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Abstract

Creating a new synthetic line by crossbreeding means complementary traits from
pure breeds can be combined in the new population. Although diversity is gener-
ated during the crossbreeding stage, in this study, we analyze diversity management
before selection starts. Using genomic and phenotypic data from animals belonging
to the first generation (G0) of a new line, different simulations were run to evalu-
ate diversity management during the first generations of a new line and to test the
effects of starting selection at two alternative times, G3 and G4. Genetic diversity
was characterized by allele frequency, inbreeding coefficients based on genomic and
pedigree data, and expected heterozygosity. Breeding values were extracted at each
generation to evaluate differences in starting selection at G3 or G4. All simulations
were run for ten generations. A scenario with genomic data to manage diversity
during the first generations of a new line was compared with a random and a se-
lection scenario. As expected, loss of diversity was higher in the selection scenario,
while the scenario with diversity control preserved diversity. We also combined the
diversity management strategy with different selection scenarios involving different
degrees of diversity control. Our simulation results show that a diversity manage-
ment strategy combining genomic data with selection starting at G4 and a moderate
degree of diversity control generates genetic progress and preserves diversity.
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1 Introduction

Genetic diversity is of fundamental importance for breeding, as genetic improvement in
traits is directly linked to genetic variation (Falconer and Mackay, 1996). Quantitative genetics
suggest that both genetic variation and selection efficiency are highest when allele frequencies are
intermediate. Selection in closed populations tends to increase inbreeding with a loss of genetic
diversity, thereby limiting the long-term response to selection. However, at some point, it is
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possible to create genetic variability by crossbreeding lines from different genetic backgrounds.
To create a new line, the chosen breeds must have complementary traits (Legault et al., 1996). In
general, the new line is closed after the original crossbreeding takes place, meaning reproducers
are only chosen among crossbred animals. After several generations, the population becomes
genetically homogeneous and can be considered as a new line. One of the expected results of this
process is an increase in the genetic diversity of the crossbred animals (Bidanel, 1992). Analyses
of French and Spanish pure and composite pig lines using microsatellite markers showed high
within-population variability in composite lines compared to pure lines Boitard et al. (2010).
In addition, composite lines were sufficiently different from the pure breeds to be identified as
separate populations.

The first generations of a synthetic line are usually managed without selection in order
to promote the mixing of genomes from pure breed parental populations and to preserve the
original genetic diversity. However, few data are available regarding how the genetic diversity
of the first generations of an animal composite line is managed. The lack of data is due to
uninformative pedigree data because the genealogical relationships among founder breeds used in
the crossbreeding were not established, making it impossible to characterize the genetic diversity
in crossbred animals. To overcome this problem, genomic data could be analyzed to characterize
the resulting genetic diversity (Zhang et al., 2019) and new strategies could be designed to
characterize and promote genetic diversity right at the beginning of a new synthetic line (Gobena
et al., 2018; McTavish and Hillis, 2014).

A specific breeding scheme can be established after two or three generations of mixing
(Legault et al., 1996). However, the original genetic diversity has to be preserved in order
to promote the complementarity of the genomes of the original breeds and to limit genetic drift
towards one of the parent breeds, particularly through selection (Paim et al., 2020). Knowledge
of the genomic composition of crossbred animals would thus help keep the genomic composition
between the parental breeds balanced over generations. The mating plan for breeding stock is
also an important step to favor haplotype recombinations and limit inbreeding. Inbreeding can
be characterized at the genomic level by different methods. One of them is the detection of
runs of homozygosity (ROH), continuous homozygous chromosomal segments along the genome
(Peripolli et al., 2017). An interesting approach was proposed by de Cara et al. (2013) to compute
a coancestry coefficient based on ROH named fseg. In each male/female pair, the coancestry
coefficient reflects the expected generation of ROH in any potential offspring. Choosing animal
pairs with low fseg should limit ROH-based inbreeding in the next generation.

The two main objectives of the present study were first, to assess a strategy for the man-
agement of genetic diversity in the first generations of a composite line, and second, to evaluate
the impact of the number of generations before the start of selection on the ongoing genetic
diversity and genetic progress.

2 Material and methods

Stochastic simulations were used to compare various breeding strategies using the R-package
MoBPS (Pook et al., 2020). The code exemplary needed to perform the simulations is provided
in Supplementary File S1.

2.1 Genomic and phenotypic data

For the simulations, the base pig population was created using real genomic and phenotypic
data collected from a three-way crossbreeding program previously described in Ganteil et al.
(2021). In the first generation, Large White sows were mated with Pietrain boars. In the next
generation, Pietrain x Large White sows (PLW) were mated with Duroc boars. The offspring
of the second crossbreeding are named G0.
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Genomic data were obtained from the breeding company NUCLEUS. The reproducers from
the G0 population, 82 boars and 676 sows, were genotyped with the Illumina Porcine Chip,
Porc XT 60K. The reference map was based on the Sus scrofa 11.1 pig genome assembly. Quality
control of genotypes was performed with PLINK v1.9 software (Chang et al., 2015). Only markers
on autosomes were kept. Markers with more than 5% of missing genotypes were discarded. Minor
allele frequency (MAF) pruning was performed to eliminate alleles with a frequency below 0.01%.
After quality control, 758 animals and 46 628 SNP were used for analysis. Genotypes were then
phased with the BEAGLE v5.1 software (Browning et al., 2018).

