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Abstract 13 

Traditionally, single-copy orthologs have been the gold standard in phylogenomics. Most 14 

phylogenomic studies identify putative single-copy orthologs by using clustering approaches and 15 

retaining families with a single sequence from each species. However, this approach can severely 16 

limit the amount of data available by excluding larger families. Recent methodological advances 17 

have suggested several ways to include data from larger families. For instance, tree-based 18 

decomposition methods facilitate the extraction of orthologs from large families. Additionally, 19 

several popular methods for species tree inference appear to be robust to the inclusion of 20 

paralogs, and hence could use all of the data from larger families. Here, we explore the effects of 21 

using all families for phylogenetic inference using genomes from 26 primate species. We 22 

compare single-copy families, orthologs extracted using tree-based decomposition approaches, 23 

and all families with all data (i.e., including orthologs and paralogs). We explore several species 24 

tree inference methods, finding that across all nodes of the tree except one, identical trees are 25 

returned across nearly all datasets and methods. As in previous studies, the relationships among 26 

Platyrrhini remain contentious; however, the tree inference methods matter more than the dataset 27 

used. We also assess the effects of each dataset on branch length estimates, measures of 28 

phylogenetic uncertainty and concordance, and in detecting introgression. Our results 29 

demonstrate that using data from larger gene families drastically increases the number of genes 30 

available for phylogenetic inference and leads to consistent estimates of branch lengths, nodal 31 

certainty and concordance, and inferences of introgression. 32 
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Introduction 36 

Advances in sequencing technology have led to the availability of more genomic data 37 

than ever before, and the promise of phylogenomics is the application of this data to infer species 38 

relationships (Scornavacca et al. 2020). Essential to the application of genomic data to 39 

phylogenetic inference is the identification of homologous genes, or genes that share a common 40 

ancestor. Homologous genes may share a common ancestor due to speciation (orthologs) or 41 

duplication (paralogs). Since the terms ortholog and paralog were coined (Fitch 1970), orthologs 42 

have been considered the appropriate genes for phylogenetic inference because they are related 43 

only through speciation events, and therefore are thought to best reflect species relationships. 44 

Thus, identifying orthologs is a central part of most phylogenomic pipelines. 45 

Nearly all pipelines for extracting putative orthologs from genomic data begin with a 46 

clustering step (Figure 1). Clustering approaches aim to identify sets of homologous genes. 47 

While the details vary, these approaches generally begin with pairwise comparisons of all 48 

sequences across genomes, identify putative pairwise homologs, and then use clustering 49 

approaches to attempt to group many sets of these genes together (reviewed in Altenhoff et al. 50 

2019). The end-products of graph-based clustering approaches are clusters of orthologs and 51 

paralogs—i.e., gene families. Since most phylogenetic methods were designed for use with 52 

orthologs (and a single sequence per taxon), these groups must be further processed for 53 

downstream phylogenetic inference. 54 

Three primary approaches have been used to process families for downstream inference 55 

(Figure 1; Step 1). The first and most common is to extract clusters with only a single copy in 56 

each species—these represent putative single-copy orthologs. Using single-copy families is 57 

generally seen as a conservative approach in phylogenomics, as these genes are likely to be 58 

orthologs; this choice also limits the amount of further downstream processing needed. However, 59 

the number of genes that are single-copy in all sampled species decreases sharply as additional 60 

species are included in the analyses (Emms and Kelly 2018), limiting the usefulness of this 61 

approach in many phylogenetic contexts. 62 

In lieu of relying only on single-copy clusters, tree-based decomposition approaches 63 

(Willson et al. 2021) for orthology detection can be applied to extract orthologous genes from 64 

clusters that may have more than one copy in one or more species (Figure 1; Step 2). Tree-based 65 

decomposition approaches attempt to infer whether nodes in gene trees represent duplication or 66 
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speciation events, followed by the extraction of orthologs based on these node labels (reviewed 67 

in Altenhoff et al. 2019). Early tree-based approaches relied on gene tree reconciliation to a 68 

known species tree (e.g., Goodman et al. 1979), limiting their utility in cases where the species 69 

tree is unknown or uncertain. However, recent approaches have relaxed these requirements. For 70 

example, the method LOFT relies on a species overlap approach to identify duplication nodes in 71 

gene trees (van der Heijden et al. 2007). Similarly, the software package Agalma (Dunn et al. 72 

