would affect the tumor sequencing would also affect the
diploid sequencing, so in SCONCE, these corrections are al-
ready directly accounted for in our emission probabilities via
the diploid mean.

To verify this, we examined prediction accuracy of ex-
pected tumor read counts per window with different amounts
of information. For window i, let µi be the mean diploid
read count, ζi be the GC content, and ηi be the mappabil-
ity from the Duke Uniqueness of 35bp Windows from EN-
CODE/OpenChrom (UCSC accession wgEncodeEH000325)
(42, 43). For each tumor cell, A, from the previously pub-
lished data in (33), we predicted the ith window tumor read
depth, xiA, using various linear regressions on {µi, ζi,ηi},
then calculated the sum of squared differences between pre-
dicted and actual tumor read depths. Boxplots of the summed
squared differences per cell are shown in Figure 1 and empir-
ical cumulative distribution function (ECDF) plots are shown
in Supplemental Figure S1 for A: xiA∼ µi, B: xiA∼ µi+ζi,
C: xiA ∼ µi + ηi, D: xiA ∼ µi + ζi + ηi, E: xiA ∼ ζi,
F: xiA ∼ ηi, G: xiA ∼ ζi+ηi, .

The sum of squared differences remains consistent across
models that incorporate the diploid mean (models A, B, C,
and D), and have overlapping ECDF plots, while the sum of
squared differences increases for models that depend solely
on GC content and mappability (models E, F, and G). Be-
cause adding the GC content and mappability did not perform
significantly differently from the diploid mean alone (two
sample KS-test on the cumulative distribution of summed
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3.2 Error rates
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Figure 1: For each linear regression, a boxplot of the sum of squared differences
between the predicted read count and observed read count for each tumor cell in
(33) (uniformly sized 250kb bins) is shown. No statistically significant difference in
error is observed by adding GC or mappability information to the diploid null model.

squared differences, D = 0.033333,p-value = 1), we con-
clude using the diploid mean is sufficient, and do not add
GC or mappability corrections. This conclusion is robust
to changes in window size and binning method (ie. uni-
formly sized bins vs variably sized bins with equal numbers
of uniquely mappable bases).

3.2. Error rates. To compare the accuracy of each copy
number calling method, we compared the sum of squared
differences (SSD) between true copy number and estimated
copy number across ten simulation datasets. Recall that these
datasets were simulated under a more general non-Markovian
model (see Supplement S1 for simulation details and Supple-
ment S1.4 for parameter values).

For each cell, the SSD was calculated across all 12,397
windows (number of uniform non-overlapping 250kb win-
dows in hg19). Overall, SCONCE has similar or lower error
rates than AneuFinder, and consistently significantly lower
error rate than HMMcopy and CopyNumber (see Figure 2).

For example, in Simulation Set A (consisting of many
small overlapping CNAs per cell, under the line segment
model; Figure 2A), the median SSD for SCONCE is 3493.41
and 67.59, for k = 5 and k = 10,15, respectively, which is
lower than the median SSD for AneuFinder, at 103.32. Mean-
while, the median SSD for CopyNumber (in multisample and
individual modes, respectively) was 5312.37 and 5286.02,
and the median SSD for HMMcopy (which does not output
absolute copy number calls, and so was optimally scaled) was
26779.47. Of note, because SCONCE cannot call ploidies
above the user specified k, its error rate is significantly higher
for k = 5 when the true simulated ploidy is greater than 5.

Scaling problems can also arise if k is set too low. For
Simulation Set I (consisting of very short spiky CNAs, under
the binned model; Figure 2I), the median SSD for SCONCE
for k = 5 is 1917.50, while the median SSD for k = 10,15
drops to 101.50. The median SSD for AneuFinder is over
three times worse at 352.00, while the median SSDs for
HMMcopy and CopyNumber (multisample and individual
modes) are orders of magnitude worse, at 4727.50, 5715.67,
and 5595.00, respectively. In both of these simulation sets,
despite the higher median SSD for SCONCE at k = 5, the

median SSD consistently drops for k = 10,15. Because
higher values of k result in a higher run times without sig-
nificant gain in accuracy, we recommend setting k = 10.

In other simulations, AneuFinder has scaling problems
that SCONCE does not. In Simulation Set C (consisting of
mainly deletions, under the line segment model; Figure 2C),
the median SSD for SCONCE is 3.84 and 3.9 for k = 5 and
k = 10,15. The median SSD was 6384.32, 1845.24, and
1822.80 for HMMcopy and CopyNumber (multisample and
individual modes), respectively. However, the median SSD
for AneuFinder is orders of magnitude higher, at 21726.87.
Upon closer inspection, AneuFinder incorrectly doubles the
ploidy for the majority of the cells in this simulation set (see
Supplemental Figure S3C for an example decoding and Sup-
plemental Figure S2C).

