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Abstract—To avoid death or disability, patients with brain in-
jury should undertake a diagnosis at the earliest time and accept
frequent monitoring after starting any medical intervention. This
paper presents a novel approach to localize brain injury using
the intersection of pairs of signals from symmetrical antennas
based on the hypothesis that healthy brains are approximately
symmetric that the bleeding targets will lead to significantly
different amplitude and phase changes if a pair of symmetrical
transmit signals cross targets with the same distances. The
scattered signals (S-parameters) across the band 0.5-2 GHz are
acquired using 100 realistic brain models and 150 experimental
data measurements. Each signal is divided into two frequency
bands and then they are converted into two graphs. The neigh-
bour pair signals from symmetric hemisphere are evaluated to
detect and localize the potential abnormalities in the brain. The
higher weighted pairs across the axes of symmetry are detected
and used to localize any abnormal targets. The results indicate
that crossing pairs of antenna signals from the hemisphere with a
blood mass exhibit significantly different signal amplitude in the
graph features compared to those without the target (p<0.003).
The experiments show that our novel localization algorithm can
achieve an accuracy of 0.85±0.08 Dice similarity coefficient based
on 150 experimental measurements using an elliptical container,
which is suitable for brain injury localization.

Index Terms—Brain injury, electromagnetic imaging, complex
networks, symmetrical crossing lines, differential strengths.

I. INTRODUCTION

ELECTROMAGNETIC (EM) imaging technologies have
been attracting widespread interest from researchers

around the world due to their potential as a portable, low-
cost and non-ionizing medical diagnostic system [1]–[5]. This
technique has recently been implemented for different medical
applications, such as the detection of stroke [1], [3], breast
cancer [5], [6] and skin cancer [7]. Two important applications
are the detection of breast cancer [8] or traumatic brain injury
(TBI) at an early stage. TBI is a major cause of mortality
and disability. Intracranial haemorrhage (ICH) is the most
important complication of TBI. A mass lesion refers to an
area of localized brain injury that must be removed at the
earliest time possible for reducing the mortality rate. In most
scenarios, people suffering from TBI are not administered
timely treatment because the symptoms, such as decreased
level of consciousness, cannot always be observed in the early
stages. Clinical experiences indicate that the size and location
of ICH are critical for clinicians in an operation, therefore
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a fast and accurate method for ICH localization and size
estimation is of prominent importance.

Currently, most studies based on EM imaging aim to
identify the types of tumors, stroke or intracranial bleedings
(IBs) [1], [2], [8]–[11]. The state-of-the-art methods for brain
injury localization can be categorized into three types: radar-
based, tomography, and machine learning based methods. The
radar-based methods and relevant results were reported in
[4], [12], [13]. Tomography-based methods are capable of
mapping the dielectric properties of brain tissues, including
the abnormal ones, hence providing the localization of brain
bleedings [3], [14]. In general, these methods need to solve
complex inverse problem to identify the target from the solved
dielectric distribution [15]. Furthermore, it was indicated in
[16] that when certain a-priori information was used, such
as the patient’s magnetic resonance imaging (MRI) scan,
results from tomography approaches could obtain 0.24 relative
error on 35 subjects. Machine learning-based methods [2],
[17]–[19] can avoid the computationally expensive solving
of the inverse problem. However, these methods are more
suitable for stroke sub-type classification [2], [18]. Apart from
stroke classification, the studies in [17], [19] also attempted
to localize the stroke position using support vector machines
(SVMs) or the artificial fish swarm algorithm. Unfortunately,
both methods require a huge amount of data for training
even with a single phantom or simulated brain model. These
requirements are usually difficult to satisfy in clinical scenarios
[2]. In fact, while these three approaches have their own merits,
they also have drawbacks. For example, the tomography-
based methods are ill-posed and may not converge to the
correct solution, in addition to taking long computational time.
The radar-based methods often fail to correctly localize and
shape the target, particularly in the case of heterogeneous
tissues [20]. EM imaging using machine learning methods
is still not accurate in localizing brain injury without large
amounts of training data. These limitations restrict practical
utilization of portable electromagnetic systems, especially in
emergency applications. In addition, all these methods require
precise and permanent positioning of the antennas [21]. This
requirement could degrade the performance of these methods
during practical applications.

