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Abstract 21 

Adverse event pathogenesis is often a complex process which compromises multiple events ranging 22 

from the molecular to the phenotypic level. Adverse Outcome Pathways (AOPs) aim to formalize this 23 

as temporal sequences of events, in which event relationships should be supported by causal 24 

evidence according to the tailored Bradford-Hill criteria. One of the criteria is whether events are 25 

consistently observed in a certain temporal order and, in this work, we study this time concordance 26 

between gene expression- and histopathology-derived events as data-driven means to generate 27 

hypotheses on potentially causal mechanisms. As a case study, we analysed liver data from repeat-28 

dose studies in rats from the TG-GATEs database which comprises measurements across eight 29 

timepoints, ranging from 3 hours to 4 weeks post-treatment. We identified time concordant pathway- 30 

and transcription factor (TF)- level events preceding adverse histopathology, which serves as 31 

surrogate readout for Drug-Induced Liver Injury (DILI). Among known events in DILI, we found some 32 

to change strongly before adverse histopathology, e.g. fatty acid beta oxidation, while others were 33 

more confident, e.g. bile acid recycling, or frequent, e.g. ATF4-mediated stress response, further 34 

characterizing their mechanistic roles. Moreover, we used the temporal order of TF expression and 35 

regulon activity to separate induced TFs, such as Cebpa, from post-transcriptionally activated ones, 36 

e.g. Srebf2, and subsequently combined this with known functional interactions (TF-target or protein-37 

protein) to derive detailed gene-regulatory mechanisms, such as Hnf4a-dependent Cebpa 38 

expression. We additionally evaluate which time concordant events show sustained or increasing 39 

activation over time, as this time dependence is favourable for biomarker development, and identify 40 

pathways indicating dyslipidaemia, and a decrease in Hnf1a and Hnf4a indicating deteriorating liver 41 

function. At the same, time also potentially novel events are identified such as Sox13 which shows a 42 

more significant time dependence and -concordance than many known TFs in liver injury. Overall, we 43 

demonstrate how time-resolved transcriptomics can derive and support mechanistic hypotheses by 44 

quantifying time concordance and how this can be combined with prior causal knowledge, with the 45 
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aim of both understanding mechanisms of toxicity, as well as potential applications to the AOP 46 

framework. We make our results available in the form of a Shiny app 47 

(https://github.com/anikaliu/DILICascades_App), which allows users to query events of interest in 48 

more detail. 49 

Author Summary 50 

One key challenge in statistical analysis is to infer causation instead of correlation, in particular in 51 

case of observational data. The conserved temporal order of events, their time concordance, is 52 

thereby one potential source of evidence and consequentially time-series data is particularly suited 53 

to study causal mechanisms. In this study, we present an automatable framework to quantify and 54 

characterize time concordance across a large set of time-series, and we apply this concept to gene-55 

expression- and histopathology-derived events derived from the TG-GATEs in vivo liver data as a 56 

case study. We were able to recover known events involved in the pathogenesis of Drug-Induced 57 

Liver Injury (DILI), and identify potentially novel pathway and transcription factors (TFs) which precede 58 

adverse histopathology. As complementary sources of evidence for causality, we additionally show 59 

how time concordance and prior knowledge on plausible interactions between TFs can be combined 60 

to derive causal hypotheses on the TFs’ mode of regulation and interaction partners. Overall, the 61 

results derived in our case study can serve as valuable hypothesis-free starting points for the 62 

development of Adverse Outcome Pathways for DILI, and demonstrate that our approach provides a 63 

novel angle to prioritize mechanistically relevant events. 64 

Introduction 65 

Adverse drug reactions are a major reason for compound failure in the clinical trials [1,2] and the 66 

significant cause for post-marketing withdrawals. To counter exposing patients to these risks, it is 67 

desired to identify adverse events earlier in the individual patient but also in the drug development 68 
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process. Mechanistic understanding of how adverse event pathogenesis is crucial in this regard, i.e. 69 

to derive early safety biomarkers or in vitro assays. However, current understanding of toxicity is 70 

largely incomplete, in particular for complex phenotypes such as organ injury which can usually be 71 

caused by a wide range of compounds perturbing the biological system at different points mediated 72 

through multiple biological scales and entities [3,4]. 73 

Multiple interrelated concepts have been introduced to formalize mechanistic knowledge in the 74 

context of toxicity including Adverse Outcome Pathways, AOPs [4,5]. These begin with a molecular 75 

initiating event (MIE) which describes the first interaction of the compound with the system, e.g. a 76 

target protein, which is then linked to the AE through a causal cascade of key events (KEs) on different 77 

biological levels, like activation of cellular pathways or changes in the tissue or organ. Thereby, the 78 

Organization for Economic Co-operation and Development [6] published three criteria to evaluate 79 

causality between events within AOPs based on the original Bradford Hill considerations in the context 80 

of epidemiological studies [7] and previous work on the related Mode of Action concept [8]: Biological 81 

plausibility, essentiality of key events and empirical support for key event relationships. Empirical 82 

support is further separated into time concordance (Event A happens before event B), dose 83 

concordance (Event A happens at lower dose than event B) and incidence concordance (The 84 

magnitude of event A is larger than that of event B).  85 

Computational approaches can thereby support these predominantly expert- and knowledge-driven 86 

mechanistic efforts by prioritizing mechanistically relevant events or by providing additional insight on 87 

the relation between an event and a given phenotype. For instance, computationally predicted AOPs 88 

(cpAOPs) prioritize plausible events and event relationships as starting points for expert-driven AOP 89 

development by integrating functional and statistical associations between biological entities on 90 

different levels [9–11]. In contrast, probabilistic quantitative AOPs (qAOPs) provide additional insight 91 

on the predictivity of KERs by aiming to predict the adverse event from in vitro assays implementing 92 

the expert-curated AOP as scaffold [12,13]. Biological readouts, such as transcriptomics, are 93 
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particularly suited to study intermediate key events as they provide broad insights into cellular 94 

changes which can then lead to the identification of predictive signatures and mechanistically relevant 95 

insights, for example in the context of DILI [14–18]. This included studies on the time (and dose) 96 

dependence of gene expression-derived events in the context of adverse findings [19,20], so the 97 

changes of individual events across changes in time (and dose), and also aimed to predict later 98 

adverse findings from fixed early timepoints [14,15]. In contrast, time concordance, which instead 99 

aims to identify the order of activation between two events, has not been explored so far as a means 100 

to derive mechanistic events and event relationships from gene expression data. 101 