Phenotypic data on the G0 population were collected by the breeding company NUCLEUS.
To simplify the simulations, only one trait was considered for selection: the age of the pigs at
100 kg (A100), an indicator of growth rate. The animals were weighed at around 150 days old,
after which A100 was computed using the following formula:

A100 = Am+ b(100 − Pm),

where Am is the age of the animal at weighing and Pm the measured weight. Coefficient b was
estimated by IFIP-Institut du porc (Jourdain et al., 1989). For these animals, b was calculated
using the following formula: b = C − 0.0077 × Wb + 0.0047 × Ab, where C = 1.075, Wb is
the mean weight of the batch and Ab is the mean age of the batch. To generate a simulated
trait architecture that is realistic, all the SNP included were assigned linear effects based on the
estimation computed by ridge regression BLUP (Akdemir and Godfrey, 2015). This method is
available with MoBPS.

2.2 Population structure in simulations

All the simulation scenarios are presented in Figure 1. In the first step, we simulated
three different scenarios to compare three breeding strategies. In these scenarios, the starting
population was G0 with 10 subsequently simulated generations. The size of the population and
selected reproducers were chosen to fit real pig populations. At each generation, 30 males and
300 females were selected as reproducers. Each male was mated with 10 females. The mating
plan differed between the scenarios, as it will be explained in the next subsection. Multiple
offspring were produced by the same sow/boar pair to obtain 1 000 males and 1 000 females. To
account for the variability due to random chromosomal segregation and recombinations during
meiosis, scenarios were simulated either 10 or 25 times. The number of repetitions has been
defined according to our computation capacities.

In the second step, we compared two different starting times for selection and three selection
strategies. The generations before selection started were simulated with the genomic diversity
management strategy. We tested two starting generations, G3 and G4, and generated respec-
tively 7 and 6 additional generations. Population size was the same as mentioned above with
overlapping generations for females. At each generation, we selected 30 males from the current
generation and 150 females from both the previous and the current generation as reproducers.
This method was applied from the second selected generation in the simulations.
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2.3 Evaluation of a genomic strategy to manage genetic diver-
sity

Three different scenarios were computed to compare a strategy using genomic data to max-
imize diversity with two alternative scenarios.

2.3.1 Random scenario

The first scenario is a basic simulation with both reproducers and mating selected randomly,
called Random scenario. We repeated this scenario 25 times.

2.3.2 Scenario with selection based on breeding values

In the second alternative scenario, called Selection on BV, breeding values (BV) were
estimated with MoBPS from marker effects estimated for the G0 population. BV were estimated
based on the custom implementation of gBLUP (Meuwissen 2001) in MoBPS with known heri-
tabilities. We selected reproducers with the lowest BV because the objective of selection was
to improve the growth rate by minimizing A100. We computed a coancestry coefficient fPED

based on pedigree data with function pedIBD() in the optiSel R package (Wellmann, 2019).
This coefficient was based on the pedigree of real G0 animals (over 10 generations) concate-
nated with the simulations without errors. A mating plan was established with an optimization
algorithm (in-house Fortran script) based on the minimization of fPED sum between matings.
This scenario represented a selection strategy that maximizes genetic gain, where genomic data
were used to obtain accurate BV, and mating was managed by minimizing pedigree relationship.
Selection on BV was repeated 25 times.

2.3.3 Scenario with genomic data to manage genetic diversity

The third scenario, called Genomic strategy, is based on a strategy where genomic data
are used both for selection and genetic diversity management. Two principles were combined to
select reproducers. The first was to choose reproducers among animals with balanced genomic
composition between founding breeds, with a particular focus on the proportion of Duroc origin.
The second principle was to promote original animals in terms of alleles. An animal is original
if it carries alleles that are uncommon in the population.

Genomic compositions between PLW and Duroc were calculated based on the real points
of recombination in each meiosis. Note that this is not possible in practice and needs to be
estimated and thus represents an idealized estimate compared to a real-world scenario. If a
chromosomal fragment originated from the maternal chromosome of a G0 animal, its origin was
a PLW founder. Otherwise, if a chromosomal fragment originated from a paternal chromosome
of a G0 animal, its origin was a Duroc founder. We considered an animal to be balanced when
the proportions of PLW and Duroc origins were between 0.30 and 0.70. For original animals,
Danchin-Burge et al. (2016) proposed the computation of an originality index (ORI) to highlight
individuals with uncommon alleles compared to a target population. An original animal has a
positive ORI index, whereas an animal with common alleles has a negative ORI index. For each
animal i, ORI index was computed with in-house Python script with the following formula:

ORIi = −fi − fpop
σfpop

where fi is the mean allele frequency of markers carried by individual i, fpop is the mean
frequency of all individuals in the population and σfpop is the standard deviation.