This paper presents a novel symmetrical crossing line algo-
rithm (SCLA) to localize the position and predict the size of
a TBI. This is based on the hypothesis that a healthy brain is
nearly symmetric with respect to the left-right axes [22], [23].
The assumption gives rise to the potential that anomalies can
be detected based on the significant difference in symmetric
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Fig. 1: Flowchart of the proposed localization procedure.

pairs of signals across this axis. The inputs to the algorithm are
the S-parameters collected from an antenna array surrounding
the head as well as the approximate positions of the antenna
ports. The array used to test the technique is composed of 16
antennas which are approximately equally spaced around the
head. only transmitted signal are utilized as the transmitters,
whereas all reflected signals are ignored. To avoid the influence
from amplitude variations, the signal measured from each
antenna is converted into a weighted graph. Electromagnetic
waves transmitted between two antennas whose signal path
pass through bleeding area will have a significantly different
weight of the graph features compared with signals in the
mirrored antenna pair in the other hemisphere. Based on this
idea, the IB can be localized by detecting the intersection of
two transmitting lines with the highest weighting coefficient. A
size constructing algorithm (SCA) helps to estimate the target
centre and the size from three crossing lines. In total, 100
simulated data and 150 experimental data are used to evaluate
the algorithm.

II. EXPERIMENTAL DATA AND METHODOLOGY

Fig 1 shows the work process adopted in this study, which
can be summarized as follows:

• A patient is monitored by an EM imaging device with n
antennas after a suspected traumatic brain injury

• The scattered data (Si,j , where i, j ∈ [1 . . . n]) is col-
lected by an antenna array

• An inverse FFT is applied to convert these signals to n×n
time series signals, and each time series is transformed
into a graph using the Fast Weighted Horizontal Visibility
Algorithm (FWHVA) [24].

• Each symmetric pair of signals is compared to determine
mismatches, which are then used to localize the bleeding
based on the intersection of the direct signal paths:

– The centre of the bleed is obtained by a symmetric
crossing line algorithm (SCLA).

– The size of the target is estimated using a size con-
structing algorithm (SCA) based on the SCLA output.

• The Dice similarity coefficient (DICE) is computed to
calculate the localization accuracy.

A. Brain models and simulation set-up

This study investigates the proposed SCLA algorithm by
evaluating the simulation results of eight realistic brain mod-
els. The brain models used in this study include detailed Zubal
[25] and Duke [26] phantoms that were derived from multiple
imaging modalities. In addition, 6 other brain models (named
P103111 to P111716), which were built from segmented MRI
images [27], are utilized. Each model includes eight tissues
(blood, skin, skull, CSF, grey matter, white matter, cerebellum,
and ventricles), The details of the phantoms are listed in
Table I. The number of voxels indicate the dimensions of the
phantoms e.g. 280× 330× 280 shows that the X, Y slices are
280× 330 pixels, and the 280 indicates the number of slices
in the Z-direction.

The proposed SCLA algorithm is evaluated using the
electromagnetic simulator, CST Microwave Studio. To build
phantoms with intracranial bleeding from the healthy models
of Table I, each healthy model was injected with an elliptical
shape target (blood), which emulates a TBI, for which each
axis was randomly assigned a length of 1 mm to 10 mm and
the position was randomly distributed in the X and Y plane
limited from 76 to 152 for Zubal and 76 to 218 for others
respectively. Z-direction slices ranging from 100 to 230 were
used.
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TABLE I: Details of three type of models

Phantom IDs Number
of tissues

Resolution
(mm)

Number of
voxels

Zubal [25] 58 1.1×1.1×1.4 256×256×128
Duke [26] 52 1.0×1.0×1.0 610×310×161
P103111-
P111716 8 0.7×0.7×0.7 280×330×280

Fig. 2: A brain surrounded by a 16-element electromagnetic-
imaging antenna array showing the direct signal paths between
antenna pairs. The blood mass is indicated as a red ellipsoid
inside the brain.