In this study, we hence quantify time concordance across gene expression- derived cellular events 102 

and adverse events based on histopathology across wide range of compounds. To do so, we 103 

introduce the concept of “first activation” for mechanistic analysis, which focusses only on the earliest 104 

timepoint an event can be reliably detected and then orders events within a time-series by their 105 

timepoint of first activation (Fig 1A). In contrast to previous time concordance analyses in AOPs which 106 

addressed a defined set of KER and known KE [21–23], this analysis derives statistical evidence for 107 

temporal concordance across time-series and can do so for any combination of events based on gene 108 

expression or histopathology. Although the confidence of these temporal orders per time series is 109 

limited by the noisiness of gene expression data and the low time resolution, statistical significance 110 

can be evaluated across time series (Fig 1B). Furthermore, it is possible to separate out events which 111 

depict general perturbation response but are unspecific, as well as rare events, which are predictive 112 

but only observed for a small subset of compounds.  113 
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 114 

Fig 1 Quantifying time concordance based on first activation. (A) The event activation of the 115 
events A-D and the later event is shown over time, as well as their timepoint of first activation, at 116 
which the event first passes the defined activation criteria. If an event takes place before a defined 117 
later event, which in our study is adverse histopathology, it is time-concordant. Time concordance 118 
indicates that there is potentially a causal relation between both events, and is distinct from time-119 
dependence which is defined based on the correlation to the later event or time. (B) Based on the 120 
frequency of an event before or at the same time as the later event and its frequency in background 121 
time-series without the later event, a confusion matrix and different time concordance metrics can be 122 
derived. 123 

We demonstrate the utility of this concept in this work using liver gene expression and histopathology 124 

data from repeat-dose studies in rats provided by the TG-GATEs database. This allows us to take 125 

advantage of previous data curation and work on the dataset itself, in particular by Sutherland et al. 126 

[15] who provide an adverse classification of each compound-dose combination and toxscores 127 

summarising histopathological findings in each condition. Furthermore, Drug-Induced Liver Injury 128 

(DILI) is well understood in comparison to other organ-level toxicities and we hence know which 129 

processes are expected to precede injury, including cell death, inflammation and other adaptive stress 130 

responses [24]. 131 

We first describe the time concordance for known processes, similar to mechanistic qAOPs, and then 132 

prioritize predictive, time-concordant KE providing a strong data-driven, automatable starting point for 133 

AOP development, aligning with the objective of cpAOPs (more detailed comparison in S1 Table). 134 
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We then combine data-driven time concordance and prior knowledge on event relations between 135 

transcription factors (TFs) and gene expression to generate hypothesis for causal gene-regulatory 136 

mechanisms in DILI pathogenesis and to generally show how time concordance can stratify and 137 

support other streams of causal evidence. Overall, we show that time-resolved gene expression and 138 

histopathology data can be used to quantify time concordance across a large set of compounds and 139 

events. 140 

Results and Discussion 141 

Adverse histopathological findings and their temporal relation 142 

We firstly evaluated which histopathological findings at which level of magnitude, indicated by 143 

toxscore, were frequently found in the adverse compound-dose combinations (observed in at least 5 144 

out of 40 adverse time series) with at least 50% of findings being in adverse time series. Results for 145 

all annotated findings are displayed in Fig 2A and the identified adverse histopathological findings 146 

include hepatocellular single cell necrosis and biliary hyperplasia at all toxscore thresholds. In 147 

contrast, only some of the three toxscore thresholds (“null”, “low”, “high”) were selected with the above 148 

criteria for all other findings, e.g. the two higher toxscore cut-offs for hepatocellular necrosis and 149 

inflammation and only the “high” cut-off for increased hepatocellular mitosis. In all cases, the lower 150 

toxscore level was also frequently observed in non-adverse conditions and hence considered too 151 

unspecific. In contrast, only the two milder levels of fibrosis were included in the selection, as severe 152 

fibrosis was observed rarely.  153 

For the adverse histopathology labels, the distribution of toxscores and first activation over time (Fig 154 

2B) shows that some findings are predominantly found late, like fibrosis, while others are 155 

predominantly found early, e.g. hepatocellular single cell necrosis. This indicates that a further 156 

progressed and more severe phenotype tends to be annotated with different terminology. These 157 
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adverse histopathology labels were next used to define 61 time-series associated with any of the 158 

given histological changes, covering 38 compounds, as adverse (S2 Table). In those, the earliest 159 

evidence of an adverse phenotype is used to approximate the timepoint of the primary insult. From 160 

this analysis, across all timeseries with adverse histopathology, we find that hepatocellular single cell 161 

necrosis is most frequently the primary insult, while biliary hyperplasia at any severity is in most cases 162 

a secondary effect (Fig 2C, S2 Fig). Furthermore, higher doses are generally found to induce earlier, 163 

and more severe, changes across all findings. We additionally investigated for all histopathology 164 

labels how frequently these were observed before or after the primary insult, and for example find 165 

vascular edema exclusively before or at the primary insult, and hepatocellular hypertrophy most 166 

frequently afterwards (for details see S2 Fig). 167 

 168 
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Fig 2: Distribution and relation of histopathological findings across time series. A) Number of 169 
occurrences in adverse time series and the fraction of adverse time series among all occurrences of 170 
the given finding for all histopathological findings at 3 different toxscore cut-offs, namely “null” 171 
(toxscore>0), “low” (toxscore>0.67) and “high” (toxscore>1.34). Histopathological findings, out of 172 
which at least 50% and at least 5 of the occurrences were found in adverse conditions timeseries 173 
were considered adverse B) Frequency of histopathological findings at different timepoints, as well 174 
as the frequency of the respective first activations C) Time of first activation across timeseries labelled 175 
as adverse or non-adverse. 176 

Known pathways in DILI preceding adverse histopathology 177 

To identify time-concordant cellular changes preceding later adverse histopathology, we next defined 178 

the up- or downregulation TFs or pathways as events and identified 911 significantly enriched (p-179 

value<0.05) pathway-level events (37.3%), and 108 TF-level events (33.6%). The high number of 180 

significant events is a result of the overall larger dysregulation observed in adverse time series. We 181 

next evaluated time concordance for a set of ten known events in DILI (S3 Table). Recycling of bile 182 

acids and salts is the most significantly enriched geneset among the ones linked to known events and 183 

overall (Fig 3). Also down-regulation of the other bile acid gene sets is significantly enriched (p-value 184 