To check if the differences in median SSD between meth-
ods were due to scaling issues, we also rescaled all copy num-
ber calls to minimize the SSD between simulated ploidy and
estimated ploidy for all methods. With this optimal rescaling,
SCONCE consistently outperforms or is on par with other
methods (see Supplemental Figure S2).

Although the median SSD for SCONCE with k = 5 in
Simulation Set A decreases from 3493.81 to 2900.76, rescal-
ing does not address the underlying limitation of k being too
small. The median SSDs for the other methods for Simula-
tion Set A also decrease, but not significantly (see Supple-
mental Figure S2A). Similarly, under Simulation Set I, fixing
the incorrect scaling for SCONCE with k = 5 causes the me-
dian SSD to drop from 1917.50 to 1649.83, but it doesn’t
address the root problem of k limiting the ploidies SCONCE
can call.

In contrast, the median SSD for AneuFinder for Simula-
tion Set C drops significantly from 21726.87 to 4.33, while
the median SSD for SCONCE remained constant. This shows
AneuFinder’s high median SSD for Simulation Set C was due
to incorrect scaling, rather than incorrect breakpoint detec-
tion and segmentation.

However, although HMMcopy median SSD values de-
creased with optimal scaling, they never dropped into the
same range as SCONCE and AneuFinder, implying there
are non-scaling related reasons behind the high median SSD
values. The median SSD values for CopyNumber did not
change, as its output was already scaled because it does not
report absolute ploidies.

3.3. Genome wide decodings. By plotting the genome
wide copy number profile for a representative cell from each
simulation set, we can learn more about the specific differ-
ences between methods that lead to differing error rates. Of
note, the value of k must be set high enough to allow a wide
enough ploidy range in SCONCE (suggested k = 10). For
brevity, only genome decodings for SCONCE (with k = 10)
and AneuFinder are shown in the main text (see Supplemen-
tal Figure S3 for decodings with other programs and other
values of k for SCONCE).

In some cases where the maximum k is set too low, the er-
ror rate from SCONCE is high because it can’t estimate high
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Figure 2: For each method, the sum of squared differences (SSD) between simulated ploidy and estimated ploidy is shown across different parameter sets. Each dot
represents the error for one cell and the median SSD is shown with a gray line and printed at the top of each column. SCONCE consistently has SSD values that are lower
or on par with other methods.

enough ploidies (Simulation Set A, with many small overlap-
ping CNAs; Figure 2A, Supplemental Figure S3A). This can
be seen in chromosome 3, where the true ploidy reaches a
maximum of 8, but SCONCE’s ploidy estimates are limited
to k.

In other cases, setting k too low causes the library size
scaling factor to be estimated incorrectly (Simulation Set I,
with very short spiky CNAs, Figure 2I, 3A, Supplemental
Figure S3B). Specifically, for k = 5, SCONCE incorrectly
reports ploidy of 1 instead of 2 for most of the genome.
However, once the value of k is high enough (k = 10,15),
SCONCE consistently recovers the simulated ploidy with a
lower error rate than AneuFinder. In particular, AneuFinder
misses small CNAs (ranging from 1 to 5 bins in width),
that SCONCE does not miss, such as in chromosomes 9
and 17 (shown with arrows in Figure 3A). These results are
consistent across simulations with approximately equal rates
of insertions and deletions (Supplemental Figure S3A, S3B)
and in simulations with mostly insertions (Supplemental Fig-
ure S3D).

Additionally, in simulations with mostly deletions (Simu-
lation Set C, under the line segment model), AneuFinder con-
sistently and incorrectly doubles the estimated ploidy, lead-
ing to a high error rate, while SCONCE does not (Figure 2C,
Supplemental Figure S3C). Specifically, AneuFinder mainly
calls ploidies of {0,2,4}, instead of {0,1,2}. When we opti-
mally scaled all copy number estimates to minimize the SSD,
AneuFinder’s error rates dropped, thereby verifying the ex-
istence of a scaling problem. Even with this optimal scal-
ing, SCONCE continued to have lower error rates than other
methods (Supplemental Figure S2).

Furthermore, SCONCE considerably outperforms meth-
ods like HMMcopy and CopyNumber in regions of 0 read
coverage. By using the diploid null model, we are able to
separate between true deletions and areas that have miss-
ing data due to sequencing noise (Simulation Set A, with
many small overlapping CNAs, Supplemental Figure S3A;

Simulation Set C, with mostly deletions, Supplemental Fig-
ure S3C). We note that this problem observed in the real data
was not contributing to the performance of HMMcopy and
CopyNumber in the simulated data, as no regions with miss-
ing data were simulated.