2013), the methods of Yang and Smith (2014), and DISCO (Willson et al. 2021) extract subtrees 73 

without duplicates to generate sets of orthologs. While the exact implementations vary, in 74 

general tree-based decomposition approaches aim to extract orthologous genes from families of 75 

any size. Tree-based approaches allow researchers to vastly increase the number of genes 76 

retained compared to using only the single-copy clusters. However, these approaches require that 77 

users construct gene trees and perform ortholog extraction for each gene family, and they are 78 

therefore more computationally intensive than relying on single-copy clusters alone (Figure 1). 79 

Finally, families containing both orthologs and paralogs could be used for phylogenetic 80 

inference. Although orthologs have traditionally been considered the appropriate genes for 81 

phylogenetics, methods for estimating phylogenies from data including paralogs were introduced 82 

more than forty years ago (Goodman et al. 1979; reviewed in Smith and Hahn 2021a). Recently, 83 

several popular methods for species tree estimation have been shown to be robust to the presence 84 

of paralogs (Hill et al. 2020; Legried et al. 2020; Markin and Eulenstein 2020; Yan et al. 2021). 85 

Of particular interest, quartet-based methods, such as ASTRAL (Zhang et al. 2018), should be 86 

robust to the inclusion of paralogs because the most common quartet is still expected to match 87 

the species tree even in the presence of gene duplication and loss. Given that all ortholog 88 

extraction methods may erroneously lead to the inclusion of paralogs, using methods that are 89 

robust to their inclusion is likely a good strategy no matter the method employed to process the 90 

output of clustering methods. 91 

Though there have been several empirical comparisons between ortholog-detection 92 

methods (e.g., Fernández et al. 2018; Kallal et al. 2018; Altenhoff et al. 2019), along with several 93 

simulation-based (e.g., Legried et al. 2020; Zhang et al. 2020; Yan et al. 2021) and empirical 94 

(e.g., Yan et al. 2021) studies evaluating the effects of paralog inclusion on phylogenetic 95 

inference, several questions remain. First, a comparison of inference on single-copy clusters to 96 

tree-based decomposition methods and methods that use all of the data (i.e., use orthologs and 97 
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paralogs for phylogenetic inference) would shed light on the advantages of the three approaches. 98 

In addition, the joint effects of dataset, missing data requirements, and gene and species tree 99 

inference method on species tree topology will provide information on the importance of each. 100 

Finally, questions remain about the effects of the dataset used on branch length estimates, 101 

measures of nodal support, and tests for introgression. 102 

 To address these questions, we reanalyze a recently published phylogenomic dataset that 103 

includes 26 species of primates and 3 outgroups (Vanderpool et al. 2020). The data consist of 104 

whole genomes from all 29 species. In the original study, Vanderpool et al. restricted inference 105 

to 1,730 single-copy clusters present in 27 of the 29 studied species, a relatively small proportion 106 

of the >20,000 genes available from each species; the species tree was inferred using 107 

concatenated maximum likelihood, concatenated maximum parsimony, and quartet-based 108 

approaches applied to gene trees inferred using both maximum likelihood and maximum 109 

parsimony.  The authors found robust relationships among all species except the Platyrrhini 110 

(“New World Monkeys”), for which inferences differed across species-tree and gene-tree 111 

inference methods. In this paper, we compare inferences from three major types of dataset: 112 

single-copy families, orthologs extracted from larger families using tree-based decomposition 113 

approaches, and all families including all data (orthologs + paralogs). These datasets are then 114 

compared in three different phylogenetic applications. First, we compare the species trees 115 

inferred from these datasets using several methods, including concatenation-based and gene-tree-116 

based approaches.  Second, we compare several measures of nodal support and nodal 117 

consistency, as well as branch length estimates across datasets. Finally, we perform tests of 118 

introgression and compare results across different datasets. Our results suggest minimal effects 119 

of the dataset used on downstream phylogenetic inference, while highlighting the fact that both 120 

tree-based decomposition approaches and approaches using both orthologs and paralogs greatly 121 

expand the amount of data available. 122 

 123 

Results 124 

Using all gene families vastly expands the data available for phylogenetics 125 

We compared three types of datasets produced by clustering approaches: single-copy 126 

clusters, orthologs extracted from all clusters using tree-based decomposition approaches, and all 127 

clusters (orthologs + paralogs) (Figure 1). For all datasets we considered both a stringent 128 
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missing-data threshold (only those genes present in at least 27 of the 29 sampled species; 129 