Last, BV were estimated as described in the subsection 2.3.2. Reproducers were selected in
three consecutive steps. First, individuals with a very low growth rate, i.e., with BV greater
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than three standard deviations from the mean, were eliminated. Second, only animals with
balanced PLW and Duroc genomic origins were kept. Third, among the remaining animals, the
30 males and 300 females with the highest ORI indexes were selected as reproducers.

The mating strategy was based on the limitation of ROH generation in the offspring. Shared
genomic segments between each male/female pair were detected with GERMLINE software (Gusev
et al., 2009). We used the following parameters: minimum size of a shared segment, 1 Mb and a
minimum of 30 SNP per segment. We did not allow mismatching homozygous or heterozygous
markers for a shared segment. The ROH coancestry coefficient fseg (de Cara et al., 2013), which
reflects the potential of generation of ROH in the offspring for each pair of individuals was
computed as:

fSEGij =

∑
k

∑2
ai=1

∑2
bj=1 LIBDk

(ai, bj)

4L
,

where LIBDk
(ai, bj) is the length of the kth shared segment measured over homologous a of

animal i and homologous b of animal j. L is the total length of the autosomes covered by
markers in bp.

Like in the Selection on BV scenario, the mating plan was established with an optimization
algorithm. In this scenario, the mating plan was based on the minimization of fseg sum between
mates. This scenario was repeated 10 times.

2.4 Comparison of two starting generations for selection

We tested two different selection scenarios with two different starting points. We took the
simulated data from the previous Genomic strategy scenario, and applied selection criteria
with a starting point at G3 and G4. In all scenarios, BV were estimated as previously described
in subsection 2.3.2. Each scenario was repeated 10 times.

2.4.1 Selection based on breeding values and pedigree data

This scenario, called BV + pedigree data represented a strategy where genomic data are
used to accurately estimate BV but not manage diversity. For the choice of reproducers, animals
with a high growth rate according to BV were selected with simple constraints based on family
structure: one male per sire, a minimum of one female per sire and a maximum of two full
sisters. For mating, we assumed that reproducers were genotyped and we mated reproducers as
described in the subsection 2.3.3, with minimization of fseg sum.

2.4.2 Selection based on breeding values and genomic data with a relaxed or
stringent ORI index

We simulated a scenario which included two sub-scenarios: BV + genomic data with
relaxed ORI and BV + genomic data with stringent ORI. The difference between these
two sub-scenarios was the constraint on the ORI index. For these two sub-scenarios, we applied
a step-by-step selection to select reproducers. First, we sorted the animals based on the ORI
index. In BV + genomic data with relaxed ORI, we kept animals with ORI index greater
than -1.5. In BV + genomic data with stringent ORI, we kept 25% of males and 66% of
females with the highest ORI index. The following steps in reproducer selection were the same
in the two sub-scenarios. We kept only animals balanced PLW and Duroc genomic origins and
then selected animals with the best BV. For mating, we used genomic data to design a mating
plan based on minimization of fseg sum as described above in Genomic strategy.

6

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.22.461330doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461330
http://creativecommons.org/licenses/by/4.0/


2.5 Data analysis

2.5.1 Allele frequency

Allele frequencies were computed with PLINK software. According to their MAF, markers
were divided into four categories: Fixed if MAF = 0, Rare if MAF < 0.05, Intermediate if
0.05 < MAF < 0.10 and Common if MAF > 0.10. We computed the proportion of alleles in
each category.

2.5.2 ROH-based inbreeding

ROH was detected with PLINK software based on the same parameters defined in Ganteil
et al. (2021). The values selected to define a ROH were 30 SNP and 1,000 kb and the minimum
density was set at one SNP per 100 kb. One missing SNP was allowed per sliding window. To
obtain strictly homozygous ROH, no heterozygous SNP were allowed per sliding window. All
the other parameters available in PLINK that are not mentioned above were default settings. We
then computed a ROH-based inbreeding coefficient for each animal, FROH with detectRUNS R

package (Biscarini et al., 2019) as:

FROH =

∑
LROH

Lautosomes
,

where LROH is the sum of the length of all the ROH detected in an animal in bp, and Lautosomes

is the total length of the autosomes covered by markers in bp.

2.5.3 Analyses based on identity by state matrix

PLINK, was used to compute an identity by state (IBS) matrix to obtain molecular coancestry
coefficients fMij between each pair of individuals i and j. The average molecular pairwise
coancestry fM was used to compute expected heterozygosity (He) as He = 1 − fM . This
parameter can be considered as an indicator of the ability of a population to respond to selection
in the short term. Molecular inbreeding coefficients FMi (proportion of homozygous markers)
were also obtained with PLINK for each individual i.