B. Hypothesis

The hypothesis of this paper is that a brain containing an
intracranial bleed will have an imbalance between symmetric
pairs of signals, based on the assumption that a healthy brain is
approximately symmetric [22], [23]. As electromagnetic waves
pass through a domain, the signals are altered in amplitude
and phase owing to different dielectric properties of the media
that the signals pass through. Thus, when signals arrive at two
antennas with the same distances, the amplitudes or phases
will be significantly different if only one of them passes
through a high contrast bleeding. In additional, when size
of IB is large, both high frequency and lower frequency
have the same trends compared with left or right hemisphere.
Conversely, only high frequency has the significant changes if
the size of IB is small.

Fig. 2 shows a 16-antenna array with antennas positioned
symmetrically around the left-right axis of the head. The
locations of these antennas are provided in supplementary
Table 1. We denote o10,1 as the signal travelling from antenna
1 to antenna 10 where the former antenna is used as the
transmitter and the latter antenna is used as the receiver. Due to
reciprocity, o10,1 = o1,10, Based on the symmetry hypothesis,
it can be anticipated that o10,1 will be significantly different
from o16,7 due to the presence of the IB. Similarly, the
similarity of o16,9 and o15,10 should have a lower difference

Fig. 3: The phase of pair antennas 1 − 8 and 1 − 10 of (and
their mirror 16− 9 and 16− 7). The difference of pair signals
crossing the bleeding are significantly larger than those that do
not cross the bleeding both in low and high frequency bands.

than opposite of the neighbouring antenna pairs (o8,1 and o7,2).
To verify this hypothesis, the Phase and the corresponding

graph features from the pairs antenna 1−8, 2−7, and 1−10
and their mirror pairs antenna 16−9, 15−10, and 16−7 are
plotted in Fig. 3. It is easy to see that the phase of opposite
pair antennas (such as 1, 8 and 16, 9) are similar. On the other
had, the graph feature of opposite pairs (such as 2, 7 and
15, 10) shows difference in both low frequency (0.5G-1.2G)
and high frequency (about 1.92G). In addition, the opposite
signals 1, 11 and 16, 6 shows a significant difference about 1G.
Thus, bleeding localization can be achieved by identifying the
intersection of crossing pair lines (direct signal paths), such
as 1, 10 and 16, 9 which are both affected by the blood mass
in the example shown.

C. Normalizing electromagnetic signals using graph features

Regarding the example brain in Fig. 2, the signals from
different antennas have a different amplitude and phase. More
importantly, different head sizes also affect these parameters.
To normalize the amplitude and align the different phases, a
fast weighted horizontal visibility algorithm (FWHVA) [24]
is employed to convert each time series into a weighted
horizontal visibility graph (WHVGs). WHVGs have been
widely used in biomedical signal processing, such as EEG
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Fig. 4: (a) 41 points of transmission signals from the O1,2

from 1.1ns to 15ns, and (b) A HVG mapped from the signal
in (a).

[28], [29], EMG [30] and Pulse wave [31]. This paper applies
it to electromagnetic signal processing.

From a mathematical point of view, an electromagnetic
signal time series, Xj(j = 1, . . . , t), is mapped to a graph
G(V,E) by the following steps: a data point xj is mapped
into a node vj in G; an edge ejk between (vj , vk) from two
points (xj ;xk) exists if and only if:

ejk =

 1, xk > max(x(j+1)...(k−1))
1, j + 1 = k
0, otherwise.

(1)

where ejk = 0 implies that the edge does not exist,
otherwise it does.

Fig. 4 shows how signals from a real system between 11
ns to 15 ns are converted into a horizontal visibility graph
(HVG). In Fig. 4 (a), a portion of the signal received by the
first antenna and sent by the second antenna is shown. In this
plot, the 5th point can horizontally see the 12th point but
cannot horizontally see the 13th point because the 12th point
blocks the visibility between 5th point and the latter. It can
be seen that the signals decay rapidly in the time domain as
shown in Fig. 4 (a). However, HVG can effectively detect the
sine wave and abnormal signals.

