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Abstract

Antibody engineering is becoming increasingly popular in medicine for the development
of diagnostics and immunotherapies. Antibody function relies largely on the recognition
and binding of antigenic epitopes via the loops in the complementarity determining
regions. Hence, accurate high-resolution modeling of these loops is essential for effective
antibody engineering and design. Deep learning methods have previously been shown to
effectively predict antibody backbone structures described as a set of inter-residue
distances and orientations. However, antigen binding is also dependent on the specific
conformations of surface side chains. To address this shortcoming, we created
DeepSCAb: a deep learning method that predicts inter-residue geometries as well as
side chain dihedrals of the antibody variable fragment. The network requires only
sequence as input, rendering it particularly useful for antibodies without any known
backbone conformations. Rotamer predictions use an interpretable self-attention layer,
which learns to identify structurally conserved anchor positions across several species.
We evaluate the performance of our model for discriminating near-native structures
from sets of decoys and find that DeepSCAb outperforms similar methods lacking side
chain context. When compared to alternative rotamer repacking methods, which require
an input backbone structure, DeepSCAb predicts side chain conformations
competitively. Our findings suggest that DeepSCAb improves antibody structure
prediction with accurate side chain modeling and is adaptable to applications in docking
of antibody-antigen complexes and design of new therapeutic antibody sequences.

Introduction

Antibodies are specialized proteins that play a crucial role in the detection and
destruction of pathogens. The binding and specificity of antibodies are largely
determined by the complementarity determining regions (CDRs) that consist of three
loops in the light chain and three loops in the heavy chain [1]. Structural diversity is
largely achieved by the third loop in the heavy chain, which determines many antigen
binding properties. Additionally, CDR H3 does not have a canonical fold like the other
loops [2], making it challenging to model [3–5]. Currently, engineering of new antibodies
is hindered by accurate prediction of the CDR H3 loop, including the corresponding side
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chains for docking applications. Prediction of side chains is a critical component of
structure prediction and protein design [6]. The surface of the antibody CDR loops
including the side chains play an important role in antigen recognition [7].

There has been a growing interest in effective design of new antibodies since they are
commonly used in biotherapeutics [8]. Antibody structure determination via techniques
like X-ray crystallography and NMR is challenging and time-consuming. Machine
learning methods improve overall structure prediction and docking [9]. Recently, highly
accurate structure prediction models have been proposed for proteins in general [10–12]
and for antibodies [13–16]. The performance of AlphaFold2 has been impressively
accurate in the recent CASP14 experiment and surpassed most other protein structure
prediction methods proposed to date [11]. Unlike the other deep learning-based methods,
AlphaFold2 predicts all side chain rotamers in addition to the protein backbone. While
current antibody prediction methods utilizing deep learning do not directly predict side
chains, they are all able to predict the backbones with high accuracy. Hence, a next
step towards the advancement of antibody modeling and engineering is the accurate
prediction of side chains to improve overall structure prediction and docking.

Presently, there are successful methods for rotamer predictions that rely on
calculating the probability of a χ angle as a function of backbone torsion angles. For
instance, SCWRL4 uses backbone-dependent libraries to calculate rotamer frequencies
based on kernel density estimates and kernel regressions [17]. Antibody-specific
methods like PEARS capture rotameric preferences based on the immunogenetics
numbering scheme to restrict possible side chain conformations in the sample space
based on positional information [18]. Both SCWRL4 and PEARS require the antibody
sequence and backbone structure to generate side chain predictions. They repack the
side chains onto the provided backbone, and their performance generally declines when
the input is not the crystal backbone. To address these limitations, we propose
DeepSCAb (deep side-chain antibody), a deep neural network that predicts full FV

structures, including side chain conformations from only the amino acid sequence.

Methods

Antibody structure datasets

Training dataset

The training dataset for our model was curated from SAbDab, a database of antibody
structures from the Protein Data Bank [19]. We enforced a threshold of 99% sequence
identity as well as a resolution cutoff of 3 Å for high quality data. We removed targets
belonging to the RosettaAntibody benchmark set [20] to evaluate model performance,
which resulted in a total of 1433 antibody structures that we used to train and validate
our network.