2.5.4 Genetic diversity analysis with pedigree data

This analysis was based on the pedigree of real G0 animals concatenated with the pedigree
extracted from MoBPS for simulated animals. We calculated with pedInbreeding() function
from optiSel R package pedigree-based inbreeding coefficients FPEDi for each individual i.

2.5.5 Breeding values analysis

For each simulated animal, a BV was generated by MoBPS. We collected all BV to monitor
their evolution and calculated the mean and standard deviation per generation for all 2,000
simulated animals and for all repetitions.

3 Results

3.1 Genetic diversity management

We compared a diversity management strategy, Genomic strategy with two other scenarios
Random scenario and Selection on BV over 10 generations.
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3.1.1 Allele frequencies

First, we observed the evolution of allele frequencies (Figure 2). For the Fixed category
(MAF = 0), in all scenarios, the G0 generation did not have fixed alleles because of the pruning
previously applied to genomic data. As expected, in the three scenarios, the main class of
alleles was the Common class (MAF > 0.10). The proportion of this category, decreased
more rapidly in the Selection on BV scenario than in the two other scenarios. For the other
frequency classes, the Selection on BV scenario showed a bigger increase in the proportions
of Intermediate (0.05 < MAF < 0.10), Rare (MAF < 0.05) and Fixed classes than in the
two other scenarios. These results revealed a greater and faster loss of genetic diversity in the
scenario with selection. The results of the Genomic strategy and Random scenario were
close but the decrease in proportion of Common class was greater in the Random scenario
than in the Genomic strategy scenario.

Genomic strategy Random scenario Selection on BV

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
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Figure 2: Changes in proportion of each class of allele frequencies over 10 generations in
the Genomic strategy, Random scenario and Selection on BV. Bars indicate the
standard deviation across replicates.
(Fixed: MAF = 0, Rare: MAF < 0.05, Intermediate: 0.05 < MAF < 0.10 and Common:

MAF > 0.10, BV: breeding values)

3.1.2 Inbreeding

We analyzed the evolution of inbreeding with ROH-based inbreeding coefficient FROH , IBS-
based inbreeding coefficient FM and a pedigree-based inbreeding coefficient FPED in the Ge-
nomic strategy scenario and in the two alternative scenarios (Figure 3).

The two graphs with genomic coefficients FROH and FM were similar (Figure 3A,B). They
showed a significant increase in the two coefficients in the Selection on BV scenario. Inbreeding
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increased in the Random scenario but to a lesser extent than in the Selection on BV scenario
and its increase was strictly linear from G1 to G10. The most limited increase in inbreeding was
observed in the Genomic strategy scenario. FROH increased slightly between G0 and G1 and
decreased slightly after G1 and then increased from G3 to G10. FM increased between G0 and
G1 like FROH but after G1, it decreased until G7 and then appeared to stabilize. In G10, FROH

was 0.21, 0.10 and 0.06 for Selection on BV, Random scenario and Genomic strategy
scenarios, respectively. FM was 0.67, 0.63 and 0.59 in the Selection on BV, Random scenario
and Genomic strategy scenarios, respectively.

Unlike FROH or FM , FPED increased significantly in all three scenarios Figure 3C, albeit
with a slightly different pattern. In the Selection on BV scenario: between G0 and G3, FPED

remained the lowest, with a bigger increase after G3 to reach the highest FPED value (0.06) in
G10. In the Random scenario, FPED presented a strictly linear increase after G1. The profile
of the Genomic strategy was similar to that in the Selection on BV between G0 and G3,
subsequently, FPED increased at a slower rate and at G10, this scenario had the lowest FPED

value. Standard deviations in FPED were the highest in Selection on BV, especially between
G4 and G10.
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Figure 3: Changes in three inbreeding coefficients, FROH (A), FM (B), FPED (C) over
10 generations in the Genomic strategy, Random scenario and Selection on BV
scenarios. Bars indicate the standard deviation across replicates.
(BV: breeding values)
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3.1.3 Expected heterozygosity

In all three scenarios, we observed an increase in He at G1 that was higher in the Genomic
strategy and Selection on BV scenarios (Figure 4). In the following generations, He de-
creased in Random scenario and Selection on BV. In Random scenario, the decrease was
linear and lower than in Selection on BV which presented the largest decrease. For Genomic
strategy, after G1, EH decreased only during 1 generation and increased after G3 and it seemed
to stabilize from G3 to G10 around 0.31. We observed standard deviations in He in the three
scenarios with the highest value in Selection on BV.

