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ABSTRACT 

BACKGROUND 
 
Pathway-based patient classification is a supervised learning task which supports the decision-
making process of human experts in biomedical applications providing signature pathways 
associated to a patient class characterized by a specific clinical outcome. The task can potentially 
include to simulate the human way of thinking in predicting patients by pathways, decipher hidden 
multivariate relationships between the characteristics of patient class and provide more information 
than a probability value. However, these classifiers are rarely integrated into a routine 
bioinformatics analysis of high-dimensional biological data because they require a nontrivial hyper-
parameter tuning, are difficult to interpret and lack in providing new insights. There is the need of 
new classifiers which can provide novel perspectives about pathways, be easy to apply with 
different biological omics and produce new data enabling a further analysis of the patients. 

RESULTS 
 
We propose Simpati, a pathway-based patient classifier which combines the concepts of network-
based propagation, patient similarity network, cohesive subgroup detection and pathway 
enrichment. It exploits a propagation algorithm to classify both dense, sparse, and non-
homogenous data. It handles patient’s features (e.g. genes, proteins, mutations) organizing them 
in pathways represented by patient similarity networks for being interpretable, handling missing 
data and preserving the patient privacy. A network represents patients as nodes and a novel 
similarity determines how much every pair act co-ordinately in a pathway. Simpati detects 
signature biological processes based on how much the topological properties of the related 
networks discriminate the patient classes. In this step, it includes a novel cohesive subgroup 
detection algorithm to handle patients not showing the same pathway activity as the other class 
members. An unknown patient is classified based on how much is similar with known ones. 
Simpati outperforms state-of-art classifiers on five cancer datasets, classifies well sparse data and 
provides a novel concept of enrichment which calls pathways as up or down involved with respect 
the overall patient’s biology. 

CONCLUSION 
 
Simpati can serve as interpretable accurate pathway-based patient classifier to discover novel 
signature pathways driving a clinical class, to detect biomarkers and to get insights about how 
patients are similar based on their regulation of biological processes. The biomarker detection is 
made possible with the propagation score, likelihood of association between the patient’s feature 
and outcome, and with the deconvolution of the single feature’s contributions in the patient 
similarities. The pathway enrichment is enhanced with the integration of the Disgnet and the 
Human Protein Atlas databases. We provide an R implementation which enables to start Simpati 
with one function, a GUI interface for the navigation of the patient’s propagated profiles and a 
function which offers an ad-hoc visualization of patient similarity networks. The software is 
available at: https://github.com/LucaGiudice/Simpati 
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1.INTRODUCTION 

High-dimensional biological data provide valuable information for patients' prognosis and treatment 
response. They are essential data for biomedical scientists in both the tasks of finding evidences to 
develop a study and confirming wet-lab results [1–3]. Pathway-based analysis is a technique for 
mining these data. It provides an intuitive and comprehensive understanding of the molecular 
mechanisms related to the patients [4,5]. The pathway space is more robust to noise than the 
single feature level, summarizes the information of multiple patient’s features into the pathway 
activity (inhibited or activated), reduces the model complexity and maintains predictive accuracy in 
the face of uncontrolled variation [6–9]. These motivations boosted the development of enrichment 
tools for the pathway analysis but not of machine learning algorithms. They are neither considered 
in articles of comparison [10–13] nor in bioinformatics best practises [14–16]. Fabris et al. [17] 
detailed the drawbacks of a supervised classification approach. It lacks a formal statistical basis, is 
computationally expensive, includes a not trivial hyper-parameter setting and does not well handle 
neither imbalances classes nor structured feature types as the biological pathways. 

Few attempts have been made in this direction. In 2010, Pang et al. [18] proposed a bivariate 
node-splitting random forest integrating pathways for the survival analysis of cancer patients in 
microarray studies. In 2018, Hao et al. [19] proposed the first generic-purpose pathway-based 
deep neural network for the prediction of Glioblastoma patients. The method builds a network 
model by leveraging prior biological knowledge of pathway databases and predicts considering 
hierarchical nonlinear relationships between the biological processes and the patient classes in 
comparison. However, the method requires a non-trivial tuning of hyper-parameters which are 
difficult to interpret for bioinformaticians or computational biologists without a background in deep 
learning, demands high computational resources, does not provide a graphical representation to 
explain why specific pathways have been selected as the best and includes in the results only the 
classification performances.  

In the same year, Pai et al. officially introduces the emerging patient similarity network (PSN) 
paradigm [20]  for the precision medicine. In a PSN, each node is an individual patient and an edge 
between two patients corresponds to pairwise similarity for a given datum (gender, height, gene 
expression …). The paradigm brings many advantages. Analysing the similarities to gather new 
information is conceptually intuitive. A PSN can lead to the identification of patient subgroups or 
the prediction of a patient’s class/outcome. Similarity networks can represent any datum, naturally 
handle missing and heterogenous data, have a history of successes in gene and protein function 
prediction [21–23] and can preserve the patient privacy by being shared in place of the sensitive 
raw information (topic which is growing in concern) [24–26].  

Pai et al proposes netDx [27,28] as patient classifier based on the PSN paradigm. Any available 
datum (e.g., age, gender, gene expression, …) is converted into a PSN. The method proceeds by 
performing GeneMania on the similarity networks. GeneMANIA [23] scores each input PSN based 
on how well it classifies an input set of patients known to be in the same class (i.e., training set). A 
linear combination of the best PSNs is used to create a composite network on which the unknown 
patients (i.e., testing patients) are classified based on their similarity with the training ones. Despite 
researchers’ efforts for standing up to the challenge, the method does not accept data in matrix 
format, requires to define multiple functions in order to set up the model, does not provide a 
graphical representation of the PSNs used to predict, does not give access to the data processed 
during the workflow, depends by the quality of the user-selected similarity measure, requires 
multiple hyper-parameters to manually tune, demands high computational resources and includes 
in the results only the classification performances together with the pathway names.  

There is the need of new classifiers able to get the benefits of both the methodologies: 
classification and enrichment. As defined by Fabris et al., from the enrichment side the new 
method should be computationally light, easy to understand, provide more information than the 
probability value and not requiring assumptions to satisfy. While, from the classification side, it 
should be non-parametric, interpretable, consider multivariate interactions between features and 
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patient classes, not requiring hyper-parameters difficult to set by the final user and cope well with 
both high-class imbalance and structured feature types. 