< 0.05) pointing to an overall down-regulation of bile acid metabolism. While cell death is also only 185 

found to be up-regulated, dysregulation in both directions is found to precede injury for all other key 186 

events (Fig 3). However, only for peroxisomal processes, namely peroxisomal protein import and 187 

beta-oxidation of very long fatty acids, both directions were significantly enriched indicating that 188 

dysregulation in either direction might be linked to injury. Overall, significantly enriched gene sets are 189 

found for all represented known events in DILI (p-value < 0.05) indicating that our analysis is able to 190 

recover known cellular events. 191 
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 192 

Fig 3: Enrichment of known events in DILI before adverse histopathology based on gene sets 193 
as well as individual gene members. The enrichment of first activation before or at adverse 194 
histopathology is shown for gene sets mapping to known key events in DILI and genes in these gene 195 
sets. Aligning with the expected direction, a significant down-regulation of LXR signalling and bile 196 
acid-related pathways is observed, while all other gene sets were found to be more significantly up-197 
regulated. Only for peroxisomal pathways, both directions were significantly enriched indicating that 198 
dysregulation in direction might be linked to adverse histopathology. Furthermore, we show which 199 
genes show significantly enriched and strong (|logFC|>1) dysregulation providing additional insight 200 
into the processes. Among others, Acyl-CoA thioesterase 3 (Acot3), which is involved in mitochondrial 201 
beta oxidation, is identified as overall most significantly enriched gene. 202 

We next analysed the enrichment of significantly and strongly (|logFC|>1) dysregulated individual 203 

genes from the above gene set, with the hypothesis in mind that such genes might be able to provide 204 

insight on a more detailed level (S2 File). Among the ten most significantly enriched gene-level events, 205 

three are involved in known processes, namely the up-regulation of Acyl-CoA thioesterase 3 (Acot3) 206 

and Carnitine O-Acetyltransferase (Crat) which are involved in mitochondrial and peroxisomal beta 207 

oxidation, respectively, as well as the Jun Proto-Oncogene (Jun) which plays a role in oxidative stress. 208 

All of the other genes among the ten most significantly enriched gene-level events are also involved 209 

in mitochondrial and peroxisomal processes except Growth Arrest And DNA Damage-Inducible 210 

Protein Gadd45a which has a known role in hepatic fibrosis [25]. For JNK signalling, we did not find 211 

any significantly enriched genes indicating that while the overall process is changing none of the 212 

individual genes shows strong and frequent expression changes. This shows that both gene- and 213 
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gene-set level analysis can provide complementary insights into cellular changes preceding DILI, and 214 

that in some cases effects can be attributed in individual genes which might give more detailed 215 

information about the cellular changes.  216 

While significant enrichment before or at adverse histopathology can be regarded as a necessary 217 

criterion for time concordance, the temporal event relationship can be further characterised based on 218 

the observed behaviour across experimental conditions which may be useful to further prioritize 219 

mechanistically relevant pathways in a hypothesis-free manner. Following the Bradford-Hill 220 

considerations, we hypothesize that this might be the case for observed effect size, frequency and 221 

specificity of event occurrence before adverse histopathology. Firstly, we investigated how strongly 222 

pathways were dysregulated comparing the maximal |logFC| per adverse time-series (Fig 4). High 223 

median max. |logFC|s were overall found for mitochondrial and peroxisomal pathways and the highest 224 

median max. |logFC| among all significant events was found for mitochondrial fatty acid oxidation of 225 

unsaturated fatty acids. At the same time, however, the high variance for pathways with high median 226 

max. |logFC| as well as the only moderately high |logFC|s observed for other known pathways in DILI, 227 

such as programmed cell death. This indicates that a high magnitude of |logFC| is not necessary to 228 

contribute to an adverse event, but at the same time can be a useful property to further prioritize 229 

important pathways. 230 
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 231 

Fig 4: Observed max. |logFC| before adverse histopathology. For known processes in DILI which 232 
correspond to significantly enriched events before adverse histopathology, the max |logFC| before 233 
adverse histopathology is shown. A high logFC is found for mitochondrial beta oxidation and followed 234 
by peroxisomal beta oxidation and mitophagy. As reference, also the background distribution of all 235 
max. |logFCs| is shown. 236 

We next analysed to what extent dysregulation in a pathway is predictive for a particular type of 237 

histopathology. To this end, we calculated across how many adverse time-series each pathway is 238 

observed, summarised by the true positive rate (TPR), and the positive predictive value (PPV) 239 

indicating whether presence of the key event is a confident indicator for the later adverse event (Fig 240 

5). We focus on significantly enriched events only (p-value < 0.05) and find a trade-off with respect to 241 

the highest TPR and PPV (Fig 5; for distribution of all events see S3 Fig). This generally shows that 242 

either highly frequent events with lower specificity can be identified or more specific events at the 243 

expense of lower frequency. Thereby, known events are found at both sides of the spectrum, with 244 

increased mitophagy being the most frequent known event (TPR: 0.41, PPV: 0.72) and bile acid 245 

recycling the most frequent event among those which are also highly confident (TPR= 0.30, PPV:1). 246 
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Surprisingly, lower frequencies are particularly observed for stress response and signaling pathways 247 

with only LXR-dependent gene expression linked to lipogenesis reaching a TPR over 20%. We argue 248 

that one cause for lower observed frequencies is that these pathways are predominantly and initially 249 

mediated through post-transcriptional alterations instead of gene expression changes, making the 250 

expression of pathway members a weak proxy for pathway activation in early pathogenesis and 251 

explaining the overall low frequencies. In fact, one reason LXR-dependent changes might have 252 

achieved higher frequencies as they explicitly include the downstream regulated genes unlike the 253 

other signalling and stress response pathways. We hence next investigated the activity of known TFs 254 

in DILI preceding adverse histopathology, which might better describe early perturbation response 255 

preceding downstream gene expression changes.  256 

 257 

Fig 5: True positive rate (TPR) and positive predictive value (PPV) before or at histopathology 258 
of genes and gene sets in known key events in DILI. Events related to the given known key event 259 
are shown in red or blue indicating an up- or downregulation, respectively. If the event was over-260 
represented before adverse histopathology (p-value < 0.05) the point was additionally circled in black. 261 
The background distribution of all genes or gene sets is shown in grey.  262 