0.26

0.28

0.30

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

Generation

E
H

Genomic strategy
Random scenario
Selection on BV

Figure 4: Changes in expected heterozygosity (He) over 10 generations in the Genomic
strategy, Random scenario and Selection on BV scenarios. Bars indicate the stan-
dard deviation across replicates.
(BV: breeding values)

3.2 Impact of starting selection in G3 or G4 on diversity and
genetic progress

Here we compared three selection scenarios using two different generations to start the
selection, G3 and G4. Genetic diversity estimators and BV were analyzed from G3 to G10 or
G4 to G10, respectively.

3.2.1 Allele frequencies

Figure 5 shows the proportion of Common, Intermediate, Rare and Fixed alleles at each
generation. In BV + genetic data with relaxed ORI, the proportion of Common alleles
decreased and the proportion of Intermediate and Rare alleles increased. In BV + genetic
data with stringent ORI, the proportion in each allele frequency classes remained relatively
constant over generations, underlining the ability of the strategy to conserve genetic diversity.
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Differences between starting selection in G3 or G4 were negligible in the two scenarios. The
shape of the two respective curves for the allele frequency contributions was similar at both
starting points, with the G3 curve basically shifted by one generation (to the left) relative to
the G4 curves.

The third scenario BV and pedigree data, showed the strongest decrease in the proportion
of Common alleles compared to the two other scenarios with genomic data and ORI index. The
curves for the start of selection at G3 and G4 were again similar, however, as the shift per
generation in BV and pedigree data was highest the biggest differences in G10 were observed.
There was a slight increase in Intermediate and Rare alleles that was similar in the two starting
points.

The proportion of Fixed alleles, was constant in the three scenarios.
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Figure 5: Changes in the of proportion of each class of allele frequencies for BV +
genomic data with relaxed ORI, BV + genomic data with stringent ORI and
BV + pedigree data and comparison of selection starting at G3 and G4. Bars indicate
the standard deviation across replicates.
(Fixed: MAF = 0, Rare: MAF < 0.05, Intermediate: 0.05 < MAF < 0.10, Common: MAF >

0.10 and BV: breeding values)

3.2.2 Inbreeding

The evolution of inbreeding was characterized with the simulation of selection scenarios. As
mentioned above, we studied FROH , FM and FPED (Figure 6). Figure 6A shows the results for
FROH were similar in the two scenarios with genomic data and ORI index. FROH first increased,
then decreased, and then increased again. The shape of the curve was the same whether selection
started at G3 or G4, the two curves only shifted by one generation. However, at G10, in the
two scenarios, the simulation that started at G3 had a higher FROH than the simulation that
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started at G4. Regarding the difference between the scenarios BV + genomic data with
relaxed ORI and BV + genomic data with stringent ORI, in limiting inbreeding, the
second scenario was more efficient. In the third selection scenario, BV + pedigree data,
FROH increased immediately after the start of selection until G10. The increase was lower when
selection started in G4 than when it started in G3.

The second genomic-based inbreeding coefficient was FM (Figure 6B). The results for this
coefficient were similar to previous results for FROH . Once again, starting selection at G4 limited
the increase in inbreeding better.

Last, we studied FPED (Figure 6C), the shapes of the curves in the scenarios with genomic
data with ORI index were similar. The results of the scenario BV + pedigree were very close
results for the two selection starting points.

For the three coefficients, the scenario BV + genomic data with stringent ORI limited
inbreeding the most. However, in the first generations of selection (G4 to G6), the scenario BV
+ pedigree with a start of selection at G4 showed the lowest level of inbreeding.

3.2.3 Evolution of breeding values

The estimated genetic progress was compared in the three selection scenarios (Figure 7).
The selection applied in the three scenarios aimed to decrease the BV of the studied trait (A100).
In all scenarios and in line with the breeding objective, BV decreased over the 6 or 7 simulated
generations. These results highlighted improved growth of simulated animals. In the BV +
genomic data with relaxed ORI and BV + pedigree data scenarios, there was a shift of
approximately one generation between starting selection at G3 and at G4 in BV evolution. This
result was not observed for BV + genomic data with stringent ORI where the improvement
of BV from G7 was somewhat limited when selection started at G4.

As expected, in G10, the best improvement of BV was observed for BV + pedigree data,
where in simulations when selection started at G3, the mean of the BV was 93.8 compared with
95.4 and 96.8 in the BV + genomic data with relaxed ORI and BV + genomic data
with stringent ORI scenarios, respectively.
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Figure 6: Evolution of inbreeding in BV + genomic data with relaxed ORI, BV
+ genomic data with stringent ORI and BV + pedigree data and comparison of
selection starting at G3 and G4. The three inbreeding coefficients analyzed were FROH

(A), FM (B) and FPED (C). Bars indicate the standard deviation across replicates.
(BV: breeding values)
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Figure 7: Evolution of BV for BV + genomic data with relaxed ORI, BV +
genomic data with stringent ORI and BV + pedigree data with comparison of
selection starting at G3 and G4. The trait studied here was age at 100 kg (A100) to
measure the efficiency of growth.
(BV: breeding values)