MIN27) and a relaxed missing-data threshold (only those genes present in at least 4 of the 29 130 

sampled species; MIN4). First, we considered only clusters that included a single gene from each 131 

species (single-copy clusters; SCCs). While these genes are not guaranteed to be orthologs—due 132 

to the potential inclusion of pseudoorthologs (Doolittle and Brown 1994; Koonin 2005)—this is 133 

considered a safe approach and is often employed in phylogenomics. As expected, this dataset 134 

included the fewest genes (Table 1).  135 

Tree-based decomposition approaches aim to extract orthologous genes from any 136 

cluster/family. We constructed gene trees for all clusters, and then used several tree-based 137 

approaches to extract orthologous genes. First, we considered those clusters in which all 138 

duplications were specific to a single lineage and kept a single gene-copy from this lineage. 139 

When duplications are restricted to a single lineage, choosing one of the copies as the ortholog 140 

cannot mislead phylogenetic inference regardless of which sequence is retained (see Figure 1d 141 

from Smith and Hahn 2021a; Figure S1a). This dataset ("lineage-specific duplicates"; LSDs) 142 

included more than 4X as many genes as the SCC dataset (Table 1). Next, we further expanded 143 

our criteria to include those clusters with duplications specific to a pair of lineages ("two-species 144 

duplicates"; TSDs; Figure S1b). Such duplications also cannot mislead topological inference, 145 

though picking a non-orthologous pair could lead to longer branches. It is straightforward to pick 146 

the most closely related pair of genes from the two species, which should not mislead either 147 

topological or branch length inferences; including these genes further expanded the dataset 148 

compared to the LSD dataset (Table 1). 149 

We considered two tree-based decomposition approaches from Yang and Smith (Yang 150 

and Smith 2014): minimum inclusion (MI) and monophyletic outgroups (MO). The MI approach 151 

takes a gene tree and iteratively extracts subtrees with the highest number of taxa without taxon 152 

duplication, until it cannot extract anymore subtrees with the minimum number of taxa. The MO 153 

approach considers only those gene trees with a monophyletic outgroup, roots the tree, and infers 154 

gene duplications from the root to the tips, pruning at nodes with duplications. These two 155 

approaches were each applied to three datasets: the original gene trees, the original gene trees 156 

trimmed to remove lineage-specific duplicates, and the original gene trees trimmed to remove 157 

both lineage-specific and two-lineage duplicates. We explored the effects of additional filtering 158 

and alternative parameters for the MI approach; as these changes had minimal effects, the results 159 
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are presented in the Supplementary Material (Appendix A). We also considered a new tree-based 160 

decomposition approach: subtree extraction (SE). In this approach, we midpoint-root gene trees,  161 

trimming away lineage-specific and two-lineage duplicates. We then extract subtrees that include 162 

a single representative from each taxon (i.e., subtrees with no duplicates) and keep those trees 163 

that meet minimum taxon-sampling thresholds (Figure S1c, d).  164 

All tree-based approaches further expanded the amount of data available (Table 1). Since 165 

the SE and MI approaches are highly similar (neither requires an outgroup, and both aim to 166 

extract subtrees with no duplication events), we further examined the genes extracted using the 167 

two approaches. We compared the MI dataset with TSDs trimmed and a minimum of 27 taxa to 168 

the SE dataset with a minimum of 27 taxa sampled (this method trims TSDs internally). The 169 

number of trees extracted using the two approaches was very similar (12,046 vs 12,198 genes in 170 

the MI and SE datasets, respectively). For the 12,046 trees in the MI dataset, there was no analog 171 

in the SE dataset for 2.4%, there was an identical tree in the SE dataset for 92.7%, and there was 172 

a similar tree in the SE dataset for 4.8% (median Robinson-Foulds distance of these trees=2.0). 173 