Predicting antibody structure from sequence

DeepSCAb consists of two main components: an inter-residue module for predicting
backbone geometries and a rotamer module for predicting side chain dihedrals. The
inter-residue module is initially trained separately and then in parallel with the rotamer
module.

Simultaneous prediction of side chain and backbone geometries

The initial layers of the model for predicting pairwise distances and orientations are
based on a network architecture similar to that of DeepH3 [13]. The inter-residue
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module consists of a 3 block 1D ResNet and a 25 block 2D ResNet. The one-hot
encoded antibody sequence of dimension L× 21 is taken as input to pass through the
module via the 1D ResNet, where L represents the number of residues in the sequence
and 21 represents each amino acid type with the addition of a chain delimiter. The 1D
ResNet begins with a 1D convolution that projects the input features up to L× 64,
followed by three 1D ResNet blocks (two 1D convolution with a kernel size of 17) that
maintain dimensionality. The output of the 1D ResNet is then transformed to pairwise
by redundantly expanding the L× 32 tensor to an L× L× 64 tensor. Next, this tensor
passes through 25 blocks in the 2D ResNet that maintain dimensionality with two 2D
convolutions and kernel size of 5 × 5. The resulting tensors are converted to pairwise
probability distributions over Cβ distance, d, the orientation dihedrals ω and θ, and the
planar angle φ. The inter-residue module is trained as described for DeepH3 [13].

The rotamer module takes as input the inter-residue features. The tensors of
dimension L× L× 64 resulting from the 2D ResNet are transformed to sequential by
stacking of rows and columns to obtain a final dimension of L× 128. The rotamer
module contains a multi-head attention layer of 1 block with 8 parallel attention heads
and a feedforward dimension of 512. The self-attention layer outputs L× 128 tensors,
which then pass through a 1D convolution with kernel size of 5. The tensors are
converted to rotamer probability distributions that are conditionally predicted for each
χ dihedral using softmax. For example, χ1 is an input to χ2, and χ1 through χ4 are
inputs to χ5. The predicted rotamers are added back into the inter-residue module: the
rotamer tensors are stacked onto the pairwise before the final 2D convolution to update
the d, ω, θ, and φ outputs.

Distances are discretized into 36 equal-sized bins in the range of 0 to 18 Å. All
dihedral outputs of the network are discretized into 36 equal-sized bins in the range of
−180° to 180° with the exception of χ1. The χ1 dihedral is discretized into 36
non-uniform bins, with 6 bins of 30° and 30 bins of 6°. The small bins are centered
around −60°, 60°, and 180°, consistent with observed conformational isomers. The
planar angle φ is discretized into 36 equal-sized bins with range 0 to 180°. Pairwise
dihedrals are not calculated for glycine residues due to the absence of a Cβ atom. Side
chain dihedrals were not calculated for glycine and alanine residues due to the absence
of a Cγ atom and for proline residues due to its non-rotameric nature.

Categorical cross-entropy loss is calculated for each output, where the pairwise losses
are summed with equal weight and the rotamer losses are scaled based on each
dihedral’s frequency of observation: i.e., χ5 rotamers are much less frequent than χ1.
The Adam optimizer is used with a learning rate of 0.001. We trained five models on
random 95/5 training/validation splits and averaged over model predictions to generate
potentials for downstream applications. DeepSCAb models were trained on one
NVIDIA K80 GPU, which required approximately 100 hours for 120 epochs of training.

Side chain only predictions

To investigate the effect of inter-residual predictions on rotameric predictions, we
designed a side chain only network as a control. The control network takes as input the
one-hot encoded antibody sequence, which passes through a 3 block 1D ResNet. The
remaining architecture of the control network as well as its training process is similar to
the rotamer module of DeepSCAb (SFigure 1). However, there are differences in
dimension due to the 1D ResNet returning an L× 32 tensor. The control network
models were trained on one NVIDIA K80 GPU, which required 10 hours for 20 epochs
of training. We adopted a shorter training process for the control network as the models
tended to overfit after 20 epochs.
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Self-attention implementation and interpretation

Transformer encoder attention layer

The rotamer module contains a transformer encoder layer that adds the capacity to
aggregate information over the entire sequence (SFigure 2). We tuned the number of
parallel attention heads, the feedforward dimension, and the number of blocks according
to validation loss during training. We found that 8 attention heads outperformed 16,
feedforward with a dimension of 512 outperformed 1,024 and 2,048, and one block of
attention performed identically to two. We further experimented with adding a
sinusoidal positional embedding prior to the self-attention layer and obtained identical
results, implying that the convolutions in our network contain sufficient information on
the order of input elements, rendering positional encoding unnecessary [21].