4 Discussion

4.1 Simulations using real data

This article describes a simulation study to compare different strategies to create a synthetic
line in pig breeding. Founder animals are generated based on real genomic data and the trait is
generated using real phenotypic data. The G0 population is the product of two steps three-way
crossbreeding and G0 animals constitute the first generation of a new synthetic line. We started
all simulations using all G0 reproducers’ genotypes and phenotypes available. Additional ge-
nomic data for G1 and G2 animals were also used and we were thus able to compute FROH

(Supplementary File S2). To validate our simulation approach, changes in FROH were com-
pared between the real population and the simulated data in the scenario Genomic strategy
for the first three generations. This scenario was based on the strategy carried out on the line
management. We found high similarity between the evolution of real and simulated inbreeding
coefficients, thus confirming the relevance of our simulation analyses.

Population characteristics such as the number of offspring and the number of selected repro-
ducers or management system (like overlapping generations) were chosen based on the French
porcine industry. We tested different simulation scenarios to manage diversity, with and with-
out genomic data. Our aim was to explore the possibility of diversity management offered by
genomic data. We consider scenarios with no genomic data or only designed to manage matings
by breeders, close to current practices as genotyping of all candidates for selection is usually
considered too costly.

14

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.22.461330doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461330
http://creativecommons.org/licenses/by/4.0/


In the pig breeding literature, simulation studies are generally based on fully simulated data.
For instance, Gourdine et al. (2012) simulated all data of a small local pig breed to explore
genetic diversity management with optimal contribution selection (OCS). When all data are
simulated, it is possible to test many simulation scenarios with different parameters for example
population size or selection pressure. Simulations based on real data should be more useful to
monitor the evolution of a specific population. Bosse et al. (2015) compared different strategies
in two different populations, a local breed Sus cebifrons and commercial breed Pietrain. Bosse
et al. (2015) studied real genomic data and simulated the management of each population.
They confirmed previous results obtained with simulated data by de Cara et al. (2013) about
the efficiency of fseg to mate animals.

However, the simulated scenarios have some limitations. First, to explore genetic progress,
BV were computed for only one trait, A100, which estimated growth efficiency using real phe-
notypic data measured in G0 animals. So, were close to a real trait but in practice, selection
is done used a selection index and/or based on multiple traits. In that respect, the simulation
scenarios are a simplistic representation of the breeding objective of a sire line. Moreover, we
did not account for potential differences in genetic levels between the three founder populations.
With only simulated data, we could have simulated different genetic backgrounds for the founder
populations but we had no data available to calibrate such differences in a realistic way. How-
ever, differences between using an index or a trait should be limited and the main conclusion
of our study should still hold valid. In theory, simulation of these factors in MoBPS would be
possible.

Another limitation of our study is the contemporaneity of all the candidates. We assumed
that all candidates for selection were available at the same time and could thus be chosen as
reproducers and mated simultaneously. However, this is not the case in breeding pig populations,
some matings cannot be conducted due to the spacing out of the animals from one generation.

4.2 Maximization of genetic diversity in the first generations of
a new line

Maximizing genetic diversity is an important step during the first generations of a new
line before starting selection but few data are available on this topic in the context of the
creation of a new line. The increase in genetic diversity in the composite line compared to the
founding breeds is expected from the increase of heterozygosity. With pedigree relationships
only, inbreeding is assumed to be nonexistent in the first crossbreeding generation, which can
lead to overestimation of genetic diversity. Using genomic data, it is possible to characterize
genetic diversity with better accuracy. Some studies have shown genomic inbreeding could
persist in crossbred animals (Ganteil et al., 2021; Howard et al., 2016).

For this reason, we proposed the Genomic strategy as an innovative way to manage
genetic diversity in the first generations of a new pig line. Our scenario included genomic data
for the choice of reproducers and their mating. We estimated two genomic criteria to select
reproducers: the ORI index and balanced animals for one of the three founding populations.
The ORI index makes it possible to enhance animals with uncommon alleles in each generation
and helps maintain rare alleles in the population. In the long term, using the ORI index, we
expect to obtain animals with ORI index close to 0 which means an increase in heterozygosity in
animals. The second criterion based on the origin of the founders’ genomes in crossbred animals
limits genetic drift towards a particular founder breed. As we did not introduce different genetic
levels between the founder breeds for the selected trait, no such systematic breed favoritism was
expected, except by chance. Using these genomic criteria to select reproducers combined with
minimization of fseg coefficient in mating plans are efficient ways to maintain genetic diversity
compared to a random choice of reproducers and their matings, like in the Random scenario.

In our simulations, the choice of balanced animals was only based on the estimation of the
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Duroc and PLW origins. The method could be improved by estimating all the origins (Duroc,
Large White and Pietrain). For this purpose, a robust method could be to phase each genotype of
the crossed animals and identify the origin of each chromosomal fragment down to the purebred
founders to assign each fragment to a Pietrain, Large White or Duroc origin.