Known TFs in DILI preceding adverse histopathology 263 

To gain insight into signalling and expression regulation preceding adverse histopathology, we next 264 

looked into known TFs mediating the stress response and signalling pathways already introduced 265 

above, as well as nuclear receptors which take in important roles in liver physiology and malfunctions 266 
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and can be, both, MIEs or KEs (mapping shown in Fig 6A). Consistent with the pathway-level results, 267 

an enriched up-regulation is found for Nuclear factor erythroid 2-related factor 2 (Nfe2l2) which is a 268 

key mediator of oxidative stress [18,26] as well as the Nf-κB subunits Rela and Nfkb1 indicating 269 

inflammation [27], while the Oxysterols Receptors LXRa (Nr1h3) and LXRb (Nr1h2) which control 270 

lipid metabolism showed enriched down-regulation [28].  271 

For ER stress, we included three TFs mapping to the three branches of unfolded protein response 272 

[29]: Activating transcription factor 4 (Atf4), Activating transcription factor 6 (Atf6) and X-box binding 273 

protein 1 (Xbp1). Atf4 up-regulation was found to be most significantly enriched, most frequent and 274 

also showing the largest logFC. This highlights its overall importance in mediating ER stress and is 275 

consistent with the known role for ATF4 in DILI [30]. While Atf4 is a member of the pro-apoptotic 276 

unfolded protein response branch, the ATF6 and XPB1-mediated branches tend to be cytoprotective 277 

[31]. In agreement with this, Atf6 was not significantly enriched, however, Xbp1 showed rare but 278 

significantly enriched down-regulation.  279 

Transcription Factor AP-1 (Jun) which is one of downstream target TFs of JNK signaling was not 280 

significantly enriched in either direction due its rare activation among adverse time series although 281 

JNK signaling up-regulation itself was significantly enriched with Jun up-regulation being one of the 282 

most significantly enriched gene-level events. However, JNK signaling is particularly known in 283 

acetaminophen-induced liver injury and in this context leads to hepatocyte death through interactions 284 

with Sab on the mitochondrial outer membrane and not through transcriptional regulation mediated 285 

by AP-1 [32,33]. As increased Jun activity is hence known to be a consequence of JNK signaling but 286 

not a cause of injury, it would be plausible to see enriched pathway activity but not in TF activity before 287 

adverse histopathology. 288 

Overall, we were able to show significant enrichment of some of the known TFs in DILI before adverse 289 

histopathology and can also biologically reason the absence of significance for others. While none of 290 

the included TF-level events ranked as most significant or most strongly changing before adverse 291 
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histopathology as in the analysis of pathway-level events, the down-regulation of Nr1h3, which is 292 

involved in lipid metabolism, was identified as most frequent event indicating that the linked 293 

physiological changes are commonly but not specifically found before injury. Similarly, the up-294 

regulation of stress response, indicated by Nfe2l2 and Atf4, was found to be frequent aligning with 295 

their role in adaptive stress response [34]. Overall, frequency might hence be a useful metric to 296 

identify pre-adverse cellular events which precede injury but are not highly specific.  297 

 298 

Fig 6: Temporal concordance of nuclear receptors and adaptive response transcription factors 299 
(TFs) in DILI. For known TFs in DILI the following time concordance metrics are shown: A) The 300 
enrichment significance before or at first adverse histopathology, B) Positive Predictive Value (PPV) 301 
and True Positive Rate (TPR), C) Max. mean |logFC| before or at first adverse histopathology. 302 

Data-driven prioritization of cellular events taking place before adverse 303 

histopathology 304 

As many events were found to be significantly enriched before adverse histopathology, we next aimed 305 

at identifying and characterizing events most supported by time concordance, and hence to move 306 

closer to the eventual aim of constructing AOPs from data (All time concordance metrics in S2 File). 307 

Among all significant pathway-level events, some known events in DILI ranked highest by enrichment 308 

p-value while others rank highest by max. |logFC| before adverse histopathology. In contrast, known 309 

TFs in DILI were found as most frequent ones in the dataset. We hence next looked into the top 10 310 
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TF- and pathway-level events identified using max. |logFC|, the enrichment p-value, and the TPR 311 

before or at adverse histopathology. These are shown in Fig 7 and summarised in S4 Table. The next 312 

most significantly enriched pathway-level event after decreased bile acid and salt recycling was the 313 

down-regulation of glycosaminoglycan metabolism and the most significantly enriched TF-level event 314 

was the down-regulation of Transcription factor activating enhancer binding protein 4 (Tfap4) which 315 

shows emerging roles in cell fate decisions [35]. Among the up-regulated events, the most significant 316 

enrichment is found for cell cycle checkpoints and DNA repair among the pathway-level events as 317 

well as E2F Transcription Factor 2 (E2f2), which controls cellular proliferation and liver regeneration 318 

[36], among the TF-level events. E2f2 up-regulation was also identified as 2nd most frequent TF event 319 

after the down-regulation of Nr1h3 and among the top 10 most strongly changing TF events further 320 

highlighting its strong time concordance. The most frequent genesets point to translation regulation 321 

via Eukaryotic translation initiation factor 2A (EIF2a) including the upstream response mediated by 322 

eIF-2-alpha kinase GCN2 and the downstream role in protein translation mediated through 323 

interactions with tRNA. EIF2a is part of the same UPR branch as Atf4 and causes its preferential 324 

translation which, among others, mediates autophagy and proapoptotic response [29,37]. 325 

Furthermore, increased folding of actin by Chaperonin containing tailless complex polypeptide 1 326 

(CCT) or tailless complex polypeptide 1 ring complex (TRiC) is found frequently and with large effect 327 

size and has been previously linked to proteostasis and autophagy [38,39]. As most strongly 328 

dysregulated events, metabolic pathways are found pointing to increased beta oxidation, as well as 329 

decreased cholesterol biosynthesis and tyrosine catabolism. Also the Sterol Regulatory Element 330 

Binding Transcription Factors Srebf1 and Srebf2 which control cholesterol biosynthesis, as well as 331 

Nr1h3 which controls Srebf1 expression are among the most strongly down-regulated TFs. Overall, 332 

the derived time concordant events, which take place between the beginning of treatment and onset 333 

of adverse histopathology, hence include known and plausible events in liver injury which can be 334 

further characterized based on their frequency, significance and logFC. 335 
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 336 

Fig 7: Highest ranking events by time concordance metrics. The 10 transcription factor (TF)- and 337 
pathway-level events ranking highest by enrichment p-value, median max. |logFC| and true positive 338 
rate (TPR) before or at histopathology is shown. 339 