Interpreting the attention layer

In our interpretation of the rotamer attention, we take into consideration only one
model out of the five that were trained on random training/validation splits. We do not
report an average over the attention matrices from multiple models since they vary
amongst themselves (SFigure 3). Nevertheless, the properties of attention are conserved
across individual models.

We utilize a selected subset of the independent test set to display the most variation
across the highly-attended positions as well as the corresponding residue types. This
subset consists of the following human PDBs: 1JFQ, 1MFA, 2VXV, 3E8U, 3GIZ, 3HC4,
3LIZ, 3MXW, 3OZ9, and 4NZU.

Modeling side chains with DeepSCAb in Rosetta

DeepSCAb generates constraints that are utilized for the prediction of an antibody
structure. Discrete potentials are converted to continuous function via the built-in
Rosetta spline function. The constraints include all 9 geometries, namely d, ω, θ, φ, χ1,
χ2, χ3, χ4, and χ5. The ConstraintSetMover in Rosetta applies these constraints onto
the native pose and then the PackRotamersMover models side chain structures. We
chose the standard ref2015 full-atom score function with a weight of 1.0 for all
constraints. This protocol can repack side chains on any backbone structure with
DeepSCAb predictions.

Side chain predictions using alternative methods

To assess the side chain prediction accuracy against relative solvent accessible surface
area, we compare DeepSCAb to three alternative methods: PEARS, SCWRL4, and
Rosetta. For each alternative method, we provide the backbones of the benchmark
targets and their sequences. PEARS utilizes antibody-specific rotamer libraries and
assigns rotamers based on the IMGT numbering scheme. We generated predictions from
PEARS using the publicly available server [18]. SCWRL4 generates χ kernel density
estimates based on backbone-dependent rotamer libraries by minimizing the
conformational energies for each residue. We generated SCWRL4 predictions using the
SCWRL4.0 algorithm [17]. Rosetta predictions were generated using default packing
protocol (PackRotamersMover) and the ref2015 energy function.

Data and Code Availability

The source code for DeepSCAb, as well as pretrained models, will be made available
prior to publication. The structures predicted by DeepSCAb and alternative methods
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for benchmarking will be made available prior to publication.

Results

Overview of the method

Our deep learning method for antibody structure prediction consists of inter-residue and
rotamer modules. We trained DeepSCAb to predict antibody backbones as
inter-residual distance and orientations. Then, we simultaneously trained the model to
predict the side chain conformations using an attention layer. The pairwise and rotamer
probability distributions from DeepSCAb predictions were used for structure realization
and packing of the side chains using Rosetta.

DeepSCAb predicts inter-residue and side chain orientations
from sequence.

DeepSCAb is a neural network that only requires an antibody sequence to predict full
FV structures including side chain geometries (Figure 1A). The combined sequences of
the antibody heavy and light chains are inputted as a one-hot encoding to initially pass
through the inter-residue module. The architecture of this module is similar to our
previous method for CDR H3 loop structure prediction, DeepH3 (Figure 1B) [13]. The
network is pretrained to predict pairwise geometries, such as d, ω, θ, and φ. We then
feed the penultimate outputs into the rotamer module for the prediction of side chain
conformations, such as χ1, χ2, χ3, χ4, and χ5. Lastly, these tensors are used to update
the inter-residue module to obtain the final outputs.

We calculate pairwise energies after passing the input sequence through multiple
blocks of 1D and 2D ResNets as outlined in the Methods section. The network then
splits into four output branches, following the collection of pairwise tensors being fed
into the rotamer module. Here, we implemented an attention layer before predicting
rotamers. We predicted every χ angle after χ1 by conditioning on preceding χ angle(s).
For χ1 angles, we only inputted the inter-residue features.