Thus, the MI and SE approaches extract very similar subsets of trees from the original clusters. 174 

Finally, we considered two approaches that made no attempt to remove paralogs from the 175 

dataset. We considered one dataset in which all orthologs and paralogs were included (“All 176 

Paralogs”). This dataset was the most complete, as, even though it had fewer gene trees than 177 

some tree-based approaches, the gene trees from these tree-based approaches are subtrees 178 

extracted from this full dataset. This dataset cannot be analyzed using concatenation methods 179 

because these approaches require an alignment that includes a single sequence for each species. 180 

To address this, and to evaluate the effects of stochastic sampling of paralogs, we also included a 181 

dataset in which a single gene (without regard to whether it was an ortholog or paralog) was 182 

sampled at random from each species (“One Paralogs”).  183 

In total, we considered 20 datasets each with MIN4 and MIN27 taxon sampling. The 184 

number of gene families ranged from 1,820 to 27,900 (Table 1). Clearly, considering only SCCs 185 

drastically restricts the amount of data available, in terms of the number of gene trees (Table 1), 186 

the number of decisive sites for each branch of the species tree (Figure 2A), and the number of 187 

gene trees informative about each branch of the species tree (Figure 2B). All other datasets are 188 

subsets of the All Paralogs dataset, and thus this dataset is necessarily the most informative. 189 

Apart from the All Paralogs dataset, including a randomly sampled paralog (One Paralogs) leads 190 
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to the most decisive sites (Figure 2A), though they are not necessarily the most accurate sites 191 

(see below and Figure 3). MI and SE lead to the most informative gene trees (Figure 2B). 192 

 193 

Species tree inference is largely consistent across datasets 194 

We inferred species trees using six approaches: ASTRAL (Sayyari and Mirarab 2016; 195 

Zhang et al. 2018; Rabiee et al. 2019) on maximum likelihood (ML) gene trees, ASTRAL on 196 

maximum parsimony (MP) gene trees, ASTRID (Vachaspati and Warnow 2015) on ML gene 197 

trees, ASTRID on MP gene trees, concatenated ML inference in IQ-Tree (Nguyen et al. 2015), 198 

concatenated MP inference in PAUP* (Swofford 2001), SVDQuartets (Chifman and Kubatko 199 

2014), and ASTRAL-Pro (Zhang et al. 2020) on MP and ML gene trees. ML gene trees were 200 

inferred in IQ-Tree, while MP gene trees were inferred in PAUP*. ASTRAL, ASTRID, 201 

concatenated ML, and concatenated MP were all developed with orthologs in mind, but 202 

ASTRAL has subsequently been demonstrated to be statistically consistent under models of gene 203 

duplication and loss (Hill et al. 2020; Legried et al. 2020; Markin and Eulenstein 2020).  204 

ASTRAL-Pro, on the other hand, was designed with paralogs in mind, and was only applied to 205 

the All Paralogs datasets.  206 

Across all nodes of the species tree, except for the relationships among the Platyrrhini 207 

(discussed below), an identical phylogeny was recovered across all datasets and species tree 208 

inference methods (Figure 3) with two exceptions. When concatenated MP or SVDQuartets was 209 

used to infer a species tree from the One Paralogs dataset (MIN27), Macaca fasciularis was 210 

recovered as sister to M. nemestrina rather than M. mulatta, as in all other datasets and previous 211 

studies (e.g., Vanderpool et al. 2020), but bootstrap support for this relationship was low (55%) 212 

in the SVDQuartets analysis. Additionally, when SVDQuartets was used to infer a species tree 213 

from the One Paralogs (MIN4) dataset, Mandrillus leucophaeus was recovered as sister to a 214 

clade containing Cerocebus atys, Papio anubis, and Theropithecus gelada, rather than sister to 215 

Cerocebus atys as in other analyses and previous studies, but bootstrap support for this 216 

relationship was also low (< 50%).  217 

Branch support values were also highly similar across filtering methods. Local posterior 218 

probabilities were 1.0 in ASTRAL for all datasets and for all nodes except the contentious node 219 

in the Platyrrhini. All bootstrap support values in the concatenated ML analyses were 100, and 220 

all bootstrap support values were 100 in the concatenated MP analyses except for in the One 221 
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Paralogs (MIN27) dataset, which also had topological issues among macaques as mentioned 222 

above. Similarly, in all SVDQuartets analyses bootstrap values were 99 or 100 except in the 223 