Identifying mechanistic hypotheses combining known TF functions and 340 

time concordance 341 

While both pathways and TFs constitute interpretable events in this study, further prior knowledge is 342 

available on how TFs function on a molecular level allowing us to derive more detailed hypothesis. 343 

Firstly, TF activity can generally be modulated through changes in expression or in post-transcriptional 344 

regulation as consequence of cellular signaling or environmental changes. In case of transcriptional 345 

regulation, changes in mRNA levels should precede changes in TF activity estimated based on 346 

regulon expression and hence time concordance can be used to gain support for transcriptional TF 347 
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regulation. Being only interested in TF events with a potential mechanistic link to liver injury, we 348 

studied how significantly concordant expression and activity for each TF are enriched before adverse 349 

histopathology (Fig 8A). The strongest evidence for a role in DILI pathogenesis is found for 15 TF 350 

events which show both significantly enriched TF expression and regulon activity, providing 351 

complementary evidence of TF importance and hinting at transcriptional regulation. While this is not 352 

the case for the 77 TF events which only show significantly enriched TF activity, including increased 353 

E2f2 or Klf4 activity, this can be explained by post-transcriptional regulation potentially describing 354 

earlier response patterns which are a direct consequence of upstream signaling. In contrast, 33 TF 355 

events with only significant gene expression, such as increased Jun or Myc, might be already showing 356 

changes in expression but not sufficiently large changes in activity yet. As this rather indicates a role 357 

in later pathogenesis and expression is only regarded as supporting evidence, these TFs have not 358 

been included in downstream analysis.  359 

 360 

Fig 8: Transcription Factor (TF) activity and expression before adverse histopathology. A) 361 
Significance of enrichment in adverse conditions for matched TF activity and expression-362 
based events. Events only found on the expression or TF level are not included in the figure 363 
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due to the absence of a statistical test for those. B) For significantly enriched TF activity-based 364 
events, the frequency of observing expression before TF activity is shown. 365 

As we have seen in Fig 8A, some TFs show significant enrichment before adverse histopathology, 366 

both, on the gene expression and TF activity level. To derive stronger mechanistic evidence for 367 

induction we next evaluated how frequently expression changes precede TF activity in the same 368 

adverse time-series and compare this against the overall frequency of TF event occurrences 369 

preceding adverse histopathology (Fig 8B). Among the events with significant enrichment of TF 370 

expression and activity, the most frequent evidence for induction was found for the down-regulation 371 

of CCAAT/enhancer-binding protein alpha (Cebpa). In humans, decreased CEBPA expression is not 372 

only known across liver diseases, exogenously increased CEBPA expression has also been shown 373 

to reverse liver injury and is explored as therapeutic target in hepatocellular carcinoma [40]. The event 374 

with the 2nd highest relative frequency of expression preceding TF activity as well as the highest 375 

frequency of TF activity preceding injury is ATF4, for which expression is known to be induced as part 376 

of the ER stress response contributing to adverse liver phenotypes [41,42]. In contrast, it was found 377 

that for the Aryl Hydrogen Receptor, Ahr, changes in expression never preceded those in TF activity 378 

providing counterevidence for transcriptional reduction despite significant enrichment of expression 379 

changes preceding injury [43]. 380 

After investigating the mode of regulation for individual TFs above, we next considered how these 381 

TFs are interlinked. To this end, we identified protein-protein interactions and, for induced TFs, TF-382 

target gene interactions between significantly enriched TFs which showed significant enrichment 383 

before adverse histopathology for, both, expression and regulon activity as well as evidence of 384 

expression preceding TF activity within the same adverse time series. Results of this analysis are 385 

shown in Fig 9, and details on the observed absolute and relative frequencies, as well as the source 386 

of the interaction are shown in S5 Table. One of the two most frequently identified interaction by 387 

absolute frequency is Nr1h3 down-regulation resulting in reduced Srebf1 activity. Furthermore, Srebf1 388 

is also linked to upstream regulation by Nr1h2 which interacts with Peroxisome Proliferator-Activated 389 
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Receptor (Ppara) in both directions, and this cross-talk between Ppara and LXR regulating Srebf1 390 

expression has been explicitly studied in the context of fatty acid metabolism regulation [44–46]. The 391 

2nd most frequently observed interaction is the down-regulation of Transcription Factor 12 (Tcf12) 392 

inducing reduced activity of TEA Domain Transcription Factor 1 (Tead1). While Tead1 is indeed 393 

known to be involved in liver diseases and injury [47,48] , the interaction itself has not been reported 394 

before in the context of liver injury and the same applies also for the other upstream Tead1 regulators 395 

identified. It should also be noted that for these interactions first activation is only found at the same 396 

time but not in the time-concordant order providing weaker evidence than for example the interaction 397 

between Nr1h3 and Srebf1. As additional larger TF cluster, decreased activity of the Hepatocyte 398 

Nuclear Factor 1 (Hnf1a), Retinoic Acid Receptor alpha (Rara) and Pancreatic And Duodenal 399 

Homeobox 1 (Pdx1) was found to lead to decreased expression and activity of Hepatocyte Nuclear 400 

Factor 14 (Hnf4a) which is linked to reduced expression and activity of CCAAT/enhancer-binding 401 

protein (Cebpa) through edges in both directions. This cluster stands out due to the high confidence 402 

score of all interactions except the edge between Pdx1 and Hnf4a indicating that there is strong 403 

support based on prior knowledge for the involved interactions. Furthermore, it was previously found 404 

that artificially increased expression of Hnf4a is able to reverse hepatic liver failure in rats while also 405 

restoring expression of a highly interconnected TF network including Hnf1a and Cebpa which 406 

supports the identified interactions [49,50]. One of the yet unknown TFs in DILI is Meis Homeobox 1 407 

(Meis1) which is generally known in a developmental context. However, it’s down-regulation in early 408 

pathogenesis is supported by enriched TF activity and differential expression before adverse 409 

histopathology as well as upstream regulators which are also enriched before adverse histopathology.  410 
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 411 

Fig 9: Causal relationships between TFs supported by time concordance. For TFs which are 412 
significantly enriched before or at adverse histopathology, known causal relations are shown in which 413 
the upstream event is found before or at the downstream event in at least 20% of adverse cases. For 414 
induced TFs for which expression is found before regulon activity and significantly enriched, not only 415 
protein-protein interactions are considered but also upstream TF-target gene interactions annotated 416 
with DoRothEA confidence scores (A: High confidence, C: Medium confidence). Only interactions 417 
between down-regulated nodes are found which is indicated by the blue node colour. 418 