To mate animals, we chose a method based on the minimization of fseg coefficient which
limits ROH in the offspring (de Cara et al., 2013). de Cara et al. (2013) performed simulation
analyses and suggested that their method leads to higher levels of population fitness. This result
could be due to the limitation of large ROH by fseg. In fact, large ROH correspond to recent
inbreeding (Curik et al., 2014) which is assumed to be more harmful than ancient inbreeding,
because selection has had time to reduce the frequency of deleterious alleles that are purged
over time (Doekes et al., 2019).

In the Selection on BV scenario, the selection of reproducers was only based on BV. In
this case, we observed a decrease in the proportion of SNP in Common frequency class, an
increase in the proportion of SNP in the three other frequency classes: Intermediate, Rare and
Fixed. We chose to analyze allele frequencies by divided them into different frequency classes
in order to easily monitor the evolution of frequencies. In the Selection on BV scenario,
the smallest increase among Intermediate, Rare and Fixed classes, is observed for the Fixed
category probably due to MAF pruning applied before starting analysis of the simulation. In
our context, i.e, the creation of a new line, the conservation of the specific alleles of each founder
breed is important. Our study showed that the Genomic strategy could limit the loss of these
specific alleles because the evolution of all frequency classes remained almost constant over the
10 generations, in contrast to the Random scenario and Selection on BV scenario.

When we compared Selection on BV, the Random scenario and the Genomic strat-
egy in terms of inbreeding, the Genomic strategy was the most efficient scenario to limit
inbreeding. The increase in inbreeding observed in the Random scenario was probably due
to genetic drift because we analyzed a small population.

Regarding inbreeding estimated with FPED in the Selection on BV, Random scenario
and Selection on BV scenarios, the results in G10 were similar in the three scenarios, in con-
trast to FROH and FM . These results confirm the relevance of genomic coefficients to accurately
characterize inbreeding by capturing the variation due to Mendelian sampling and thus make
it is possible to differentiate animals with the same pedigree (Villanueva et al., 2021). What is
moreover, in the context of crossbred animals used in this study, genealogical would not have
been informative concerning G0 animals, where all FPED were equal to 0.

Despite crossbreeding and the generation of heterozygosity, our results show it is not sufficient
to prevent an increase in inbreeding when we apply selection like Selection on BV. Systems
that use maximization of diversity like Genomic strategy followed by selection with diversity
management using genomic data like BV + genomic data with relaxed ORI, BV +
genomic data with stringent ORI or a combination of pedigree and genomic like BV +
pedigree data appear to be appropriate ways to limit an increase in inbreeding. The results we
obtained for He in the Genomic strategy is an additional argument for the use of a diversity
management strategy with genomic data during the first generations of a new line. Indeed, in
this scenario, He was constant after G3. He measures the ability of a population to respond to
selection in the short term. We hypothesize that starting selection at G3 or at G4 after diversity
management, for exampling using the Genomic strategy would generate genetic progress.

4.3 Comparison of selection strategies

Our objective was to analyze the impact of two alternative selection starting points on
genetic diversity and BV evolution. In this context, we studied a breeding program with first
generations of the new line managed using a Genomic strategy. We then tested a starting
selection at G3 and G4 with three different selection scenarios BV + genomic data with
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relaxed ORI, BV + genomic data with stringent ORI and BV + pedigree data. It
would have been possible to start selection at several generations, but we chose G3 and G4
in accordance with results obtained for He which showed stabilization of this indicator after
G3. Moreover, in a real synthetic line project, it would be difficult to put off selection to later
generations because of breeders’ expectations in terms of genetic progress.

The three selection scenarios we used to compare starting selection at G3 and G4 can be
divided into two groups. In the BV + genomic data with relaxed ORI and BV + genomic
data with stringent ORI scenarios, we considered that all the candidates for selection had
genomic data whereas in the BV + pedigree data scenario, genomic data were available
only for selected reproducers. However, in all three scenarios, selection was focused on growth
efficiency so minimization of A100’s BV and BV were estimated from genomic data. We made
this choice to ensure precise BV and the same method to estimate them in all simulations. So,
in the BV + pedigree data scenario, the idea was to have genomic data to manage diversity
only for reproducers mating.

Regarding diversity parameters like allele frequencies and inbreeding, BV + genomic data
with relaxed ORI and BV + genomic data with stringent ORI proved to be efficient to
limit the loss of diversity especially with a stringent selection on the ORI index. The ORI index
thus appears to be an easy to use and efficient criterion to preserve diversity in the population.
A previous study showed the relevance of the ORI index in cattle compared to using genealogical
data (Danchin-Burge et al., 2016).