Platyrrhini and One Paralogs datasets.  224 

In addition to branch support values, we calculated measures of genealogical 225 

discordance: gene and site concordance factors (Minh et al. 2020). These analyses were carried 226 

out for all datasets except All Paralogs, because it is not possible to calculate these statistics for 227 

this dataset. For all datasets except the One Paralogs dataset, site and gene concordance factors 228 

were highly similar across datasets (Figure 3A, B, C). Concordance in the One Paralogs dataset 229 

was consistently lower, as would be expected from the random sampling of homologs. In some 230 

cases, gene concordance factors were slightly lower for the SCC and MO dataset than for the 231 

other datasets (Figure 3B); this seems to be due to more genes that fall into the ‘paraphyly’ 232 

category (i.e., genes for which at least one of the reference clades for a particular branch is not 233 

monophyletic), rather than for more genes supporting either of the two minor topologies. gCFs 234 

and sCFs for the MIN4 datasets are shown in Supplemental Figure S2. 235 

 236 

Resolution of the Platyrrhini radiation varies across species tree and gene tree inference 237 

methods 238 

As in Vanderpool et al. (2020), we found uncertainty around relationships among the Platyrrhini. 239 

Concatenated ML analyses and gene-tree based analyses that relied on gene trees inferred using 240 

ML preferred a symmetric tree, with Saimairi boliviensis and Cebus capucinus imitator as sister 241 

species and Callithrix jacchus and Aotus nancymaae as sister species (topology 1 in Figure 4A). 242 

However, concatenated MP and gene-tree based analyses that relied on gene trees inferred using 243 

MP preferred an asymmetric topology, with Saimiri boliviensis and Cebus capucinus imitator 244 

sister and Aotus nancymaae sister to these two (topology 2 in Figure 4A). Finally, SVDQuartets 245 

preferred a third topology that placed Callithrix sister to Saimairi boliviensis and Cebus 246 

capucinus (topology 3 in Figure 4A).  247 

 Gene and site concordance factors clarify these results. A slight majority of ML gene 248 

trees prefer topology 1 (Figure 4B), a majority of MP gene trees prefer topology 2 (Figure 4B), 249 

while slightly more sites support topology 2 than support topology 1 (Figure 4C). While the 250 

results from SVDQuartets may seem counterintuitive at first, SVDQuartets relies on symmetry 251 

between the two minor topologies to infer the third topology as the correct topology. Since there 252 
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are relatively equal numbers of sites supporting topologies 1 and 2, it is therefore expected that 253 

SVDQuartets would prefer topology 3, even though fewer sites support this topology. Results for 254 

the MIN4 dataset are similar and are shown in Figure S3.  255 

 To further investigate the causes of disagreement among these taxa, we focused on the 256 

SCC dataset with MIN27 filtering to compare ML and MP gene trees. For each gene, we 257 

recorded the ML and MP gene tree topology and the site concordance factor with respect to the 258 

focal node, as well as various summary statistics about each locus (number of site patterns, 259 

number of parsimony informative sites, tree length, etc.). The percentage of sites supporting the 260 

best topology was highest when ML and MP gene trees agreed (Supplemental Figure S6a,c). 261 

Additionally, there was more variance in sCFs within a gene (i.e., the number of sites supporting 262 

each topology differed more) when ML and MP gene trees agreed (Supplemental Figure S6a,b). 263 

This suggests that for genes with similar numbers of sites supporting multiple topologies, ML 264 

and MP were more likely to infer conflicting gene trees.  Notably, 17.6 percent of gene trees 265 

supported Tree 1 under both ML and MP inference, while 18.8 percent of the gene trees 266 

supported Tree 2 under both ML and MP inference. 267 

 268 

Branch length estimates are largely consistent across datasets 269 

We inferred branch lengths using two approaches. In general, our results suggest that all 270 

methods that extract orthologs perform similarly and should lead to reliable estimates of branch 271 

lengths. First, we estimated branch lengths in units of substitutions per site using concatenated 272 