We want to stand up to the challenge by proposing a pathway-based classifier called Simpati. Our 
main contributions with this method include: 1) the combination of graph-theory concepts as 
network propagation, cohesive subgroup detection and graph topology with machine learning to 
handle different biological omics, unbalanced patient classes and outliers, 2) a novel patient 
similarity measure adapt for any biological data type, 3) a novel concept of enriched pathways, 4) a 
user-friendly implementation, 5) an integrated prioritization system for the biomarker selection, 6) 
an integrated literature-based enrichment of the pathways, 7) explorable results which can lead to 
further findings, 8) two visualization tools for the patient analysis  

 

2. METHODS  
 
2.1 OVERVIEW 
 
Simpati considers the patient’s biological profiles (e.g. genes per patients) divided into classes 
based on a clinical information (e.g. cases versus controls). It prepares the profiles singularly 
applying guilty-by-association approach to determine how much each biological feature is 
associated and involved with the other ones and so to the overall profile. Higher is the guilty score 
and more the feature is involved in the patient’s biology. Simpati proceeds by building a pathway-
specific patient similarity network (psPSN). It determines how much each pair of patients is 
similarly involved in the pathway. If the members of one class are more similar (i.e. stronger intra-
similarities) than the opposite patients and the two classes are not similar (i.e. weak inter-
similarities), then Simpati recognizes the psPSN as signature. If the classes are likely to contain 
outlier patients (i.e. patients not showing the same pathway activity as the rest of the class), then 
Simpati performs a filtering to keep only the most representative members of each class and re-
test the psPSN for being signature. Unknown patients are classified in the best pathways based on 
their similarities with known patients and on how much they fit in the representative subgroups of 
the classes (i.e. more they are similar to the representatives of a class and more they fit). As 
results, Simpati provides the classes of the unknown patients, the tested statistically significant 
signature pathways divided into up and down involved (new pathway activity paradigm based on 
similarity of propagation scores), the biological features which contributed the most to the 
similarities of interest, the guilty scores associated to the biological features and all the data 
produced during the workflow in a vectorial format easy to share or analyse. 

Fig.1. Workflow of Simpati. Patient profiles are divided in two classes and are described by 
biological features. A feature- feature interaction network together with pathways are further input 
data required by the software. All profiles are individually propagated over the network. The 
profile’s values are replaced by scores that reflect the feature’s starting information and 
interactions. Simpati proceeds by creating a patient similarity network for each pathway (psPSN). 
The pairwise similarity evaluates how much two patients have a similar pathway activity. It 
evaluates how much the features between two patients are close and high in term of propagation 
values. Two patients that act on a pathway from the same feature’s positions and same expression 
values get the maximum similarity. The psPSN is decomposed into three components. Two with 
the intra-similarities of the class specific representative patients, while one with the inter-similarities 
between them.  If the similarities of one class dominate over the other two components, then the 
psPSN is signature. The latter is ultimately used to classify. An unknown patient is classified based 
on how much is like the other patients and on how much fits in the class specific representatives. 

2.2 DATA PREPARATION 
 
Simpati works with the patient’s biological profiles (e.g. gene expression profiles), the classes of 
the patients (e.g. cases and controls), a list of pathways and an interaction network (e.g. gene-
gene interaction network). Simpati is designed to handle multiple biological omics but requires that 
the type of biological feature (e.g. gene) describing the patients is the same one that composes the 
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pathways and the network which models how the features interact or are associated. In this study, 
we tested Simpati in the classification of Early versus Late cancer stage patients. In fact, identifying 
the cancer mechanisms which drive the tumor from early to late stages is challenging [29–31] but it 
can improve the early cancer diagnosis, lead to develop more precise therapeutic strategies and 
increase the survival rates [32]. A late-stage cancer spreads to nearby lymph nodes and other 
organs, the survival rate decreases due to the necessity of more advanced and risky treatment 
strategies. While, early localized stages are easier to treat and have better survival rates [31,33–
35]. For setting up this biological and pathway-based classification challenge, we collected data 
about Liver hepatocellular carcinoma (LIHC), Stomach adenocarcinoma (STAD), Kidney renal 
clear cell carcinoma (KIRC), Bladder Urothelial Carcinoma (BLCA), Lung squamous cell carcinoma 
(LUSC) and Esophageal carcinoma (ESCA) cancers from The Cancer Genome Atlas (TCGA) 
using the R packages curatedTCGAData [36] and TCGAutils [37]. We kept only the patients having 
RNA sequencing (RNAseq) data, somatic mutation data and the following clinical information: 
histological type. We added a new information based on the pathological stage attribute. We 
applied a binarization and labelled the stage I and II in Early, while the stage III and IV in Late 
based on the tumor/node/metastasis (TNM) system [38–41]. We proceeded with preparing the 
biological omics. We followed the workflow defined by Law et al. [42] for the RNAseq. Genes not 
expressed at a biologically meaningful level have been filtered out to increase the reliability of the 
mean-variance relationship. We  removed the differences between samples due to the depth of 
sequencing and normalised the data using the trimmed mean of M-values (TMM) [43] method. 
While somatic mutation data have been converted into a binary data type, where a value equal to 
one was indicating a mutated gene in a patient and zero otherwise. We ended up with two 
biological omics for five datasets with 14 LIHC (7 Early, 7 Late), 21 STAD (8 Early, 13 Late), 37 
KIRC (24 Early, 13 Late), 45 BLCA (8 Early, 37 Late), 75 LUSC (60 Early, 13 Late) and 152 ESCA 
(91 Early, 61 Late) patients. The first four datasets to simulate wet-lab routine studies and last two 
to have more precise classification performances [44]. We then collected the pathways and 
created the biological interaction network. We retrieved the biological processes from the major 
databases MSigDB [45], GO [46] and Kegg [47], while we used Biogrid [48] to model the biological 
feature’s interactions. A node represents a gene, and the edges are experimental and manually 
curated gene-gene interactions (GGi) (564,325 interactions and 26,433 genes). 

Formally, given a set of features ��� � ��� , �� , ��, … , ��� with � 	 
 and of patient's profiles 
��� � ��� , �� , �� , … , ��� with  	 
 where each element is a vector of feature’s values, Simpati 
requires the concatenation of the patient’s profiles in a matrix �: �� �  ��� ,� � where �� ,� is 
equal to the value of ��  in patient �� . The set of pathways ���� � ����, ���, ���. . . , ���� where 
each element is defined by a finite set not exclusive of features (e.g. ��� � ��	. �
, ��� ). The 
biological network is defined as an undirected unweighted graph �����, �� where the vertices 
� � ���, ��, … , ��� represent features �: ��� � � and � � ��� , �� �|� , �� 	 �� represent the 
associations. The adjacency matrix corresponding to ��� is the matrix �: �  � � �! ,� � where 
! ,� � 1 �� # $� , ��% &'( ! ,� � 0 �� * �� , ���. Two vectors containing the indexes of the patient’s 
profiles which belong to the class defined by the name of the vector, ��+,-......... � �1,2,3, … , 1� and 
,���....... � �1 2 1, … , � with 1 3� . 

2.3 NETWORK-BASED PROPAGATION 
 
Simpati starts with protecting the privacy of the patients and enhancing the advantage of using the 
patient similarity network paradigm in the workflow. It converts the patient’s original information in 
anonymous labels and proceeds with these latter. It then gives to the user the possibility to share 
data and results with or without the map.  