In a complex network such as a horizontal visibility graph
(HVG), node degree and degree sequence are two basic
characteristics which can be used to describe the graph. The
degree d(vi) of node vi is the number of connected edges
from vi. As shown in Fig 4(b), most of the nodes have degree
two, such as nodes 2, 4, 6 and so on, which represents the
minimal values of Fig 4(a), although those minimal values are
different.

D. Network topology

A time series can be characterized by the network topology,
using measures such as the mean degree, clustering coefficient,

average path etc. [32], [33]. In addition to the node degree,
the average degree d̄ of a graph G with n nodes is defined as:

d̄ =
1

n

n∑
i=1

di (2)

A degree sequence (DS) is a sequence of the graph degrees
concatenated in order of node number. This concepts has been
used for stroke classification [34]. The similarity of two graphs
Gx and Gy can be measured from two degree sequences DSx

amd DSy

S̄j =
1

n

n∑
k=1

(DSx(i, j)−DSx(i, j))/(DSx(i, j) + DSx(i, j))

(3)
It is obviously that the range of equation 3 is in [−1, 1]

which could guarantee that the output can be comparable
even through the amplitudes of two signals are significantly
different.

III. SCLA ALGORITHM

Based on the hypothesis that a brain containing intracranial
bleeding will have a significant difference in the measured
signals of symmetric pairs of antennas, we can locate the
bleeding based on which pairs exhibit large differences. Fig. 2
demonstrates that two pairs of signals cross a blood mass.
However, directly using time series will be affected by noise
and also the amplitude will be different in different head sizes.
To avoid the challenges of time series analysis, we use graph
degree and similarity to identify the blood location. The SCLA
algorithm is divided into three steps: mapping the time series
into a graph, identifying the correct quadrant of the bleeding
location as in the left or right hemisphere, front or back, and
picking candidate intersection points of antennas pairs from
the graph. The first step is based on FWHVA. The next two
steps are described in the following sections.

Firstly, we define a differential opposite pairs (DOP) and
differential neighbour pairs (DNP) associated with two anten-
nas as equation 4 and equation 5, respectively.

DOPij = |(Sij − calij)−Opp(Sij − calij)| (4)

DNPij = |(Sij − calij)− (Si+1,j−1, − cali+1,j−1)| (5)

where Sij is the graph similarity between pairs antennas i
and j and Opp() indicates the symmetrically opposite antenna
pair (mirror pair), originating from the same antenna i. where
calij is the features from the scattered signals measured with
an elliptical homogeneous isotropic media in both simulation
and experiment, without a head present. Certainly, regarding
the value from low frequency (0.5-1.25 GHz), the symbol is
labeled as LDOP and the HDOP is from high frequency
bound (1.25-2 GHz). For example, LDOP1,8 when trans-
mitting from antenna pair 1 and 8 and opposite antennas
transmitting from antenna 16 and 9 in lower frequency band.
On the other hand, the HDNP18,27 is the differential between
1− 8 and 2− 7 from high frequency band.
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A. Localizing the hemisphere of the bleeding targets

In clinical cases, it is also important to detect which
hemisphere (left/right) the bleeding lesion occurs. Although
experts might detect it based on clinical symptoms. A naı̈ve
approach to detect whether the blood mass is in the left or right
hemisphere is by comparing the features (such as amplitude,
mean degree or strength) from the left signal to those of the
right. However, this method can rarely provide an accurate
answer due to the slight asymmetry of the head. This section
presents a simple method to detect whether the bleeding is in
the left or right hemisphere.

The algorithm first detect whether the bleeding target is
close to the antenna 1 − 9 or the opposite 16 − 8. It cal-
culates two parameters LDOP , LDNP and HDNP using
equation 6.

DS1,16 = f(s1,9)− f(cal16,8)) (6)

where f is the function of graph transfer, and the phase of
Si,j .

f =

 Left, DS(1, 9) > 0, LDNP (1, 8) > LDNP (16, 9)
Right, DS(1, 9) < 0, LDNP (1, 8) < LDNP (16, 9)
middle, otherwise.