ML (i.e., site-based branch lengths). We expect that the inclusion of paralogs will lead to 273 

overestimates of site-based branch lengths, since the divergence times of paralogs should pre-274 

date divergence times of orthologs. As expected, estimated site-based branch lengths for the One 275 

Paralogs dataset are longer than those estimated for the SCC dataset (Figure 5a, b). For all other 276 

MIN27 datasets, estimated site-based branch lengths were highly similar to those from the SCC 277 

dataset (Figure 5 c, d). However, there are some inconsistencies with site-based branch lengths 278 

for terminal branches (Figure 5d), and all site-based branch lengths are more variable for the 279 

MIN4 datasets (Supplemental Figure S4). 280 

We also inferred discordance-based branch lengths in coalescent units using ASTRAL 281 

for the ML gene tree datasets. We expect that the inclusion of paralogs will lead to 282 

underestimated discordance-based branch lengths, because datasets with paralogs should have 283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.22.461252doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461252
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

higher levels of discordance. As expected, estimated discordance-based branch lengths from the 284 

All and One Paralogs dataset using ASTRAL are shorter than those estimated from the All 285 

Paralogs dataset using ASTRAL-Pro, a method that accounts for the extra discordance caused by 286 

the inclusion of paralogs (Figure 5 e, f, g). In general, across all datasets except the two including 287 

paralogs (All and One), discordance-based branch lengths were highly similar to those estimated 288 

in ASTRAL-Pro (Figure 5g). However, there were some surprising results. Specifically, the SCC 289 

and MO datasets led to slightly shorter discordance-based branch length estimates than both 290 

ASTRAL-Pro and the datasets from other tree-based decomposition methods (Figure 5g). In 291 

addition, all discordance-based branch length estimates are relatively short, which could be 292 

explained by difficulties estimating the lengths of longer branches with very little gene tree 293 

discordance (i.e., for which all (or most) genes support a single topology) in ASTRAL.  294 

 295 

Tests for introgression are consistent across datasets 296 

To test for introgression, we looked for a deviation from the expected number of alternate 297 

gene tree topologies using the statistic D (Huson et al. 2005; Vanderpool et al. 2020). We used 298 

only the ML gene trees from each dataset for this analysis. There was evidence of introgression 299 

across several branches of the primate phylogeny (Figure 6A), and values of D were similar 300 

across datasets (Figure 6B). Notably, there was evidence of introgression in a majority of tests at 301 

the contentious node in the Platyrrhini, which may explain difficulties inferring the species tree 302 

topology at this node. There was also evidence of introgression in the macaques, as found by 303 

Vanderpool et al. (2020). Deeper in the tree, results were more suspect, with tests on some 304 

datasets suggesting introgression while others did not (Figure 6B). Results of introgression tests 305 

were similar with less stringent missing-data filters (Supplemental Figure S5). 306 

 307 

Discussion 308 

 Our results demonstrate that, regardless of the dataset used, the inferred species tree 309 

topology is largely stable across datasets. Regardless of whether all families, families with only a 310 

single copy per species, or large families from which orthologs are extracted were used, the only 311 

disagreements between trees were with respect to relationships among the Platyrrhini; in this 312 

case the species tree inference method was a larger determinant of results than the particular 313 

dataset (Figure 4). Despite the overall similarity among results, when a single gene was 314 
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randomly sampled per species results were unstable in two cases, suggesting—unsurprisingly—315 

that such a sampling strategy is not ideal. Based on the results presented here, when whole 316 

genome sequence data are available, using all of families output by clustering methods followed 317 

by the application of gene-tree decomposition methods can greatly expand the data available 318 

without sacrificing the accuracy of inference. These results align with several recent simulation 319 

and theoretical studies focusing on gene-tree based methods and demonstrating their robustness 320 

to paralog inclusion (Legried et al. 2020; Yan et al. 2021).  321 

 Despite the stability of inference across most of the tree, there remains disagreement 322 

about relationships amongst the Platyrrhini, a notably contentious node (Perelman et al. 2011; 323 

Springer et al. 2012; Perez et al. 2013; Jameson Kiesling et al. 2015; Schrago and Seuánez 2019; 324 