We additionally experimented with predicting side chains independently using the
same training regime (i.e., directly predicting from pairwise features as for χ1). We
observed that predicting side chains conditionally resulted in lower cross-entropy losses
for all nine outputs, which is ideal.

Rotamer module attends to structurally-conserved anchor
positions.

The rotamer module includes a self-attention layer that allows us to identify the
positions that most significantly influence the side chain predictions. Rather than
attending broadly across the entire antibody sequence, we observed that the model
restricted attention to structurally-conserved residues, which we refer to as anchors.

We tested the conservation of anchor positions in various species and settings
including ten human antibody targets, a bovine antibody, and mouse and rat sequences
with unknown structures. We collected the human antibodies from the independent test
set and selected a random bovine antibody (6E9G). Lastly, the mouse and rat antibody
structures shown are predictions from DeepSCAb using the protocol described for
DeepAb [14], for random paired sequences from OAS [22]. Across the aforementioned
range of systems, we found that the anchor positions, as well as anchor residue types,
are frequently conserved (Figure 2A).
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When we analyzed how attention patterns changed throughout the course of training
we observed a process that resembled a search for anchor residues. The initial epochs
(before epoch 25) in training are used as a means of scanning for key positions in the
sequence. This subsequently results in switching out a few anchors altogether in the
beginning stages of training. The high attention residues begin to settle in their
positions at epoch 40, however, the ranges of attention assigned remain dynamic up
until late epochs. At epoch 100, the model settles on eight anchor positions commonly
with highest levels of attention observed (Figure 2B). The epochs represented in the
figure are 5, 20, 40, 60, 80, 100, and 120.

Side chain predictions improve CDR H3 loop structure
accuracy.

Training on backbone geometries improves side chain predictions.

To assess the side chain prediction accuracy of the model without any knowledge of
backbone preferences, we designed a control network that consists of primarily the
rotamer module. To understand the impact of including backbone conformation for side
chain predictions, we evaluated the control network and DeepSCAb on a decoy
discrimination task using the RosettaAntibody benchmark. For each target in the
benchmark, we score 2800 decoys generated by RosettaAntibody and measure the
RMSD of the top-1 and top-5 scoring structures referencing the native [23]. For the
top-1 scoring decoys, DeepSCAb (RMSD = 3.2 Å) outperformed the control network
(RMSD = 5.0 Å) by 1.8 Å (32 better, 7 same, 10 worse). For the top-5 scoring decoys,
DeepSCAb (RMSD = 2.5 Å) outperformed the control network (RMSD = 3.3 Å) by
0.8 Å (23 better, 11 same, 15 worse) (Table 1). Due to the considerable improvement
observed in DeepSCAb over the control network, we conclude that the inter-residue
predictions are necessary for side chain predictions.

Table 1. Decoy discrimination compared to DeepSCAb

Energy
Top 1-Scoring Decoys Top 5-Scoring Decoys

Better Same Worse RMSD Better Same Worse RMSD

DeepSCAb - - - 3.2Å - - - 2.5Å

Control 32 7 10 5.0Å 23 11 15 3.3Å

DeepH3 10 33 7 3.2Å 10 35 4 2.6Å

Training on side chain geometries improves inter-residual predictions in
return.

Since DeepSCAb outperformed the control network, we next compared the performance
of DeepSCAb to DeepH3 on the same decoy discrimination task. For the Top 1-scoring
decoys, DeepSCAb modestly outperformed DeepH3 (10 better, 33 same, 7 worse;
∆RMSD = 0 Å). For the Top 5-scoring decoys, DeepSCAb outperformed DeepH3 (10
better, 35 same, 4 worse; ∆RMSD = −0.1 Å) (Table 1).