(7)

B. Picking the intersection of an antenna pair and its mirror

The antenna pairs that cross a bleeding from the ith antenna
can be detected using (8), where % represents the modulo op-
eration. Note that we don’t consider neighbouring antennas as
the information gained from them is less than the information
from antennas spaced further apart.

max

(n/2+3)%n∑
j=(i+3)%n

DWij (8)

The output is a set which contains the pairs of antennas and
the assigned weights. The weights imply the probability that
one of those pairs of signals are likely to cross a bleeding.
Larger values imply that the signals pass a bleeding with high
probability, and the position of the bleeding can be estimated
based on the intersection with other signals that pass the
bleeding. Thus, we can determine the antenna pairs whose
signals cross the bleeding (or any abnormality causing an
asymmetricity in the signals) and their mirrored pairs as well,
but we need to determine which of these pairs cross the blood
mass. For example, in Fig 2, pair (1−7), (9−4) on the left brain
and their mirror pairs (1−11), (9−14) will be selected because
their differential weighted nodes are significantly different
from the other pairs. Then, the intersection co-ordinates (px,
py) can be calculated based on (9) and (10) when four antenna
positions (x1,y1), (x2,y2), (x3,y3) and (x4,y4) are provided.

px =

∣∣∣∣∣∣∣∣
∣∣∣∣x1 y1
x2 y2

∣∣∣∣ ∣∣∣∣x1 1
x2 1

∣∣∣∣∣∣∣∣x3 y3
x4 y4

∣∣∣∣ ∣∣∣∣x3 1
x4 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣

(9)

py =

∣∣∣∣∣∣∣∣
∣∣∣∣x1 y1
x2 y2

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 y3
x4 y4

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣x1 1
x2 1

∣∣∣∣ ∣∣∣∣y1 1
y2 1

∣∣∣∣∣∣∣∣x3 1
x4 1

∣∣∣∣ ∣∣∣∣y3 1
y4 1

∣∣∣∣
∣∣∣∣∣∣∣∣

(10)

C. Heat map constructing algorithm

This section describes a constructing heat map algorithm
to obtain the size and the shape of the bleeding from the
intersection of lines pairs from section III-B. The algorithm
uses intersected heat mapped shape as a lesion, which requires
the output of subsection III-B as input values, such as I={R0,
R1, R2}. The pseudo code is listed below.
(a) Calculate the maximum distance between the intersec-

tions I from the SCLA algorithm. For example, there are
three intersections R0 = (x0, y0), R1 = (x1, y1), and
R2 = (x2, y2), the maximum distance md = |R0−R1| .

(b) if the md is larger than 10mm then the heat radius is
assigned as 20mm otherwise 40mm.

(c) Draw each intersection point with the assigned heat
radius.

D. DICE

To evaluate the performance of localization, the Dice simi-
larity coefficient (DICE) is used to calculate the overlap of the
estimated size of the IB (St) with the real IB area (Sd). The
DICE, also called the overlap index, is the most used metric
in MRI segmentation. It is defined by

DICE =
2|St ∩ Sd|
|St|+ |Sd|

(11)

The DICE can be viewed as a similarity measure over two
bleeding sets. If two image contains the same area coordinate
points, the DICE is equal to 1.0, while if two bleeding sets
have no overlap, it is equal to 0.0.

E. Statistical analysis of head rotation

To investigate the difference between objects with targets
and those without targets, a quantitative statistical test was
performed on the two sets of graph features. A p-value< 0.05
was obtained, demonstrating that there is a significant differ-
ence in the graph features of objects with vs without targets.
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(a) Ground Truth P106016 b5 (b) SCLA output of (a)

Fig. 5: A test from model P106016 b5, where the ground truth
positions with tissues are shown on the left and the SCLA
algorithm result is shown without tissues on the right.

IV. RESULTS ON SIMULATED DATA

The algorithms are implemented in C and R languages.
Eight phantoms were employed for testing. Each phantom
is constructed with five different bleeding observations by
injecting an elliptical shaped blood mass with the dielectric
properties of blood. In total, 28 brain model observations were
used for evaluating the algorithm performance in simulations.
In addition, a simple phantom with a small glass cylinder
filled with distilled water to emulate a TBI is used to verify
the algorithm with a 14 antenna array in experiments. The
glass cylinder is moved clockwise to two different distances
per antenna, and the S-parameter data is collected twice to
measure the anti-noise performance of SCLA. Thus, a total of
56 simulated data are collected and tested. The mean DICE
value of 94 testing samples is 0.78 and the maximum DICE
value is 0.92.