Wang et al. 2019; Vanderpool et al. 2020). As in Vanderpool et al. (2020), we find that both 325 

concatenated ML and ASTRAL based on ML gene trees favor a symmetrical topology (tree 1 in 326 

Figure 4A). A bias towards the symmetrical 4-taxon tree is expected when using ML in the 327 

presence of recombination and when the time between speciation events is short (Kubatko and 328 

Degnan 2007; Roch and Steel 2015). Although the bias on ML under these conditions is often 329 

linked to concatenation methods, if the gene trees themselves are inaccurate due to the 330 

concatenation of multiple unique histories (e.g., among exons; Mendes et al. 2019), then the 331 

same bias in inferred trees can occur. Bias in the gene trees can then lead to bias in the methods 332 

that they are used as input to (e.g., ASTRAL). Note that this bias does not affect inferences under 333 

maximum parsimony (Mendes and Hahn 2018). Furthermore, there are nearly equal numbers of 334 

trees supporting the two best-supported topologies in the primate data (Figure 4B), which 335 

suggests two things: first, choosing the best topology will be difficult no matter what method is 336 

used, as the evidence in favor of one topology over the other is minimal. Second, there is likely 337 

some introgression, since we would otherwise expect equal numbers of the two minor 338 

topologies. We do not see equal numbers of the two minor topologies, as confirmed by 339 

significant tests for introgression in this clade (Figure 6). Finally, a detailed comparison of SCC 340 

gene trees inferred by both ML and MP suggests that genes whose topologies disagreed across 341 

the two approaches did not support either topology as strongly as genes for which ML and MP 342 

agreed (Figure S6). Of the gene trees that agreed across ML and MP inference, more supported 343 

Tree 2 than supported Tree 1 (Figure 4A). Thus, of the genes for which methods agree, more 344 

support the asymmetric topology than the symmetric topology (as in Vanderpool et al. 2020).  345 
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 We also compared branch length estimates and tests for introgression across datasets. 346 

Branch length estimates are largely consistent across datasets, with the exception of datasets that 347 

explicitly include paralogs, which led to biases in expected directions for both discordance-based 348 

and site-based branch lengths. Site-based branch lengths are very consistent across all datasets 349 

except the One Paralogs dataset when stringent filters for missing data are applied. When 350 

paralogs are included, site-based branch lengths are overestimated, as expected (e.g., Siu-Ting et 351 

al. 2019). Discordance-based branch lengths (i.e., those estimated in ASTRAL) are 352 

underestimated for datasets including paralogs, because these datasets have higher levels of 353 

discordance. These methods accommodate increased discordance by positing a shorter time 354 

between speciation events. Otherwise, discordance-based branch lengths are largely similar 355 

across datasets, though the SCC and MO datasets appear to have slightly shorter estimated 356 

branch lengths than all other methods (Figure 5e). Given the consistency of results across tree-357 

based decomposition methods, as well as ASTRAL-Pro, and the vastly larger number of gene 358 

trees used in these cases, we suggest that discordance-based branch lengths may actually be 359 

underestimated for the SCC and MO datasets. This result is consistent with lower gCFs in these 360 

datasets (Figure 3b), and suggests that branch lengths estimated from these datasets may be 361 

inaccurate because they include pseudoorthologs. 362 

To our knowledge, this is the first evaluation of the effects of including more than just 363 

single-copy families on tests for introgression based on the asymmetry in minor topology 364 

frequencies. We expected that the inclusion of paralogs would not bias such tests, because under 365 

models that include duplication and loss the two minor topologies should occur in equal 366 

frequencies (Smith and Hahn 2021a; Smith and Hahn 2021b). Our results largely confirm these 367 

expectations: although there is variation in whether or not tests are significant across datasets, 368 

estimates of D are very similar (Figure 6B). At some nodes there is consistent evidence for 369 

introgression across datasets, suggesting a strong signal of asymmetry: for example in the 370 

macaques and among the Platyrrhini. Deeper in the tree, there may be more gene tree error (e.g., 371 

due to long-branch attraction), since introgression is detected for some datasets and not for others 372 