Using the independent test set, we plotted the structures chosen by DeepH3 against
the ones chosen by DeepSCAb based on their RMSD (Å). DeepSCAb was more
successful at distinguishing near-native structures in both Top 1 and Top 5 plots,
though improvements over DeepH3 were most notable in the Top 5 comparison (Figure
3A). We then analyzed two targets chosen from the Top 5 decoys for the three methods
and ref2015. We show the structure scores against RMSD in the CDR H3 loop for the
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target 2FB4 (loop length of 19) (Figure 3B). DeepSCAb outperformed the control
network (∆RMSD = −10.8 Å), ref2015 (∆RMSD = −10.2 Å), and DeepH3
(∆RMSD = −1.2 Å). Comparison of the structures identified by DeepSCAb and
DeepH3 revealed that both models are able to place the CDR H3 loop in the correct
orientation, however, the addition of side chain information in DeepSCAb results in a
more accurate structure (Figure 3C). We further plotted the funnel energies in the CDR
H3 loop for the target 3MLR (loop length of 17) (Figure 3D). DeepSCAb outperformed
the control network (∆RMSD = −4.4 Å), ref2015 (∆RMSD = −5.8 Å), and DeepH3
(∆RMSD = −1.4 Å). We displayed all structures and the native overlaid for the target
3MLR (Figure 3E). DeepSCAb predicts the loop structure with the highest accuracy,
given one of the longer and more difficult of the CDR H3 loops. Hence, the addition of
side chain orientations is beneficial for accurately predicting pairwise geometries.

DeepSCAb is competitive with alternative rotamer packing
methods.

The context of the predicted side chains is crucial in determining the accuracy and
usefulness of a method. Side chains that are greatly exposed to a solvent play an active
role in the binding of an antigen, yet are also inherently the most flexible. We evaluated
the performance of our method and three alternative methods as a function of relative
side chain solvent accessible surface area (SC SASA) using Rosetta. We compared the
success of DeepSCAb in predicting side chain conformations to PEARS, SCWRL4, and
Rosetta, where the native structure was used as a reference for all measurements. We
omitted the target 3MLR from side chain packing and relative SC SASA comparisons as
PEARS was unable to model this structure due to its long L3 loop.

In Figure 4, we illustrate that while DeepSCAb did not significantly outperform any
method in the FV region, the CDR H3 loop or the non-H3 loops, it remained
competitive in per-residue side chain prediction accuracy with the most successful
alternative method, PEARS. However, we note that the alternative methods have and
require access to the true backbone, while our method does not. We took a closer look
at the average RMSD at various relative SC SASA values and found that DeepSCAb
was able to uncover similar amounts of information from only the sequence, even for the
challenging CDR H3 loop. As the methods, on average, perform very similar to one
another (Table 1), DeepSCAb may be the most useful in antibody engineering
applications, where the backbone conformation is flexible upon design requirements and
restrictions.

Discussion

The results outlined in our work show that our method is a step towards accurate
antibody docking and design via inclusion of side chain predictions. We demonstrated
that DeepSCAb predictions remain competitively accurate at varying side chain surface
exposure. Compared to alternative rotamer building methods, DeepSCAb is robust to
non-canonical loops as it learns patterns pertaining to neighbor backbone, side chain
geometry, and sequence, rather than relying on rotamer libraries. Using the rotamer
module attention, we are able to identify the residue types and positions that are the
most influential in the context of side chain predictions. While this analysis provides
insight into rotamer prediction, it does not reveal local biophysical interactions that
could be tied into the fundamentals of side chain conformation in complex energy
landscapes. The anchor sites are consistently scattered throughout the sequence, in
stark contrast with the local chemical environment typically considered by most side
chain placement algorithms. Perhaps DeepSCAb is learning an internal, structurally
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conserved numbering scheme as a reference for side chain prediction similar to the
well-performing PEARS algorithm [18], which was designed intentionally to use
antibody-specific residue positioning to condition rotamer predictions. Alternatively,
the model could be identifying global antibody features such as germline class or species,
which have some side chains conserved.

This work demonstrated that inter-residue features improve side chain predictions.
Also, inclusion of side chains improves overall FV structure prediction compared to
machine learning models that only predict inter-residue geometries. Concurrent with
this work, improved methods for antibody structure prediction have been
developed [14,15]. DeepAb uses a similar architecture to predict inter-residue
geometries, and ABlooper predicts CDR loop coordinates directly. Our work suggests
that both of these methods might be improved by incorporating side chain context into
predictions.