When the patient privacy is preserved, Simpati transforms the patient’s biological profiles using a 
network-based propagation algorithm. Each feature gets a new value based on its starting a priori 
information (e.g. expression or mutation value) and by the strength of its associations with all the 
other features. In other words, it gets a new value based on how much is found “guilty” of being 
involved in the patient’s biology. This is based on two assumptions: the a priori information 
measures the strength of the link between the feature and the patient (e.g. the expression 
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measures the gene importance), while the feature’s associations define shared molecular or 
phenotypic characteristics (e.g. interacting genes have similar cellular functions) [49].  

In the application, Simpati maps the a priori values of the genes to their corresponding nodes in the 
GGi network. It propagates the values through the interactions using the propagation algorithm. 
Each node, even the one without value, gets a score which reflects its starting information and the 
amount given and received from its neighbours. The amount shared between nodes depends by 
the propagation type and the network topology. Simpati uses the random walk with restart (RWR) 
algorithm and the row-normalized version of the network. The RWR is a state-of-the-art network-
based propagation algorithm [50] and flexible standardization technique [49] which has been 
successfully applied for the disease characterization [51] and the prioritization of multiple disease-
associated biological features as genes [50], pathways [52], miRNAs [53,54], lncRNA [55], proteins 
[56] and somatic mutations [57]. While, the row normalization guarantees that a node gives the 
same amount of information equally to all its neighbours independently by their degree [58,59]. 
This allows to not favour specific nodes against others. Simpati uses the propagation to always get 
the same continuous numeric data type of patient’s profile which information intrinsically supports 
the prioritization of the biomarkers and pathways. Plus, this allows to boost the signal-to-noise ratio 
[49] (e.g. poorly expressed gene gets a high score if close to strongly expressed genes, non-
mutated gene gets a high score if close to a mutated one), handle different biological omics (e.g. 
dense gene expression data, sparse somatic mutation data) [60–63], allow to use a novel ad-hoc 
similarity measure and to not let Simpati depends by user-defined parameters (i.e. independently 
by the biological omic the propagation standardizes both the feature’s values and the meaning 
associated to).  

For each profile 4 	 �1, … , �, we define the set of its features represented as vertices with a priori 
information 5�� � �5� 6 � | 7� 	 �1, … , �� 8. 9.  # �  � 5�  9:;' � ,� ! � 0}. The RWR algorithm 
measures the importance of each node �  to 5��. RWR mimics a walker that moves from a current 
node to a randomly selected adjacent node or goes back to source nodes with a back-probability 
= 	 �0, 1�. RWR is described as follows: 

��
��� � �1 > =�����

� 2 =��
�   (1) 

where �� is a �  1 probability vector of |�| nodes at a time step 9 of which the ���   element 
represents the probability of the walker being at node � 	 �, and �� is the  �  1 initial probability 
vector and defined as follows: 

��
� � � �

|�|
 �� � 	 5, 0 ?9:;@!�8;�   (2) 

�A is the transition matrix of the graph, �
�,� denotes a probability with which a walker at �  moves 

to �� . Formally, �
�,�  is defined based on the row normalization: 

�
�,� � ��,�

∑ ��,��
   (3) 

The propagated profile ��
��� replaces the original profile ��

� in the matrix �.  

2.4 TRENDING MATCHING SIMILARITY MEASURE 
 
Simpati works with patient’s propagated biological profiles. The feature has a score which 
measures how much is “guilty” of being associated and involved in the patient’s overall biology. 
Higher the score and more the feature is involved. Plus, the propagation score is meaningful also 
between profiles. Lower the propagation score varies between patients and more the feature is 
assuming the same role. This point from a pathway perspective is important. Two patients may 
strongly involve one biological process but may act on it from different directions. For example, two 
patients may have high scores for the EGFR pathway genes (n=79) but have very different values 
for few ones as EGFR, JAK, IL-6 and GAB1. This may due to the fact that, one patient is acting on 
the pathway using exclusively EGFR and JAK [64], while the other is using IL-6 and GAB1 [65,66].  
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We wanted to capture both the aspects of the propagation scores in developing the similarity 
measure for capturing how much two patients were similar, so we designed a novel pairwise 
similarity measure called Trending Matching (TM) similarity (0 lowest, 1 highest). It is the weighted 
sum of two components: the mean and the variation of the propagation scores of the features 
belonging to a pathway. The first component measures how much the same feature is strongly or 
poorly involved in the patient’s overall biology. While the second component measures how much 
the same feature is similarly involved. For example, two patients described by a gene with high but 
different propagation scores (e.g. 1 and 0.7) are less similar than the pair which has lower but 
more close values (e.g. 0.8 and 0.7). The components are first determined for each exact gene 
and then are summarized to represent the pathway. More the genes are strongly guilty, more the 
genes are similarly guilty and more the patients are considered similar in involving the pathway. 
This also prevents that, one outlier patient with genes strongly associated to the pathway can have 
a high similarity with another patient when they act on the process differently.  

The trending matching similarity measures how much two patients are similar in a pathway. Given 
a pathway ��� � � �� | & 	 �1, … , ��� and two patient’s profiles ��  and �� for 4, B 	 �1, … , �, the 
similarity ������ , ��� is defined as follows:  

�C���� , ��� �
∑ ������,�,�� ,� �

∑ ��!���,�,��,� �
    (4) 

������ , ��� � �∑ ��� ,���� ,� /� �

|#$�|
    (5) 

1D������ , ��� � 1 >  |�C���� , �� �  >  ������ , ���|   (6) 

������ , ��� � �C���� , ��� 2 ������ , ��� 2 1D������ , ���   (7) 

���
%��� , ��� � �C���� , ��� 2 �1 > ������ , ���� 2 1D������ , ���   (8) 

 

The TM similarity is designed in two variants. ��� is designed to capture what we will call up-
involved psPSNs, higher is the second component and higher is the similarity between two 
patients. The most cohesive class has higher propagation scores for the same genes than the 
opposite class. ���

% is designed to capture down-involved psPSNs, lower is the second 
component and highest is the similarity between two patients. 

2.5 PATIENT SIMILARITY NETWORKS 
 
Simpati aims to predict the class of a new unknown patient comparing its propagated biological 
profile to the ones of the patients who are composing the classes of interest. For accomplishing the 
task, Simpati simulates a physician’s decision process applied to solve the diagnosis and 
prognosis of a new individual. Creation of a mental database of known patients linked by their 
similarity (e.g. Lung cancer patients and healthy controls), selection of the features in which 
patients of the same class are similar between each other but dissimilar from others (e.g. EGFR 
biomarker with overexpression in Lung cancer patients with respect healthy controls) and 
assessment of the clinical outcome of the new individual based on its similarities with the database 
ones.  