For real data (33), copy number estimates from a repre-
sentative cell (SRR054570) from SCONCE (with k= 10) and
AneuFinder are shown in Figure 3B (see Supplemental Fig-
ure S4 for copy number estimates from each method for cell
SRR054570 and another representative cell, SRR053675).
Of note, because we specifically incorporate diploid data
as our null model, SCONCE makes the most parsimonious
calls, rather than assuming copy number 0, in regions that
are hard to sequence or map and have no diploid data.
For example, in regions around centromeres and telomeres,
AneuFinder often calls 0 ploidy when there’s no observed
diploid or tumor reads. However, SCONCE uses the lack of
diploid and tumor reads to predict no change in copy number.
This can be clearly seen in Figure 3B in the centromeres of
chromosmes 1, 9, and 16, and in the telomeres of chromo-
somes 13, 14, 15, 21, and 22. Additionally, by examining
Supplemental Figure S4B, small CNAs (between 5 and 22
250kb windows in length, on chromosomes 9, 10, 12, 13, and
18) are consistently missed by AneuFinder, while SCONCE
calls these. CNAs larger than 99 windows in length, how-
ever, are consistently called well by both SCONCE and
AneuFinder. These results recapitulate the results seen from
simulations.

4. Discussion

CNAs are an important driver in cancer evolution, and ac-
curately detecting them on a single cell level can deepen
our understanding of tumorigenesis. In this paper, we de-
rive several models of copy number alterations for infer-
ence and simulation. We show that using HMMs derived
from models of the evolutionary process that generate CNAs,
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Figure 3: Genome wide copy number decodings are shown for representative cells from simulations and real data. Simulation Set I (very short spiky CNAs under the binned
simulation model) is shown in panel A, and cell SRR054570 from (33) is shown in panel B. Genomic window is plotted along the x-axis, per window read depth is shown
along the left y-axis, and ploidy is plotted along the right y-axis. Black vertical lines denote chromosome boundaries, gray dots represent observed tumor read depth in each
window, the red dotted line denotes the true ploidy from simulation (where applicable), the light blue line shows the mean diploid read count, the light blue band shows ±1
standard deviation in the diploid read count, and the colored lines denote the copy number decoding from each method. Black arrows highlight regions with differences in
CNA calls between SCONCE and AneuFinder. In panel A, small CNAs in chromosomes 9 and 17 are called by SCONCE, but not by AneuFinder. In panel B, centromeres
in chromosomes 1, 9, and 16 and telomeres in chromosomes 13-15, 21, and 22 are called with ploidy 0 by AneuFinder, but SCONCE makes the more parsimonious call of
ploidy 2.

more accurate inferences of CNA could be obtained. The
method for inference based on these models, SCONCE, is
available as an open source computer package at https:
//github.com/NielsenBerkeleyLab/sconce.

One limitation of SCONCE is that it requires data from
diploid cells sequenced on the same platform as the tumor
cells. While this increases accuracy by accounting for plat-
form specific biases and single cell sequencing errors, it also
increases sequencing costs to sequence diploid cells, which
may not be directly of interest to investigators. Alternatively,
as in the (33) dataset and in other methods (27) utilizing
other datasets, sequenced tumor cells that are determined to
be diploid by other means (such as via cell sorting) can be
relabeled as diploid cells.

One of the key strengths of SCONCE over competing
methods is its principled Markovian approximation of a non-
Markovian process. This allows for future interpretations and
applications of model parameters to understand tumor evolu-
tion. Specifically, SCONCE learns transition rate parame-
ters {α,β,γ}, tree branch length t, and library size scaling
factors, but these values are not used directly outside of the
copy number profile decoding. Understanding these transi-
tion rates in the context of using these tree branch lengths to
build phylogenies is the subject of future work.

Compared to other methods, SCONCE has increased sen-
sitivity in calling very small CNAs, particularly those smaller
than 5500kb. Additionally, in cells with substantial copy

number losses, SCONCE can accurately create copy num-
ber profiles without erroneous ploidy doublings. This is due
to SCONCE’s method of estimating library sizes using the
Viterbi decoding to account for how changes in the copy
number profile necessarily impact the library scaling factor.

Furthermore, because SCONCE uses the averaged
diploid data as a null model, in regions with zero tumor read
coverage, it can differentiate between genomic loss and se-
quencing noise, which other methods can not do. In partic-
ular, in regions with diploid coverage but no tumor reads,
SCONCE calls 0 ploidy, and in regions without coverage in
either the diploid cells or the tumor cell, SCONCE makes the
most parsimonious call. This increases CNA calling accuracy
of hard to sequence regions, such as telomeres, centromeres,
and repetitive regions.

In conclusion, we present an accurate and principled evo-
lutionary model for calling copy number alterations in single
cell whole genome sequencing of tumors, with implications
for broader applications.
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6. Code Availability

SCONCE is implemented in C++11 and is
freely available from https://github.com/
NielsenBerkeleyLab/sconce. See Supplement S6
for full details.
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