We observed a particular variation in the inbreeding coefficients after the start of selection in
the two scenarios with selection on BV and genomic data with the ORI index. We observed an
increase in FROH , FM and FPED between the starting generation of selection and next genera-
tion, after which inbreeding decreased and then increased again. In these two scenarios, in the
second generation of selection, the choice of female reproducers was conducted with overlapping
generations, with half the reproductive females from the previous generation. Complementary
analyses were performed in a system with discrete generations and we did not observe this vari-
ation at the beginning of selection (data not shown). This phenomenon was not observed in BV
+ pedigree data scenario, so it was probably due to the interaction between ORI index and
the start of overlapping generations. In fact, we selected original animals with the ORI index
and the selection on original animals was high, but with the selection on BV, we observed an
increase in inbreeding. This increase was higher in the BV + genomic data with relaxed
ORI scenario than in the scenario BV + genomic data with stringent ORI scenario
because we selected with relaxed ORI, animals with higher BV and maybe genetically closer,
the constraint on diversity is less strong than with the stringent ORI selection. The decrease in
inbreeding observed after the second generation of selection is probably due to the overlapping of
generations. Indeed, overlapping generations promote the minimization of parents’ coancestry
and hence reduce inbreeding in offspring (Sonesson and Meuwissen, 2001).

This variation in inbreeding described above was not observed in the scenario BV + pedi-
gree data. Using pedigree structure to control for inbreeding was more efficient in limiting
inbreeding in the first generations of selection than in the scenarios that use the ORI index.
However, after several generations, the two scenarios that use the ORI index were more effi-
cient.

Although BV + pedigree data was less efficient in limiting inbreeding than BV + ge-
nomic data with relaxed ORI and BV + genomic data with stringent ORI, all three
scenarios respected the recommended rates of inbreeding for small livestock populations. These
rates are 0.5-1% rise per generation for FPED and 0.25-0.50% rise per generation for FM (Meuwis-
sen and Oldenbroek, 2017).

If we extrapolate these three scenarios to real conditions, scenarios with genomic data avail-
able for all candidates for selection have a significant additional cost over the scenario with
genomic data available only for reproducers. An alternative could be only genotyping candi-
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dates for selection that have interesting phenotypes. In these candidates, diversity criteria like
the ORI index or genomic composition in terms of founder origins could be analyzed. These
results would help breeders in their final choice of future reproducers.

In the three scenarios in which we tested two selection starting points, our results suggest
that, in the context of diversity analysis, it would be advantageous to start selection at G4
rather than G3. One additional generation managed with Genomic strategy allowed further
chromosomal recombinations that increase diversity within the population. On the other hand,
starting selection at G3 is more efficient and generates genetic progress more rapidly than starting
at G4. Not surprisingly, the higher the pressure on diversity, the lower the pressure on genetic
progress. Therefore, the first three generations of a new line managed with Genomic strategy
followed by BV + genomic data with relaxed ORI appears to be a good compromise
between conserving diversity and achieving genetic progress.

We did not analyze a scenario with OCS in this paper. This method of selection uses the av-
erage coancestry of the selected parents to manage genetic diversity. This can be implemented in
different ways, such as maximizing genetic progress with a fixed rate of inbreeding or minimizing
the loss of genetic diversity. OCS can be used with pedigree or genomic data, and is considered
as a method of choice for simultaneous improvement of genetic progress and the preservation of
diversity (Woolliams et al., 2015). The efficiency of OCS methods is impacted by the estima-
tion of the relationship matrix and it appears that the appropriate genomic relationship matrix
should be chosen depending on the diversity targeted (Meuwissen, 2020; Morales-González et al.,
2020).

5 Conclusion

Genomic data offer new opportunities for genetic diversity management in composite breeds.
Our results show that diversity management based on genomic data can be used in the first
generations of a new line to build diversity even before starting selection. In the case of two
step three-way crossbreeding, it was clearly better to start the selection after 4 generations
post-crossbreeding to limit inbreeding, however it is difficult to extend this recommendation to
all kinds of crossbreeding strategies. In any case, simulations based on real data collected from
the base crossbred population should be carried out to design an appropriate breeding strategy
that combines selection and diversity management. Among the breeding scenarios studied here,
a strategy that includes a focus on allele frequencies, such as the BV + genomic data with
relaxed ORI would be a good compromise between genetic progress and diversity conservation.
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E., Toro, M. A., and Pong-Wong, R. (2021). The value of genomic relationship
matrices to estimate levels of inbreeding. Genetics Selection Evolution, 53(1):42.

Wellmann, R. (2019). Optimum contribution selection for animal breeding and conserva-
tion: the R package optiSel. BMC Bioinformatics, 20(1):25.

Woolliams, J., Berg, P., Dagnachew, B., and Meuwissen, T. (2015). Genetic contributions
and their optimization. Journal of Animal Breeding and Genetics, 132(2):89–99.

Zhang, J., Song, H., Zhang, Q., and Ding, X. (2019). Assessment of relationships between
pigs based on pedigree and genomic information. Animal, 14(4):697–705.

20

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.22.461330doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461330
http://creativecommons.org/licenses/by/4.0/