For the task, Simpati combines the patient similarity network paradigm to the pathways. It models 
how much the patients are similar in every pathway annotated in literature based on their biological 
features.  

The pathway-specific patient similarity network is an undirected weighted graph �5�����, ��� 
defined by a set of nodes �� � �E��, E��, … , E��� representing the patient's profiles, a set of 
weighted edges �� � ��E�& , E���|E�& , E�� 	 ��� with �’: �>G + such that �’�E�& , E��� �
���'(�,…,�*��& , ��� representing how much each pair of patients is similar in a specific pathway 
���. The adjacency matrix corresponding to �5�����, ��� is �’’: � � �!’’& ,� � where !’’&,�  �
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�����& , ���. The same pathway-specific patient similarity network is also built with ���
%. The latter 

goes through the same downstream operations. 

So, It creates a database of pathway-specific patient similarity networks (psPSNs). It proceeds by 
selecting the pathways recognised as signature because dividing the two classes while 
characterizing one. The members of one class must be more similar (i.e. stronger intra-similarities) 
than the opposite patients and the two classes not similar (i.e. weak inter-similarities).  

For this, we developed a ranking system (supplementary text 1) which evaluates a PSN from 0 to 
10 (the power of a PSN). Higher is the power and more a class is stronger than the opposite one 
and less the classes are similar (i.e. mix together due to strong inter-similarities). First, we obtain 
three distributions based on the values of the similarities in the psPSN. The distribution of the intra-
similarities possessed by the members of one class, the distribution of the intra-similarities of the 
opposite patients and the inter-similarities between the members of the two classes. For each 
distribution, we compute a low and high percentile (e.g. 0.4 and 0.6). Then, we check if the 
distribution of intra-similarities of one class has the low percentile greater than the high percentiles 
of the other two distributions. In case the condition is satisfied, we decrease the low percentile, 
increase the high percentile, and compare again. For example, power 7 is satisfied when the 20 
percentile of the intra-similarities of one class is higher than the 80 percentile of the other 
distributions. The power 9 when the 15 percentile of one class is higher than the 85 percentile of 
the other distributions. When, a psPSN has at least power 1 is considered signature.  

When the PSN is built with the ��� similarity and has a power greater than 1 is considered 
signature and up-involved because the members of the most cohesive class are similar due to 
higher feature’s guiltless than the patients of the opposite class. On the contrary, the PSN built with 
the ���

% similarity is considered down-involved because the most cohesive class has the lowest 
feature’s propagation values. 

Biologically speaking, the two classes are acting on the pathway differently, the members of one 
class are cohesive because their shared clinical condition is requiring and leading a precise 
alteration of the pathway, while the opposite class shows an heterogenous behaviour and a less 
need of acting on that cell function. We designed to capture this topological pattern and we do not 
require that the weak class must be cohesive following the study of Marquand et al. who reported 
that, assuming that both the classes in comparison are well defined precludes the inference of true 
diagnostic labels [67]. A clinical population may be composed of multiple groups, disease-related 
variations may be nested within, or the heterogeneity is a result of misdiagnosis, comorbidities, or 
an aggregation of different pathologies.  

2.6 BEST FRIENDS CONNECTOR ALGORITHM 
 
Simpati creates the database of psPSNs and then it aims to find the signatures. On the contrary of 
the starting situation in which a patient is described by the set of its biological feature’s values, now 
the patient is described by its similarities with both the members of its same class and the non-
members. This is extraordinary with respect supervised enrichment (e.g. differential expression 
analysis and gene set enrichment analysis tools) and machine learning tools which do not normally 
neither expect nor assume that a patient can actually relate to the individuals of the opposite class. 
However, the patient similarity network paradigm natively supports the presence of outliers as it 
could be likely to have them in the study of a real clinical cohort [67] or disease-specific class 
[68,69]. For example, patients not biologically profiling as expected based on their clinical 
information are represented in the PSN with low intra-similarity and high inter-similarity. Therefore, 
if a psPSN is not recognised as signature in the first test then, Simpati performs a patient selection 
to get rid of possible outliers which are misleading the topological analysis of the network. 

We introduce the Best Friend Connector algorithm (BFC) for identifying the most representative 
subgroup in each class, for removing members that are not similar to the majority and for 
maximizing the psPSN signature power (i.e. the grade of separability between the classes). At first, 
it determines which class is the strongest, then it performs the selection. For the strongest class, it 
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finds the subgroup with the strongest intraclass and weakest interclass similarities. For the 
weakest class, the subgroup with the weakest interclass similarities. 

The patients not selected in the subgroups are considered outliers and removed from the psPSN. 
Simpati keeps count of in how many pathways a patient has been considered outlier and it 
provides this information as result of the workflow to allow a further analysis of the a priori input 
data. The psPSN is tested for being signature and then recomposed as it was originally. 

The algorithm exploits the concept of first order best friend (1BF), second order best friend (2BF) 
and outsiders. A patient is a 1BF of another member called root when their similarity is in the root’s 
best ones. A patient is a 2BF when he is 1BF of one root’s 1BF and he has the root as 1BF. An 
outsider is a patient that does not belong to a class. The algorithm performs the following 
operations. It adjusts the weights of the intraclass connections. Precisely, it increases the similarity 
of two patients when both have a weak similarity with outsiders and decreases in opposite case. 
Iteratively, it considers one patient as root, it assesses the average of the intraclass connection 
weights of the subgroup composed by his 1BFs and 2BFs. When each patient has been 
considered, the algorithm retrieves the set of best friends who got the strongest connections. This 
guarantees of avoiding selecting multiple strong subgroups identified by different root patients 
which would not represent the starting class uniquely. 

Given four points in the Euclidian space H��1, I1�, ���2, I2�, +��3, I3�, ���4, I4�, we define the 
quadrilateral area as follows: H��H, �, +, �� � �1/2� L ���1I2 2 �2I3 2 �3I4 2 �4I1� > ��2I1 2
�3I2 2 �4I3 2 �1I4�� 

Given two indexes of patient’s profiles 4, B 	 �1, … , �: 

if 4, B 	 ���+,-� then @� �  1 > ∑ +’’�,�

|-�./|
  '(-�./*   @�� �  1 > ∑ +’’�,�

|-�./|'(-�./*     (9) 

while if 4, B 	 �,���� then @� �  1 > ∑ +’’�,�

|/�0-1|
  '(/�0-1*   @�’ �  1 > ∑ +’’�,�

|/�0-1|
 '(/�0-1*    (10) 

Given one index of patient’s profile 4 	 �1, … , � and a value 9: 	 N0, … ,1O, we define: 

1�4 � �B | B 	 �1, … , ���1 �B, 4 	 ���+,-�P+ B, 4 	 �,�������1 ������ , ��� G�
 E;@Q;'9�R;_�&RT;�N!’’�,� , !’’�,� , … , !’’� ,� O, 9:��   (11) 

2�4 � �B | B 	 �1, … , ���1 �� U
1�� ��1 �B, 4 	 ���+,-� P+ B, 4 	 �,����� ��1 ������ , ��� G�
 E;@Q;'9�R;_�&RT;�N!’’�,� , !’’�,� , … , !’’� ,� O, 9:�� ��1 �� 	 1���  (12) 

�&�� �  
∑ +’’�,����	
��

|�3�|
 !�9: �5 � �1�4 V 2�4�  (13) 

The best friends connector algorithm is then shown in form of pseudocode in the image 2 frame A. 