A. Test the algorithm when rotating antenna

To test the tolerance of the algorithm to the antenna posi-
tions, this subsection evaluates the antenna Z-rotation tolerance
in the simulation experiment. Rotating the antenna array along
the Z-axis will significantly affect the algorithm performance
because the other two dimensions (X and Y axis) can be easily
aligned by ears and eyebrows. In experiments with healthy
volunteers, we found that subjects were biased to left or right
on the Z-axis but few of them rotated their heads on the X or
Y-axis.

Figures 5 shows an observation from a brain model from
the seven tissue brain models. The red target of Figures 5(a)
indicates a bleed target on the ground truth, where the Fig-
ures 5(b) shows the SCLA algorithms’ output.

Fig 6 shows the same brain model as Fig 5 but the
antenna array has three degrees of rotation in Figure 6. The
DICE between the SCLA output and the ground truth is
approximately 0.08 in Fig 6, while the DICE is about 0.84 in
the symmetrical case (Fig 5). Thus, this algorithm can tolerate
a two-degree antenna rotating in all directions.

(a) Rotated Ground Truth
P106016 b5

(b) SCLA output of (a)

Fig. 6: A test from model P106016 b5 is the same as Fig 5 but
all antenna positions are rotated 3 degrees, where the ground
truth positions with tissues are shown on the left and the SCLA
algorithm result is shown without tissue on the right.

(a) Ground Truth of a Duke
Model

(b) SCLA output of (a)

Fig. 7: A test result on the Duke brain model. The ground truth
positions with tissues are shown on the left and the SCLA
algorithm result is shown without tissues on the right.

B. Testing different antenna positions

Figures 7 and 8 show two observations from two brain
models with intracranial bleeding (Duke and Zubal brain
models, respectively) with different distances between the head
and antennas. The green line indicates the direct signal path
from antennas 1, 5, and 9. The crossing points are plotted in
blue, whereas the estimated targets are drawn in red.

It can be seen that the Duke and Zubal brain models
are significantly different. In addition, the gap between head
boundary and antennas in Fig 7 is smaller than those in Fig 8.
Our SCLA was able to obtain the approximate location of the
targets even though the two antennas have different placement
and the distances between the antennas and the head boundary
are also different.
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(a) Ground Truth of a Zubal
Model (b) SCLA output of (a)

Fig. 8: A test result of the Zubal brain model. The ground truth
positions with tissues are shown on the left and the SCLA
algorithm result is shown without tissues on the right.

Fig. 9: Three experimental platforms with 14 and 16 antennas
respectively.

V. RESULTS ON EXPERIMENTAL DATA

A. Experiments data

The SCLA was applied to locate simple targets in two
experiments. One is a dielectric-loaded 14-waveguide antenna
array system. Each waveguide antenna is filled with a coupling
medium with a dielectric permittivity of 33 and a conductivity
of 0.1. An elliptical container filled with 60:40 glycerol water
mixture is used to mimic a head, and a water-filled glass
cylinder with an outer diameter of 22 mm and wall thickness
of 1 mm is used as a target. The second is a 16 Log-Periodic
array system. The experimental device is shown in Fig 9(a and
b).

The target in Fig 9(a) is moved clockwise in front of each
antenna with 10 mm and 14 mm distances, respectively. The
S-parameter data was collected twice. Thus, a total of 56
targets were measured. A Keysight M9037A VNA was used
to measure the signals, and a frequency scan from 0.5 GHz to
2 GHz with 2 MHz step size was used to provide a total of
751 frequency points.