Time-concordant events reflecting disease progression 419 

While events do not have to be activated continuously to be causally involved in pathogenesis, events 420 

with consistent or increasing activation over time are particularly interesting as biomarkers as they 421 

can be experimentally measured without the chance of missing the timepoint of activation, and can 422 

potentially reflect disease progression beyond early pathogenesis. We therefore studied which TFs 423 

and pathways show time-dependent activation by testing for significant Spearman correlation 424 

between activation logFC and time in adverse time-series, and whether this overlaps with the 425 

previously derived time concordance (Fig 10). Overall, 118 pathways and 19 TFs were supported by 426 

both, significant time concordance and dependence, which represents 86.1% or 70.4% of the time 427 

concordant events, and 59.9% or 48.7% of the time-dependent events, respectively.  428 

On the pathway level, multiple genesets pointed to a reduced level plasma lipoprotein particle 429 

assembly and remodelling indicating changes in lipid distribution. This aligns with the known 430 

dyslipidaemia in chronic liver diseases, including decreasing serum values of LDL, HDL, total 431 

cholesterol, and triglycerides with increasing severity of disease, based on which previous studies 432 
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suggested that routine monitoring of lipid profiles can improve the outcome for CLD patients [51]. 433 

Furthermore, a down-regulation of response to metal ions was found which could be related to 434 

metallothioneins which protect against oxidative stress and are able to chelate heavy metals [52]. 435 

Both directions of dysregulation were previously observed in liver diseases: While a negative 436 

correlation with disease progression was found in hepatocellular carcinoma [53], a positive correlation 437 

was found in most other liver diseases including acetaminophen-induced liver injury [54]. This 438 

indicates that opposite directionality is more plausible based on current literature knowledge, but 439 

cannot be fully clarified. The most time-concordant and -dependent TF event was down-regulation of 440 

SRY-Box Transcription Factor 13 (Sox13) which is generally involved in cell fate [55] and embryonal 441 

development [56] but does not have well understood functions on a more detailed level. In contrast, 442 

the next most significant time dependence is found for the hepatocyte nuclear factors Hnf1a and 443 

Hnf4a, as well as Cebpa which are known to negatively correlate with liver cirrhosis in rats [57,58]. 444 

Overall, this shows that a mechanistic role for time-concordant and -dependent events is strongly 445 

supported by the understanding of adverse liver phenotypes. 446 
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 447 

Fig 10: Combining time dependence and concordance to identify mechanistically supported 448 
biomarkers. A) The relation between time concordance, quantified by the enrichment p-value for 449 
event activation before adverse histopathology, and time dependence, quantified by the meta p-value 450 
for Spearman corelation between time and event activation across adverse conditions, is shown. B) 451 
For events with the most significant time-dependence, the distribution of correlation coefficients is 452 
shown providing further insight into the strength of correlation and consistency across adverse 453 
conditions.  454 

While in general events with highly significant time dependence also showed highly significant time 455 

concordance, some exceptions were found in which only one of both was highly significant. For 456 

instance, the pathway with the 2nd most significant time-dependence (p-value < 1044) is signaling via 457 

advanced glycosylation end product receptor (RAGE) which contributes to inflammation and oxidative 458 

stress generation and did not pass the significance threshold for time concordance (p-value = 0.058). 459 

RAGE expression and activity, which are both induced by binding of RAGE ligands, are thereby 460 

known to be up-regulated in various hepatic disorders resulting in a positive feedback loop explaining 461 
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increasing or sustained RAGE activation [59]. This indicates that, while RAGE signaling is correlated 462 

with progression, there is no clear evidence for a role in early pathogenesis preceding adverse 463 

histopathological changes. In contrast, SUMOylation of TFs, is time-concordant (p-value = 0.002) but 464 

not -dependent (p-value = 0.48) indicating a mechanistic role in early pathogenesis which is not 465 

sustained over time. This aligns with the finely regulated and pleiotropic roles of SUMOylation in post-466 

transcriptional regulation which have also been found to be involved in the context of liver diseases 467 

[60].  468 

Limitations of this study 469 

In this study, we introduce a time-concordance based approach to derive mechanistic insight from 470 

gene expression and histopathology data. We are able to recover known mechanisms in DILI as well 471 

as able to propose novel and detailed mechanistic hypotheses. However, the presented analysis only 472 

describes event cascades in the TG-GATEs dataset and hence is based on a limited number time-473 

series as well as only few timepoints within each time-series. This does not only mean that rare events 474 

might be missed in the measurements and that small effects might not be identified as significant, but 475 

also that there is potentially a bias based on the tested compounds towards the represented modes 476 

of toxicity.  477 

Furthermore, the analysis is limited by how confidently biological processes are inferred from the data. 478 

This was for instance demonstrated by the differences between pathway and TF activation for 479 

signalling and stress response pathways highlighting the discrepancy between protein activation and 480 

gene expression. As only pathways induced through changes in gene expression or their downstream 481 

expression footprints [61] can be confidently detected, this means that good estimates of time 482 

concordance can predominantly be derived for intermediate or later key events while earlier key 483 

events or molecular initiating events, such as drug metabolism, cannot be estimated based on the 484 
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data. That being said, this is a limitation of gene expression data in general and the time concordance 485 

approach would also be able to integrate other data types describing events not covered yet. 486 

Moreover, multiple choices were made to align our analysis to the AOP concept prioritizing 487 

mechanisms supported by prior knowledge over purely data-driven hypothesis. First, detailed insights 488 

might be lost by summarising results to the pathway level. While generally measurements for 489 

individual genes can be noisy, this can be summarised in different ways e.g. based on similarity in 490 

expression profiles [15]. In this study, however, we used curated gene sets due to their interpretability 491 

and to derive modular events as defined in the AOP framework. Additionally, prior knowledge was 492 

taken as ground truth, both in the gene set and interaction analysis, meaning that only generally 493 

known pathways and interactions can be discovered. Like all methods based on curated gene set and 494 

interactions, it is hence informed and biased by the current understanding of biology. However, this 495 

prior biological knowledge contributes to the biological plausibility of the derived events and 496 

relationships contributing to the weight of evidence of our findings in the context of AOPs.  497 