Fig.2. Figure of pseudocode relative to the two algorithms used in the Simpati implementation. The 
frame A shows the Best Friends Connector algorithm that is applied to a patient similarity network 
in form of adjacency matrix to filter outlier patients. The frame B shows the step of class prediction 
related to an unknown patient performed at the end of the Simpati workflow. 

2.7 CLASSIFICATION 
 
Once Simpati created the database of signature psPSNs, it uses them to classify an unknown 
patient. This for understanding the quality of the selected pathways in characterizing and 
distinguish the classes in comparison. Simpati performs the operation continuing to follow the 
physician’s decision process. The unknown patient is compared to the ones already annotated in 
the mental database and assigned to the same class of who is most similar to. However, the only 
strength of similarity could be misleading. The unknown patient could have the strongest similarity 
with outlier members of the class. Therefore, we designed Simpati to consider also how much the 
unknown patient fits in the class.  
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The method prepares the unknown patient’s profile. The profile is replaced with its propagated 
version, compared to the database patients in every pathway and added as new node in the 
corresponding psPSNs. Then, Simpati associates the profile to one of the classes based on the 
results of two approaches. For the first, it determines the average of the highest values of similarity 
that the patient has inside each class. The patient would be associated to the class with which has 
the strongest similarity. While for the second approach, Simpati pretends that the patient belongs 
to one class and measures how much is far from being considered an outlier. The patient would be 
associated to the class in which is considered less outlier with respect the other members. In 
details about this step, the patient is simulated to belong to one class and the BFC algorithm is 
performed iteratively. At each run, the algorithm decreases the size of the subgroup of patients 
which retrieves. It stops when the patient does not belong to the best subgroup. Higher is the 
number of iterations and more the patient is considered having a stronger similarity with the class 
representatives than the other members. Simpati uses the iteration number as distance measure 
from the “outlier” status. Due to this, the patient would be candidate to be associated to the class in 
which survived the highest number of iterations.  

Simpati associates the patient to the class that has been predicted by both the approaches. In 
case, the results are not concordant, then Simpati does not make the prediction and the pathway 
together with its PSN are removed from the downstream operations. This step is performed for all 
signature psPSNs, then Simpati performs the consensus prediction. The patient’s definitive class is 
the one to which has been most frequently assigned.  

Formally this would be, a new patient’s profiles �4 such that W U ��+,- &'( W U ,��� is added as 
node in each patient similarity network. Let us define the new �5�����, ��� composed by the set 
of nodes �� � �E��, E��, … , E�� , E�4� representing the patient's profiles and the set of weighted 
edges �� � ��E�& , E���|E�& , E�� 	 ��� !�9: �’: � >G  + 8. 9. �’�E�& , E��� � ��T��& , �� �. The class 
of the new profile is found by a topological analysis of all the psPSNs shown in form of pseudocode 
in the image 2 frame B. 

 
2.8 OUTPUT 
 
Simpati collects the signature pathways used to predict, returns their corresponding PSNs in 
vectorial format and reports their related information to allow further analysis and considerations: 
the average of the intra and inter similarities to let understanding which is the most cohesive class, 
the psPSN power translated into a scale from 1 (poor separation between classes) to 10 (strong 
separation) to catch the pathways which most distinguish the classes in comparison, and a 
probability value (p.value). The latter is assessed testing the psPSN to retrieve the same original 
power or higher when patients are permutated between classes. This information allows to filter out 
pathways which have been detected as signature due to random. 

Simpati also includes two tools for the visualization of the data produced with the workflow, one 
tool is an internal function able to produce a compact representation of a psPSN, while one is a 
graphical user interface (GUI) for the exploration of a patient’s propagated biological profile.  

The function provides a compact representation of a psPSN by reducing the patients which are 
visible as nodes. This is necessary to allow the user to understand how patients are similar 
between each other. In fact, more the number of nodes increases and more becomes difficult to 
follow the edges of the network and so how the patients are similar between each other. To do so, 
Simpati groups up patients of the same class that are considered similar based on their similarity 
values in the psPSN, chooses a patient to represent each group and filters the original network by 
keeping only the representatives. First, it determines how much every pair of patients are similar in 
the network. It uses the measure �C���� , ��� which is applied between two patient’s profiles 
composed by their similarity values in the psPSN. It gets a psPSN of the psPSN (psPSN2). Simpati 
proceeds and iteratively performs the BFC algorithm on the psPSN2. In this case, the BFC 
algorithm is not applied to filter outliers but to detect multiple cohesive subgroups. Simpati uses the 
BFC algorithm to get the most cohesive subgroup composed by the twenty percent of the current 
patients composing the network. The selected nodes are all replaced in the psPSN by their best 
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root in psPSN2, and they are not considered anymore. While psPSN2 composed by only the non-
selected nodes is the input of a new run. The iterations stop when all the nodes have been 
associated to one subgroup. Simpati performs this operation for both the classes and provides the 
plot of the psPSN. Only the best roots are included and the subgroups which they represent are 
listed in the legend. Further about the aesthetic aspects, the size of a node is used to indicate how 
much the relative patient is similar inside its own class compared to how much is similar with the 
outsiders. This is assessed with the difference between two PageRank [70] centrality scores, one 
is measured only with the patient connected by similarity to the members of its class and one with 
only the outsiders. Higher the difference, higher the size of the node, more central the patient is in 
its class and less similar to the outsiders. The position of the nodes in the plot of the psPSN is 
determined using the Fruchterman & Reingold’s force-directed layout [71]. The network becomes 
compact, easy to analyse and still representative of how all patients are similar. Thanks to the plot, 
the user can understand if the psPSN is correctly a signature, see how the similarities are 
distributed, identify which patient is crucial for the connectivity of its own class and which is instead 
behaving as outlier. 

Complementary to the visualization of the psPSN, we also provide an R shiny GUI to allow the 
exploration of the propagation effect over a patient’s profile. This enables the user to understand 
how the values of the patient’s biological features changed and for which reason. For example, a 
gene with low expression value that has been removed from the Limma analysis due to the 
function “filterByExpr” in the differential expression analysis, it may get a high propagation score 
and the user may get interested in understanding the reason. We believe that this can be another 
useful instrument to make the method and the data more accessible. 