Most side chain repacking methods average sample conformations based on a
backbone-dependent rotamer library [17], and accurate methods for antibody side chain
repacking estimate χ angle densities based on a position-dependent rotamer library [18].
Since our method does not require structure as an input, DeepSCAb is unaffected by
uncertainty in backbone structure [24] and allows for predictions on sequences without
known backbone conformations. This feature is useful when there are multiple potential
backbone conformations of interest, e.g., for the design of new therapeutic antibodies.
With minimal modification, our network can aid antibody design. For instance,
DeepSCAb can be used in parallel with RosettaAntibodyDesign [25] for rapid placement
of side chains or to hallucinate new antibody sequences using the trRosetta
architecture [10].

Conclusion

In this study, we investigated the effect of inter-residual predictions on the accuracy of
side chain dihedrals as well as the effect of rotamer predictions on the overall antibody
structure prediction accuracy. We found that DeepSCAb competitively predicts
rotamers when compared to alternative methods that require true backbone coordinates.
The performance of our method is robust to when the backbone is perturbed or deviates
from the crystal structure. Since DeepSCAb predicts a probability distribution over the
backbone and side chain geometries, we expect it will be adaptable to and useful for
designing new antibodies.

Acknowledgments

This work was supported by National Science Foundation Research Experience for
Undergraduates grant DBI-1659649 (D.A.), AstraZeneca (J.A.R.), National Institutes of
Health grants T32-GM008403 (J.A.R.) and R01-GM078221(S.P.M., J.J.G.).
Computational resources were provided by the Maryland Advanced Research
Computing Cluster (MARCC).

Dr. Gray is an unpaid board member of the Rosetta Commons. Under institutional
participation agreements between the University of Washington, acting on behalf of the
Rosetta Commons, Johns Hopkins University may be entitled to a portion of revenue
received on licensing Rosetta software including methods discussed/developed in this
study. As a member of the Scientific Advisory Board, J.J.G. has a financial interest in
Cyrus Biotechnology. Cyrus Biotechnology distributes the Rosetta software, which may
include methods developed in this study. These arrangements have been reviewed and
approved by the Johns Hopkins University in accordance with its conflict-of-interest

September 17, 2021 8/16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.22.461349doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461349
http://creativecommons.org/licenses/by/4.0/


policies.

References

1. Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen
recognition. Frontiers in Immunology. 2013;4:1–13.

2. Tsuchiya Y, Mizuguchi K. The diversity of H3 loops determines the
antigen-binding tendencies of antibody CDR loops. Protein Science.
2016;4(25):815–825.

3. Leem J, Dunbar J, Georges G, Shi J, Deane CM. ABodyBuilder:Automated
antibody structure prediction with data-driven accuracy estimation. mAbs.
2016;7(8):1259–1268.

4. Schritt D, Li S, Rozewicki J, Katoh K, Yamashita K, Volkmuth W, Cavet G,
Standley DM. Repertoire Builder: High-throughput structural modeling of B and
T cell receptors. Molecular Systems Design and Engineering. 2019;4(4):761–768.

5. Weitzner BD, Jeliazkov JR, Lyskov S, Marze N, Kuroda D, Frick R,
Adolf-Bryfogle J, Biswas N, Dunbrack RL, Gray JJ. Modeling and dicking of
antibody structures with Rosetta. Nature Protocols. 2017;2(12):401–416.

6. Spassov V, Yan L, Flook P. The dominant role of side-chain backbone interactions
in structural realization of amino acid code. ChiRotor: A side-chain prediction
algorithm based on side-chain backbone interactions. Bioinformatics. 2007.

7. Chiu ML, Goulet DR, Teplyakov, Gilliland GL. Antibody Structure and
Function: The Basis for Engineering Therapeutics. Antibodies. 2019;8(4):55.

8. Reichert JM. Antibodies to watch in 2017. mAbs. 2017;9(2):167–181.

9. Gao W, Mahajan SP, Sulam J, Gray JJ. Deep Learning in Protein Structural
Modeling and Design. Patterns. 2020;1(9):100–142.

10. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved
protein structure prediction using predicted interresidue orientations.
Proceedings of the National Academy of Sciences of the United States of America.
2020;3(117):1496–1503.

11. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O,
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Fig 1. Overview of the DeepSCAb network architecture. (A) Conditional side
chain dihedral prediction in DeepSCAb rotamer module with each dihedral after χ1

depending on previous prediction(s). (B) DeepSCAb architecture for predicting
inter-residue geometries and side chain dihedrals. (C) Applications of DeepSCAb for full
FV realizations and side chain repacking using Rosetta.
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Fig 2. Identification of anchor residue positions from rotamer module
attention. Rotamer module attention is interpreted to indicate positional significance
in side chain predictions. (A) An attention spectrum (left) ranging from white to
magenta represents 0% to 100% attention, respectively. Human, bovine, mouse, and rat
antibodies are shown. (B) The variation in attention level is shown with increasing
training progress.
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Fig 3. Comparison of CDR H3 structure prediction accuracy. The accuracy
with which DeepSCAb, DeepH3, and the control network predict the CDR H3 loop
structure is measured via decoy structure scoring tasks. (A) In Top 1-scoring decoy
structures (top) and Top 5-scoring structures (bottom), the performance of DeepSCAb
is compared to DeepH3 using the test set. (B) The CDR H3 energies for the three
methods and Rosetta (ref2015) that correspond to 2FB4 are plotted against their
RMSD. The five best scoring structures for each plot are indicated in red. (C) The
best prediction from Top 5-scoring decoys for target 2FB4 are shown for DeepSCAb
(green, 2.34 Å RMSD), DeepH3 (blue, 3.535 Å RMSD), and the control network
(purple, 13.091 Å RMSD) all compared to the native (orange). (D) The CDR H3
energies for the three methods and Rosetta (ref2015) that correspond to 3MLR are
plotted against their RMSD. The five best scoring structures for each plot are
indicated in red. (E) The best prediction from Top 5-scoring decoys for target 3MLR
are shown for DeepSCAb (green, 2.998 Å RMSD), DeepH3 (blue, 4.432 Å RMSD),
and the control network (purple, 7.441 Å RMSD) all compared to the native (orange).
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Fig 4. Comparison of side chain prediction accuracy with increasing
solvent exposure. Plots show moving means of side chain RMSD as a function of
relative side chain solvent accessible surface area (SC SASA), with error bars indicating
standard deviation within each 0.2 interval and horizontal ticks corresponding to mean
RMSD. (A) Comparison of FV side chain prediction based on per-residue RMSD as a
function of SC SASA for PEARS, SCWRL4, Rosetta, and DeepSCAb, all referencing
the native structure, with moving average window length of 400 datapoints. (B)
Comparison of CDR H3 loop side chain prediction accuracy with increasing relative SC
SASA (window length of 60 datapoints). (C) Comparison of non-H3 CDR loops’
combined side chain prediction accuracy with increasing relative SC SASA (window
length of 120 datapoints).
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Supporting information

Supp. Table 1. Average RMSD (in Å) at relative SC SASA values for the CDR H3
loop

Method
Relative SC SASA values

0.1 0.3 0.5 0.7 0.9 1.1

PEARS 1.041 1.591 1.565 2.029 1.837 1.803

SCWRL4 1.052 1.357 1.654 2.052 1.716 2.118

Rosetta 1.053 1.353 1.785 1.682 1.605 2.107

DeepSCAb 1.015 1.382 1.775 1.737 1.580 2.107
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Supp. Figure 1. Side chain-only control network architecture. The control
network has a similar architecture to the rotamer module in DeepSCAb.

L

More
attention
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attention

L
Supp. Figure 2. Interpretation of the attention matrices. L× L matrix is
shown for a target chosen at random. The final attention is calculated by averaging over
the rows to collapse the matrix to dimension L× 1.
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Random
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Supp. Figure 3. Comparison of anchor positions between two random
models of DeepSCAb. The bovine PDB 6E9G is interpreted by two different models
to show the variation of anchor positions.
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