The second experiment evaluated the algorithm performance
using a CNC machine with a EM head scanner. There are 16
antenna array put on a Skin-Skull Bucket (SSB) as shown
in Fig 10(a). The SSB was placed within the array imaging
domain upside-down and filled with liquid which has average
brain emulating dielectric property. It was placed on a centring
mount within the array, to hold the SSB in the centre of
the antennas. The pressure of the array membrane was then
increased to 1 PSI. Following this, a solid haemorrhage
emulating target (Fig 10(c) ) was measured inside the SSB.
These targets were moved along a 10mm spaced grid pattern

(a) A CNC & a scanner

(b) A Target (c) A SSB with water

Fig. 10: The SCLA output of two realistic phantoms.

Fig. 11: The experimental setup. The glass cylinder filled
with distilled water was moved into a stable position near
antenna 11 in a water filled container on the left and the SCLA
algorithm result is shown in red on the right.

in X and Y, with a fixed Z as low as possible within the bucket.
In total, there were 94 points measured inside the SSB.

For all these realistic systems, the measurement time is
approximately 1.5 seconds per measurement on 16 antennas.
The system uses a transmit power of approximately +10 dBm
(10 mW), which is less than that used in mobile phones. Com-
pared with an existing study which performed experiments at
only a single frequency point [35]. Our system is slower due
to a large number of frequency points (751 steps).

B. Locating the target in a realistic container

As introduced in Section V-A, an elliptic container filled
with distilled water was used to test a target which is a glass
cylinder with an outer diameter of 22 mm and wall thickness
of 1 mm, filled with distilled water. During each measurement,
a CNC machine moves the target to one of 28 positions, and
the distance between the between the target and the antenna
aperture is 10 mm and 14 mm respectively. A movie was
made in the Supporting files to illustrate the target movements.
Fig 11 shows a SCLA output of a measurement, where the
container with target was used for calibration in equation 4.
The SCLA can correctly localize the target according to the
collected S-parameters. The average DICE score for these 56
measurements was 0.85± 0.08.
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Fig. 12: Two pairs antennas analysis of 94 points in a SSB
container

C. Locating targets in asymmetric head phantoms

This section test the algorithms using 94 ICH targets which
is placed in 94 positions inside a SSB container. One of the
original position is shown in Fig 12 (a). It is clearly that the
symmetric pair 4 − 12 and 5 − 13 can divide those targets
into two groups as shown in Fig 12(b). For example, the 87th

target is 100% at the back and the 23st target is 100% on the
front. Then, the other pairs such as pairs 1 − 9 and 16 − 8
could divide the target into left or right hemisphere.

It is easy to find that the measurement results support that
the real head is not completely symmetrical. Fig 12 (c) shows
that the differential degree features from neighbour pair 5−12
and 6−11. The value increase when target is near the transmit
line between pair 5 − 12 and 6 − 11, such as targets 60 or
75. On the other hand, the position of target 1 − 58 has a
linear regression relationship with those of DNP5,6. In that
case, it is easy to obtain the target 23rd position by using the
regression in Fig 12 (c) as we could detect the target is really
in front area by detecting the DOP4,5 as shown in Fig 12 (d).
Certainly, any target in back area could have the similar linear
relationship with the pair of 4− 13 and 3− 14.

VI. DISCUSSION

In this study, we presented a novel symmetrical crossing line
algorithm (SCLA) which only requires the antenna positions

and measured signals to localize intracranial bleeding in the
brain. The physical principle is that, compared to signals
passing through two similar areas (non-target areas), a pair
of symmetrical transmitted signals passing through the targets
(bleeding) will generate significantly different amplitude and
phase changes. Unlike conventional imaging algorithms, the
output of the SCLA is the coordinates of the target instead of
an image. Compared to other methods which need human or
machine learning technology to provide the real coordinates
from the medical image, our algorithm directly provides the
real coordinates.

In fact, the SCLA might open a new direction for elec-
tromagnetic imaging which relies on the intersection of the
direct signal paths between antenna pairs. Compared with
radar-based detection methods, such as confocal imaging [36],
the SCLA algorithm can obtain the location without knowing
the boundary of the head and without estimating the average
permittivity of the imaging subject. In fact, the SCLA algo-
rithm is only based on the intersection of the two signal paths,
which can obtain high localization accuracy even when the
head boundary is unknown.