 
2.9 ENRICHMENT 
 
The power, the p.value, the distribution of the similarities are all technical information regarding a 
psPSN that allow to understand how patients and classes are structured. However, they offer a 
limited utility in prioritizing the best pathways because they are not related to any biological 
background of the patients. For this reason, in case the patient’s features are genes, we designed 
Simpati to perform a query in the Disgnet [72] and Human Protein Atlas [73] (HPA). DisGeNET is a 
database which provides open access to annotated genes and variants disease associations. 
While HPA is a unique world-leading effort to map all the human proteins in cells, tissues, and 
organs in the human body using antibody-based imaging, mass spectrometry-based proteomics, 
transcriptomics, and systems biology. Simpati requires the semantic type of the patient’s disease 
(e.g., Neoplastic Process, Congenital Abnormality, etc..) and key words (e.g., TCGA-KIRC: Kidney, 
Renal, Carcinoma). Then, it gets which published articles have been associated the pathway’s 
genes to the semantic type, which key words are associated to the genes, in case of cancer which 
genes are favourable to be prognostic and in case of non-cancer disease which genes are 
associated to the tissue of interest. As indicated by Lin et al. [74] this operation allows to prioritize 
the signature pathways based on their associations with the patient’s clinical outcome and to 
understand better the validity of Simpati results. 

2.10 WORKFLOW OF TESTING 
 
Simpati ability to classify the classes in comparison is tested with a leave one out cross validation 
(LOO-CV). Given a dataset of patient’s biological profiles and the classes associated to them, 
Simpati iteratively performs the following operations: one patient is considered unknown and 
compose the testing set, while the remaining patients are considered known and used as training 
set. The latter is used to build the psPSNs, to find the signature pathways and as ground truth in 
the classification step. While, the testing patient has the biological profile which class must be 
predicted. In the end, the predicted classes of the testing patients collected from all the iterations 
are compared to their real ones for determining the classification performances. Simpati is 
designed to value its classification based on two measures following netDx design [28]. The first 
one (AUC-ROC) is the area under the curve where the x-axis is the false positive rate (FPR) and 
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the y-axis is true positive rate (TPR). While the second one (AUC-PR) is the area under the curve 
where the x-axis is the recall and y-axis is the precision [75]. 

3. RESULTS 

3.1 CLASSIFICATION COMPARISON 
 
We tested Simpati performances to classify patients from five TCGA cancer types described by 
two biological omics, one gene expression omic and one somatic mutation omic. The classes 
assigned to the patients were Early or Late based on their cancer stage. We increased the 
challenge including the performances of the current published generic-purpose pathway-based 
classifiers: netDx [28] and PASNet [19]. netDx creates a database of PSNs associated to pathways 
for each class, applies a network fusion algorithm to produce a consensus PSN and applies 
GeneMANIA (state-of-art gene function prediction algorithm) for the prediction of the testing 
patients. netDx tests its performances with a 10-fold cross-validation which in each of its run 
includes another cross-validation for the feature selection step. PASNet incorporates biological 
pathways in a Deep Neural Network. The neural network is composed by a gene layer (an input 
layer), a pathway layer, a hidden layer that represents hierarchical relationships among biological 
pathways and an output layer that corresponds to the patient classes. PASNet tests its 
performances with a stratified 5-fold cross-validation repeated 10 times. The two competitors either 
support or use the classification evaluation based on the area under the receiver operating 
characteristic curve and the area under precision-recall curve measures and they differ from 
canonical supervised machine learning algorithms. For these reasons, we performed the 
comparison using each method based on how it has been designed and following the vignettes 
provided by the authors.  

Fig.3. Comparison of the classification performances between the pathway-based classifiers Line 
plot of median (dot) classification performances with error bars (line). X-axis indicates the datasets. 
Y-axis indicates the value of area under the roc/pr curve. The same plot is presented twice, one 
including the performances when the methods classify the RNAseq data, while one the somatic 
mutations. PASNet does not have performances with somatic mutations because it does not 
handle sparse biological data. The plot shows that Simpati performs better than the competitors in 
all the datasets except for LUSC with somatic mutation. 

Simpati performs better than the competitors with both the measures and the biological omics. 
Simpati also proves to be more reliable in each dataset with a standard error equal to zero due to 
its leave one out cross-validation approach. While the performances of the competitors highlight 
common classification issues. Their performances vary a lot probably due to the number of 
patients, the size of the classes in comparison and the ability of the classifier to naturally handle 
multiple omics and data types. 

3.2 SIMILARITY NETWORK COMPARISON 
 
As result of the classification, Simpati and netDx provide the pathways and the related PSNs which 
have been the most important during the workflow. However, the methods use different techniques 
for the pathway selection. netDx selects a pathway if the corresponding PSN allows GeneMANIA 
to correctly predict the classes of the training and testing patients. While Simpati selects a pathway 
if the corresponding PSN topologically separates the classes in comparison. The best resulting 
pathways and related PSNs should help to characterize the patient classes, explain why they have 
been used to predict and they should increase the interpretability of the model. We compared the 
topology of the PSNs selected by the two contenders based on their power. 

Fig.4. Comparison between the topology of the PSNs retrieved as result by netDx and Simpati with 
the TCGA datasets. The topology of the PSNs is measured with their power. Each frame of the 
image is dedicated to the pathways selected for the classification of a specific biological omic. The 
Y-axis indicates the power of the PSNs retrieved by a specific method. The X-axis indicates the 
datasets. Specifically, the dot indicates the median of the power of the PSNs resulted by applying a 
specific method with a specific dataset, while the line ranges based on the standard deviation of 
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the same PSNs’ powers. Simpati selects better PSNs except in STAD patients described with 
somatic mutation profiles. 

Simpati provides more pathways with high power than netDx in all the datasets except one. This is 
probably due to how the selection is done. Simpati discerns PSNs based on their topology and 
then performs the classification. While netDx evaluates a pathway based on the mere ability of the 
GeneMANIA algorithm to use its PSN for classifying. This makes the difference in terms of 
interpretability of the model. From the final user prospective, Simpati’s psPSNs together with their 
visual representation make easier to understand why they have been selected for the classification 
and can be perceived as more trustable.  

3.3 COMPUTATION RESOURCES COMPARISON 
 
The patient similarity network paradigm used by Simpati and netDx brings many advantages both 
in the feature selection, in the classification phase and in the overall interpretability of the software. 
However, these pros come with a price which is the software scalability already introduced as 
challenge by Pai et al. [20]. A PSN is a complete graph that the methods build with all the patients 
and for every pathway. This means that an increment in the number of patients and in the number 
of annotated pathways lead the methods to require more computational resources. netDx and 
Simpati faced this point with different approaches. netDx is implemented in R and Java, uses the 
disk to save temporary files and applies a sparsification of the PSNs to decrease the number of 
edges and so the amount of information associated to them. While, Simpati is implemented 
completely in R, natively support parallel computing and handles all the data of the workflow as 
sparse matrices or vectors. To understand which software handles better this issue, we captured 
the ram usage and the running time which each method required to classify the TCGA datasets 
with the same hardware setting (AMD Ryzen Threadripper 3970X 32-Core Processor, 251 
Gigabyte System memory and Linux ubuntu-1804-slurm 5.4.0-72-generic). Simpati resulted to be 
more efficient in both the running time and the ram used.  