Conclusion 498 

In this study, we introduce first activation as concept to quantify the strength of temporal concordance 499 

between events across time series. With this approach, we study gene expression-based TF and 500 

pathway-level events found before adverse histopathology indicating liver injury in repeat-dose 501 

studies in rats from TG-GATEs as a case study. We find some known processes in DILI to be highly 502 

confident, e.g. bile acid recycling, while others are highly frequent but less specific including adaptive 503 

response pathways. Here, the eIF2α/ATF4 pathway as eiF2α and Atf4 are identified as most frequent 504 

pathway and TF, pointing to an important role of eIF2α/ATF4-mediated stress response [37]. 505 

Beyond quantifying time concordance for known and potentially novel events in DILI, we additionally 506 

show how time concordance can be combined with prior biological knowledge to generate hypothesis 507 

on potentially causal gene-regulatory cascades in DILI. Amongst others, this identifies LXRα down-508 
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regulation leading to decreased Srebf1 expression, an interaction known to regulate fatty acid 509 

synthesis in the liver [28], but also characterizes yet unknown TFs based on their time concordance, 510 

their mode of regulation (either transcriptional or post-transcriptional) and potential upstream 511 

regulators and downstream effectors. One of the identified induced TFs is Meis1 which is supported 512 

by significantly enriched decrease in expression and activity before adverse histopathology, as well 513 

as upstream regulators which also show significant enrichment of regulon activity and are found within 514 

the same time series. On top of time concordance, we also derive each event’s time dependence and 515 

show that events mechanistically involved in early pathogenesis do not necessarily reflect disease 516 

progression and vice versa. However, for some events, e.g. Sox13, both properties are found and 517 

these may be useful biomarkers which reflect injury progression and already change preceding 518 

histopathological manifestation.  519 

We believe that the described analysis can provide supporting evidence for mechanistic links between 520 

events in line with the evolved Bradford-Hill considerations and can hence e.g. support AOP 521 

development. Furthermore, the approach is not limited to a particular adverse event and can instead 522 

quantify the interaction between any two events represented in time series in a data-driven and 523 

automatable fashion. We make the results of our analysis on the TG-GATEs in vivo liver data publicly 524 

available in a Shiny app through which users can query the most time-concordant events for more 525 

specific types of histopathology and study in detail in which time series time concordance was 526 

observed or not observed (https://github.com/anikaliu/DILICascades_App). 527 

Methods 528 

Open TG-GATES data processing 529 

The TG-GATES gene expression data from repeat-dose studies in rats was downloaded from the Life 530 

Science Data Archive (DOI: 10.18908/lsdba.nbdc00954-01-000). The raw liver gene expression 531 
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levels were background corrected, log2 transformed, and quantile normalized with the rma function of 532 

the affy package per treatment across all doses and timepoints [62]. Quality control was then 533 

performed using the ArrayQualityMetrics package [63] and detected outliers with high distance to 534 

other experiments or unusual signal distribution were removed (List of removed outliers summarised 535 

in S1 File). The platform information for the Affymetrix Rat Genome 230 2.0 Array was derived from 536 

Gene Expression Omnibus [64] (GEO accession: GPL1355) and was then used to summarise probe 537 

IDs to rat gene symbols by median for all probes mapping uniquely to one gene symbol. Only 538 

compound-dose combinations with at least 5 measured timepoints after quality control were included. 539 

Definition of adverse histopathology 540 

To characterize the extend of histological findings, we used the toxscores by Sutherland et al. [15] in 541 

order to consider both severity and frequency of events in a single numerical output measure. These 542 

are based on the lesion severity per animal which was first converted to a numerical scale (normal = 543 

0, minimal = 1, slight = 2, moderate = 3, marked or severe = 4) and then summarised across all 544 

biological replicates by mean as an aggregate measure for lesion frequency and severity. One 545 

characteristic of this measure is that the overall distributions varied between different findings, e.g. 546 

inflammation was more frequently annotated with low than with high toxscores while a more balanced 547 

distribution of scores was observed for Hepatocellular single cell necrosis (S1 Fig).  548 

To study which histological findings were enriched in adverse conditions, we first defined binary 549 

histopathology labels describing the presence of histological findings with different extents in each 550 

time-series. Based on the toxscore ranges used by Sutherland et al., three toxscore cut-offs are 551 

implemented to describe each histopathological finding “Null” (toxscore > 0), “low” (toxscore > 0.67) 552 

and “high” (toxscore > 1.34). We then studied which labels were over-represented in adverse time-553 

series. These were defined using the annotation of Sutherland et al., where pathologists classified 554 

compound-dose combinations in the TG-GATEs database as adverse or non-adverse after 4 and 29 555 
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days of treatment. We used the 29 days classification to define 40 adverse time series and only 556 

regarded time-series as non-adverse for compounds which were not classified as adverse at any 557 

dose in the negative control, in order to account for the fact that some of the cellular changes of 558 

interest might already take place at lower doses, although the resulting phenotype is not considered 559 

adverse yet. Out of the 24 compounds represented in adverse time-series, 14 have additionally been 560 

classified as hepatotoxic in DILIst and 5 are classified as vMost-DILI-Concern in DILIrank (S2 Table).  561 

We defined findings as adverse histopathology if they are observed in at least 5 out of 40 adverse 562 

time-series to remove rare histopathological findings, and additionally require that at least 50% of 563 

findings are in adverse conditions to remove findings which are unspecific. All labels which were 564 

identified with these criteria are significantly enriched using a hypergeometric test (p-value > 0.0001), 565 

however, this combination of additional criteria was chosen to exclude findings which are rare or 566 

weakly associated. 567 

Pathway and TF activity inference 568 

The activity of pathways and TFs was derived for each compound based on the expression of its gene 569 

sets members using GSVA [65] using a Gaussian kernel and requiring at least 5 genes per gene set. 570 

As prior knowledge, we used pathway maps from Reactome [66] which were derived through MSigDB 571 

[67] and the msigdbr package [68]. TF activity gene sets were derived from DoRothEA [69] and 572 

mapped from human to rat gene symbols with biomaRt [70]. These gene sets describe known, 573 

functional TF-gene interactions and are assigned a confidence level based on the strength of 574 

evidence of these interactions. Thereby, only the 207 TFs with a high to medium confidence level of 575 