Compared with using multi-core CPUs [8] or using GPUs
tomography-based methods, the SCLA method has much
lower computational cost (less than 1 minute on an Intel
Core i7-2600 CPU @ 3.40 GHz with 16G RAM), making
it more suitable for use in emergency scenarios. In addition,
the tomography-based methods are usually influenced by the
selection of the antennas. For example, in [3], [37], antennas
with TMz polarization needed to be used to satisfy the integral
equations, and in [38], directive waveguide antennas were used
to restrict the radiation pattern so that the scattering problem
could be approximated as a 2-D problem.

Compared with the machine learning-based methods which
require a huge training data set [17], SCLA is based only on
the on-site measurement and it is not a learning-based method
thereby the substantial training data are not required.

Also, human heads have different sizes and shapes. Many
existing algorithms fail to give an accurate image when the
brain sizes and shapes are different. However, our SCLA
algorithm is not affected by the boundary, size or shape. The
only requirement is the positions of the antennas which is
easy to obtain in a clinical situation. More importantly, the
container and the target were filled with the same distilled
water in Fig 11. Despite this, our proposed algorithm is still
able to efficiently detect the changes caused by the 1 mm thick
glass cylinder only.

The hypothesis of this method is assuming that the healthy
human head is approximately symmetric across the major
and minor axes (i.e., across the sagittal plane, separating the
left-right of the brain, and across the central coronal plane,
separating the front and back of the brain). Symmetric pairs
of antennas across these lines of symmetry should have similar
signals within a healthy head. If symmetric pairs of antennas
measure different signals, this indicates an abnormality such
as bleeding, and this observation can be used to facilitate
localisation. In our realistic system, each antenna is just
10 mW and the measurement is about 1.5 ns. There are 8
transmitting antennas in total. This is very safe because it is
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only the equivalent to 0.01s of a mobile phone transmission
time.

Sections IV and V demonstrate that SLCA can obtain
cerebral hemorrhage images from experimental phantoms and
simulation data. However, two reasons could lead to difficulty
in measuring the DICE in experimental data compared with
those of simulated cases. Firstly, it is that the CNC can
introduce error during movements, while the simulation model
has none of this type of error. Secondly, shifts or rotations of
the phantom or the human head might introduce errors during
the measurement as shown in section IV-A. Currently, there
is no effective tool to detect whether the phantom or head is
placed in the center of the antenna array. It can only rely on
manual and visual inspection to observe whether the head or
phantom is rotated or shifted. Therefore, it is possible to obtain
low or zero DICE in real experiments despite high DICE being
achieved in simulation in the same situation. To overcome this
limitation and to acquire a higher DICE score, we can use
multiple measurements to determine whether the crossing line
of the algorithm are from the same pair of antennas. In the
future, a method to automatically detect rotation or shifts of a
head or phantom will be developed.

Currently, the algorithm does not calculate the electrical
properties of the bleeds. However, it can identify target local-
ization using differential degree values between two antennas.
Thus, it is possible to measure a target in 3-dimensional
imaging by moving the system up or down on the z-axis using
a 3-dimensional calibration. Each scan is a slice, and then all
slices could be merged into a 3-dimensional case. In addition,
it is possible to detect other abnormal tissues, such as tumors
or ischemic in the future.

VII. CONCLUSION

Using a novel symmetrical crossing line algorithm, this
paper is the first to localize an intracranial bleeding mass
without using radar, tomography or machine learning methods.
Based on the hypothesis that healthy brains are approximately
symmetric, the algorithm is able to accurately localize and
predict the shape of bleeding masses that cause a non-
symmetric response in the electromagnetic signals. The algo-
rithm was evaluated on 150 measurements with head phantoms
of varying size, shape and resolution, and antenna types,
and was able to accurately locate bleeding masses with an
average Dice score of 0.85. Compared with existing electro-
magnetic imaging and localization algorithms, our approach
is less sensitive to changes in head size, coupling mediums
and antenna positions, directly outputs the coordinates of
the bleeding mass, and does not require any training data.
It is also significantly faster, localising the bleeding mass
position within one minute. The speed and accuracy of the
method shows great potential for use in emergency clinical
applications.
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