Fig.5. Barplot shows the comparison between the computational resources used by Simpati, netDx 
and PASNet to classify the TCGA datasets. The measures used for this comparison include the 
running time in hours and the memory ram in the maximum amount needed by the software in 
Gigabyte. In fact, the maximum amount is the real obstacle to the correct execution of the 
software. The X-axis indicates the datasets. The Y-axis indicates the measure. PASNet with the 
RNAseq data has a running time which exceeds the three days (72 hours). The plot shows how 
Simpati outperforms the competitors in time and memory for all the datasets. 

3.4 ENRICHMENT COMPARISON 
 
Pathway-based classifiers aim to classify correctly unknown patients using the biological pathway 
information. This means that the prediction of a patient’s class passes through the selection of 
pathways which due to method-specific criteria are considered useful for the task. In a cross-
validation setting, the final classification performances indicate how much the classifier is reliable 
and better than a random predictor. However, they do not represent a measure of how much the 
pathways are biologically significant. A classifier as Simpati can provide further details about how it 
used the pathways, why it selected them and the biological interpretation under the filtering criteria 
but still, this information does not allow to understand if pathways are biologically meaningful. For 
this reason, we designed Simpati to integrate an enrichment step and we performed this operation 
also to the results of the other competitors. Precisely, we kept only the resulted significant 
pathways having at least one publication associated to each of the key words defined per dataset 
and having at least the 90% of the genes associated to the patient’s specific cancer. Then, we 
compared the numbers of pathways satisfying these constraints. 

Fig.6. 100% stacked bar chart shows the comparison between the enrichment statistics obtained 
by querying the resulting pathways of the different classifiers in Disgnet and the Human Protein 
Atlas with respect the patient’s cancer types. Each frame compares the methods based on how 
their pathways are qualified with a specific measure. The X-axis indicates the datasets in 
comparison. A bar is divided based on the number of pathways obtained by the two methods and 
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satisfying the criteria indicated by the Y-axis. For example, netDx did not selected any pathway for 
the classification that satisfied the criteria in the classification of the LIHC patients with RNAseq 
profiles, while for the somatic mutation profiles Simpati has selected 99% more pathways.  

This analysis highlights that Simpati is both able to select, use and provide biologically significant 
pathways directly associated to the patients that it is classifying and that performs better than the 
competitors. netDx retrieves always much fewer pathways biologically associated to the tumor of 
the patient’s profiles than Simpati. We have been unable to include PASNet due to its lack in 
providing the pathways that it considers significant and predictive of the patients classified.  

4. CONCLUSIONS 

We propose the pathway-based classifier called Simpati. The method can be applied to different 
omics, proved to obtain quality classification performances and detect signature pathways. In other 
words, it identifies biological processes that distinguish and uniquely characterize the clinical 
classes of the patients in comparison. 

On top of the technical conclusions, we want to suggest Simpati as tool for computational 
biologists and bioinformaticians that want to get unique insights about their patients or samples. 
We designed Simpati to simulate a physician’s decision process applied to solve the diagnosis and 
prognosis of a new individual. As a physician, our software processes, stores and learns 
information related to the patients. All the data used during the classification are then made 
available for allowing further analysis.  

Simpati associates to each single biological feature (e.g. gene, protein, mutation, ...) a propagation 
score which reflects the overall biology of the patient. A high score indicates that the feature is 
strongly involved in the patient’s biology, while a low score the opposite. The scores can be 
explored in two ways. They can be considered as values of a standard high-dimensional matrix 
with patients at the columns and features at the row. They can be visually taken into account in an 
ad-hoc graphical-user interface. The matrix format allows any statistical analysis with 
clusterProfiler [76], while the GUI permits to understand how much specific biological features of 
interest are important without any programming and statistical knowledge. The information 
retrieved by analysing the propagation scores can be combined to the results obtained from a 
differential expression (DE) analysis. For example, a DE list can be filtered to keep only the genes 
that have a high score in order to reduce the false positive or can be expanded integrating those 
genes that are DE in term of propagation values. 

Simpati models pathways as patient similarity networks. In a psPSN, patients are connected to 
others based on how much their biology similarly regulate a specific pathway. Like in a social 
network in which people are connected to others based on their hobbies and how they practice 
them (e.g., the place, the effort, the time). More two patients involve and regulate similarly a 
pathway (e.g., with the same genes and with the same expression values) and more they are 
strongly connected. In case a pathway is found significant and of interest, it can be explored in two 
ways. The adjacency matrix or the graphical representation of the related psPSN. The matrix 
format allows any network analysis with NetworkToolbox [77], while the plot permits to have 
intuitions about how much the patient classes separate and to identify patients that are central or 
tend to be outlier. The information retrieved by analysing the topology of the psPSNs can be used 
to verify the clinical information associated to the patients, identify subclasses, and can be 
combined to the results obtained from a clustering analysis or a non-negative matrix factorization 
(NMF) [78]. For example, the subclasses of patients that have been identified with an unsupervised 
technique can be checked in the psPSNs to find in which pathways are mostly similar.  

Simpati finds signature pathways to characterize and distinguish the patient classes in comparison. 
The pathways must satisfy a constraint. The members of one class must be more similar than the 
opposite patients. Then, it uses the similarities to predict the class of new patients. In this sense, 
Simpati can be combined to a standard gene set enrichment analysis because detects pathways 
that satisfy a criterium not taken into account by other tools.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.23.461100doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.23.461100
http://creativecommons.org/licenses/by-nc-nd/4.0/


Simpati does not assume that the patient classes are well defined, and it considers the possibility 
that members of the same class may regulate the same biological process differently. When this is 
likely to happen with a pathway, Simpati identifies the patients that most represent their own class, 
uses only them to check the signature condition and the remaining members are considered 
outliers. For this reason, Simpati is suitable to real case scenarios which often include either 
patients or samples associated to clinical outcomes due to a priori information by wet lab scientists. 
The latter check the expected sample classes using a principal component analysis or clustering. 
However, both the methods are not designed to detect differences at the level of pathways or 
single biological features which could reveal unique biological aspects of a sample and differentiate 
it from the rest of its class. For example, in a knock-out study, samples are labelled as knocked-out 
based on the experiment but this does not necessarily imply that each member of the clinical 
population shows changes in gene expression levels against the control group. Standard gene set 
enrichment analysis tools are ineffective due the possible low variation between the classes and 
possible knock-out samples not showing any change.  