A-C were included and the few TF-gene interactions with a negative mode of regulation were removed 576 

to better infer TF directionality. To evaluate which pathway or TF is dysregulated, we computed the 577 

differential activity in comparison to the time-, vehicle-, and experiment-matched control group using 578 

limma [71] and identify significantly dysregulated gene sets (FDR<0.05). 579 
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Temporal concordance of events 580 

In this study, the order of events was derived based on each event’s timepoint of first activation within 581 

each time-series (Fig 1A). For pathways and TFs, we defined first activation as the earliest time of 582 

measurement at which significant differential regulation was observed (FDR < 0.05) in each direction, 583 

while an additional logFC cut-off has been implemented for individual genes. As first evidence of 584 

adverse morphological changes in the liver, we used the first timepoint any of the adverse 585 

histopathology label derived before were found.  586 

We were then generally interested in events of interest A which are first activated before or at the 587 

same time as an anchoring event B and used multiple metrics to quantify the degree of time 588 

concordance which can be related to the original work by Bradford Hill (Table 1). Thereby, the key 589 

anchoring event in this study was adverse histopathology but we used a more general notation B as 590 

some of the following criteria to quantify time concordance are also applied in the TF analysis where 591 

gene expression-derived events are used as anchoring event. First, we used the true positive rate 592 

(TPR) which describes how frequently A is observed before B among all time-series with B and hence 593 

its consistency across compounds. Thereby, the reported TPR only included time-series for which 594 

any event of the same type as A, e.g. TF or pathway, was observed before or at B. Secondly, we use 595 

the maximal effect size of A observed before B, summarised across time-series by median, to 596 

characterise the strength of association. To evaluate the significance of the findings, we additionally 597 

defined a set of background time-series unrelated to B (Fig 1B). For adverse histopathology, these 598 

unrelated background time-series were the 133 time-series without any observed histological 599 

changes. We then computed the enrichment of A before or at B using a hypergeometric test and 600 

positive predictive value (PPV) of A for B which describes how likely B is observed at the same or a 601 

later time given the observation of A.  602 
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Table 1: Metrics quantifying the time concordance between a potential preceding event A and 603 
potential later event B, and their relation to the original Bradford Hill (BH) considerations. 604 

BH 
consideration 

Metric Formula Description 

Consistency True positive rate 
(TPR) 

p(A àB|B)  Fraction of time series with event A with specified 
temporal relation among time series with event B 

Specificity Positive predictive 
value (PPV) 

p(Aà B|A) Fraction of time series with event B with specified 
temporal relation among time series with event A 

Temporality p-value One-sided 
Fisher’s 
Exact test  

Likelihood of observing event A and B with specified 
temporal relation with equal or higher frequency by 
chance assuming a hypergeometric distribution. 

Strength Effect size in time 
series with B 

Median 
(logFC) 

Median logFC of A observed in time-series with B (in 
comparison to vehicle control) 

Combining time concordance on TF-TF interactions 605 

We used 3 sources of causal prior knowledge to derive mechanistic hypotheses linking TFs: Protein-606 

protein interaction between TFs derived from Omnipath through OmnipathR [72,73], TF-target gene 607 

interactions from DoRothEA [69] and the link between gene expression and protein levels following 608 

the central dogma of molecular biology. Using these interactions as backbone, we then derived those 609 

additionally supported by time concordance. Thereby, the dysregulation of the nodes was required to 610 

match the reported mode of regulation (edge sign) and the source node or upstream event was 611 

required to be observed in at least 20% of cases before or at the same time as the target node or 612 

downstream event. For induced TFs, significant enrichment of gene expression (|logFC|>0.5) and TF 613 

activity before adverse histopathology was required as well as evidence for changes in expression 614 

preceding changes in the same direction in regulon activity within the same time series.  615 

Time dependence 616 

In each adverse time-series, we tested for Spearman correlation between timepoint and event 617 

activation logFC using the correlation R package [74], and include a logFC of 0 at timepoint 0 h 618 

assuming that there are no differences in comparison to the control group before treatment. We then 619 
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identify pathways and TFs which only show significant Spearman correlation in one direction, positive 620 

or negative. For those events, we apply the Fisher’s combined probability test using the metap R 621 

package [75] across all adverse time-series to evaluate whether overall significant correlation 622 

between event activation and time is found. 623 

Supporting information 624 

S1 Table. Comparison of quantitative Adverse Outcome Pathway (qAOP) models. Comparison 625 
of the first activation concept and other qAOP models with respect to their potential roles in AOP 626 
development.  627 

S2 Table. Compounds classified as adverse based on histopathology and concordance with 628 
labels from DILIRank and DILIst describing liver side effects observed in humans derived from 629 
post-marketing data.  630 

S3 Table. Time concordance metrics for Reactome pathway maps which map to known key 631 
events based on literature review.  632 

S4 Table. Time concordance metrics for top 10 ranking events by True Positive Rate (TPR), 633 
significance and median max. |logFC|.  634 

S5 Table. TF-TF relations supported by known relations and time concordance. For TF events 635 
which are significantly enriched before or at adverse histopathology, known interactions supported by 636 
time concordance are shown. With respect to the interaction, the absolute and relative frequency are 637 
shown for how often the source TF was observed “before” or “before or at” downstream TF activity. 638 
Additionally, the source of the interactions provided in Omnipath are shown for protein-protein 639 
interactions and the DoRothEA confidence level for TF-target gene interactions. 640 

 641 

S1 Fig. Distribution of toxscores across histopathological findings. 642 

S2 Fig. Frequency of histopathological findings before and after first adverse histopathology. 643 
For adverse and non-adverse histopathological findings the frequency before or at first non-adverse 644 
histopathology is shown (left). For adverse findings, this indicates how frequently they were one of 645 
the first adverse histopathological findings given that they cannot occur before by definition. This 646 
identifies single-cell necrosis at any severity (“null”), as the most frequent finding, both in absolute 647 
and relative terms.  648 

S3 Fig. Background distribution of temporal association metrics across events. The 649 
dependency between different metrics based on the confusion matrix is shown. Hypergeometric tests 650 
to identify events which are significantly enriched before adverse histopathology in comparison to 651 
non-adverse control time series derive low p-values for events with high TPR and high PPV. Given a 652 
number of event activations in non-adverse control time series, there is a monotonous relationship 653 
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between PPV and TPR with increasing PPV at lower event frequency in non-adverse control time 654 
series. 655 

S1 File. Removed outlier samples. 656 

S2 File. Time concordance metrics for all TFs, pathways as well as genes using both a minimal 657 
|logFC| of 0.5 and 1. 658 
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