5. DISCUSSION 

Generic purpose pathway-based classifiers propose themselves as powerful tools for classifying 
patients and providing biologically meaningful results in form of pathways. The first one has been 
introduced in the 2010 but, at the time of writing, there are very few software available. they remain 
very few. This is due to the many challenges that must be faced to produce high-quality and 
functioning software they inherit. We tried to report and detail all the issues related to the 
development of this kind of machine learning algorithm. At the same time, we tried to build a 
software that could have been considered a future example for other researchers. Thanks to the 
combination of new and popular strategies, Simpati proves that is possible to both obtain satisfying 
results and tackle common issues in the pathway-based classification.   

The preparation of the patient’s biological profiles with a transformation technique as the network 
propagation allows to get the same kind of data and information before the classification. This 
allows the researchers to develop a workflow which is flexible, consistent, and involving less hyper-
parameters. As a matter of fact, we developed the Trending Matching similarity to capture a 
specific relationship between the patient’s propagated profiles and the scored genes. On the 
contrary, netDx suggests using the Pearson correlation as default measure directly on the raw 
profiles but the authors did not provide a biological interpretation of what kind of patient similarity 
leads to catch and leave the user to the uncontrolled intrinsic disadvantages of the measure [79]. 
For example, the correlation is biased and leads to incorrect inferences when considers genes that 
have not been perturbed (e.g., environmentally or genetically) in order to cause a meaningful 
change in expression level [80].  

The selection of the predictive pathways including criteria that can be explained from a biological 
point of view allows the classifier to not drift away from the patient’s biology. For example, both 
PASNet [19] and netDx [27] select the pathways which perform the best in predicting the training 
patients. This approach is undeniable well suited for securing the ability to predict an unknown 
patient. However, it may lead to select pathways which are useful for the algorithm of prediction 
and meaningless for the patient’s biology. On the contrary, Simpati performs a first selection based 
on criteria that can be biologically interpretated and then it analyses the pathways for the 
classification. As we proved with our results, a biological selection does not necessarily negatively 
affect the final classification performances but it indeed changes positively the resulting pathways 
produced by the classifier. 

The analysis of outlier training patients because their biological features are not showing the same 
activity in a pathway as the rest of the class increases the granularity of the cell process 
description that the classifier handles and provides as result. This brings multiple advantages. It 
makes the classifier less sensitive to how much the data have been cleaned, how the patient 
classes have been defined, and it allows to give a hint about subclasses of patients which are 
using different pathways at the net of one shared clinical status.  
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At the same time, it is worth to also mention the price of such strategies. The propagation leads the 
classifier to require also the network of interactions or associations between the features of the 
biological omic. The selection of pathways based on criteria which are biologically explainable is 
not trivial and may makes the classification inconclusive due to no pathway passing the filter. The 
analysis of the outliers requires either parameters to set up which may be not correct for all the 
applications or hyper-parameters to determine.  

 
 

6. AVAILABILITY OF DATA AND MATERIALS 

All the work has been made in R programming language, from the data extraction to the 
enrichment. We provide a github repository with a tutorial about how to replicate all the results of 
this project: https://github.com/LucaGiudice/supplementary-Simpati .We provide an R package to 
use Simpati: https://github.com/LucaGiudice/Simpati and to use the GUI: 
https://github.com/LucaGiudice/propaGUIation  
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BFC(PSNu,th=5){ 

For each b,k∈{1,…,B} such that b,k∈{EARLY} 

Determine r’ and r’’; Q=[0,0] E=[0,w’’b,k] R=[0,r’] T=[w’’b,k, r’’];  

w’’b,k = QA(P,Q,T,Z) 

For each b,k∈{1,…,B} such that b,k∈{LATE} 

Determine r’ and r’’; Q=[0,0] E=[0,w’’b,k] R=[0,r’] T=[w’’b,k, r’’]: 

w’’b,k = QA(P,Q,T,Z) 

For each b∈{1,…,B} 

Determine 1BFb and 2BFb; Max=0 

For each b∈{EARLY} 

Determine BFS and Maxb 

If Maxb>Max then Max=Maxb and PV’’=BFS 

Max=0 

For each b∈{LATE} 

Determine BFS and Maxb 

If Maxb>Max then Max=Maxb and PV’’’=BFS 

PV’ ={PV’’ U PV’’’} 

Return PSN’u(PV’,PE’)=BFC(PSNu,x) with PV’⊆PV and a set of edges PE’⊆PE each 

one of which is incident with vertices from PV′ only 

} 

For each 𝑢 ∈ {1, … , 𝐶} 

For each x ∈ 𝑇 =  5 ∗ 𝑛 𝑛=1
95  

M1’=M2’=M1’’=M2’’=0 and th=95 

Determine 1BFz assuming z ∈ EARLY 

𝑀1’ =
 𝑤’’𝑘 ,𝑧  𝑘∈ 1𝐵𝐹𝑧 

|1𝐵𝐹𝑧 |
 

𝑃𝑆𝑁’𝑢(𝑃𝑉’, 𝑃𝐸’) = 𝐵𝐹𝐶(𝑃𝑆𝑁𝑢 , 𝑥) 𝑤𝑖𝑡ℎ 𝑃𝑉’ ⊆ 𝑃𝑉 and a set of edges 
𝑃𝐸’ ⊆ 𝑃𝐸 each one of which is incident with vertices from 𝑃𝑉′ only 

If 𝑝𝑣𝑧 ∈ 𝑃𝑉’ then 𝑀2’ = 𝑥 

Determine 1BFz assuming z ∈ LATE 

𝑀1’′ =
 𝑤’’𝑘 ,𝑧  𝑘∈ 1𝐵𝐹𝑧 

|1𝐵𝐹𝑧 |
 

𝑃𝑆𝑁’𝑢(𝑃𝑉’, 𝑃𝐸’) = 𝐵𝐹𝐶(𝑃𝑆𝑁𝑢 , 𝑥) 𝑤𝑖𝑡ℎ 𝑃𝑉’ ⊆ 𝑃𝑉 and a set of edges 
𝑃𝐸’ ⊆ 𝑃𝐸 each one of which is incident with vertices from 𝑃𝑉′ only 

If 𝑝𝑣𝑧 ∈ 𝑃𝑉’ then 𝑀2’’ = 𝑥 

If 𝑀2’ > 𝑀2’’ AND 𝑀1’ >  𝑀1’’ then  

Add EARLY to the LABELS set 

elseIf 𝑀2’’ > 𝑀2’ AND 𝑀1’’ >  𝑀1’ then  

Add LATE to the LABELS set 

𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑐𝑙𝑎𝑠𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 |𝑎 ∈ 𝐿𝐴𝐵𝐸𝐿𝑆| 

A B
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