(Figure 6B). 373 

Phylogenetics based on whole-genome sequences almost always begins by identifying 374 

homologous genes via clustering. The clustering process operationally defines gene families, 375 

using clustering methods that range from very simple to very complex. While the single-copy 376 
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clusters output by any one of these methods have most often been used in phylogenetics, there is 377 

nothing inherently more suitable about these clusters. First, SCCs may not be orthologs, due to 378 

the presence of pseudoorthologs—paralogs that are mistaken as orthologs due to differential 379 

patterns of gene duplication and loss (Doolittle and Brown 1994; Koonin 2005). In other words, 380 

having only a single representative sequence in each species does not guarantee that all the 381 

sampled genes are orthologs. Second, and more importantly, the size of clusters identified by 382 

clustering approaches is determined by parameters set by the user. For example, in OrthoMCL 383 

(Li 2003) the inflation parameter determines the size of output clusters: by changing this 384 

parameter, users can identify larger or smaller clusters. Because genes are related to all other 385 

genes via a long history of duplication and divergence (with a few exceptions; Knowles and 386 

McLysaght 2009; Zhao et al. 2014), there is no single level of similarity that uniquely identifies 387 

gene families (Demuth and Hahn 2009). However, users can choose the value of the inflation 388 

parameter that identifies more, smaller clusters in order to find more single-copy clusters; this 389 

does not mean these genes do not have paralogs, only that more distant paralogs were not 390 

included at this clustering threshold. Many clustering methods aim to form groups of genes that 391 

descend from a single common ancestor in the studied taxa (e.g., Emms and Kelly 2015), though 392 

this does not ensure a lack of duplication events since the common ancestor. While tree-based 393 

decomposition approaches still rely on the clustering step to initially identify the homologs from 394 

which gene trees are built, their output is directly related to the definitions of orthologs and 395 

paralogs, and is more easily interpreted in a phylogenetic context. By applying these 396 

decomposition approaches to larger clusters, researchers can avoid arbitrary determinants of 397 

which clusters are single-copy and can instead attempt to extract as many sets of orthologs as 398 

possible. Not only does this approach increase the amount of data available, but it also uses 399 

criteria more directly linked to the evolutionary history of gene families. 400 

 In conclusion, our results suggest that methods for species tree inference are accurate 401 

across datasets whether single-copy clusters are used, tree-based decomposition methods are 402 

used to extract orthologs from larger clusters, or all clusters (i.e., orthologs and paralogs) are 403 

included. Our results highlight the benefits of using all gene families by showing that the amount 404 

of data used can be increased by an order of magnitude (Table 1; Figure 2). While even the 405 

smallest dataset was sufficient for accurate species tree inference in this case study, that is not 406 

always the case (e.g., Emms and Kelly 2018; Thomas et al. 2020). Finally, more data facilitates 407 
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inferences beyond species tree topology, including branch length estimates and the detection of 408 

introgression. 409 

 410 

Materials and Methods 411 

Dataset and alignment 412 

The full sets of protein-encoding genes for 26 primates and 3 non-primates were obtained 413 

as in (Vanderpool et al. 2020), and clusters were obtained as in that study. Briefly, an all-by-all 414 

BLASTP search (Altschul et al. 1990; Camacho et al. 2009) was executed, and the longest 415 

isoform of each protein-coding gene from each species was used. Then, the mcl algorithm (Van 416 

Dongen 2000) as implemented in FastOrtho (Wattam et al. 2014) with an inflation parameter of 417 

5 was used to cluster the BLASTP output. CDSs for each cluster that included samples from at 418 

least four species were aligned, cleaned and trimmed as in (Vanderpool et al. 2020). Sequences 419 

were aligned by codon using GUIDANCE2 (Sela et al. 2015) with MAFFT v7.407 (Katoh and 420 

Standley 2013) with 60 bootstrap replicates. Sequence residues with GUIDANCE scores < 0.93 421 

were converted to gaps and sites with >50% gaps were removed using Trimalv1.4rev22 422 

(Capella-Gutiérrez et al. 2009). Alignments shorter than 200 bp and alignments that were 423 

invariant or contained no parsimony informative characters were removed from further analyses. 424 

A subset of alignments that could not be aligned by codon were aligned by nucleotide, and 425 

subsequent steps were as with the codon-aligned dataset. In total 18,484 alignments were used in 426 

downstream analyses. 427 

 428 

Gene tree inference 429 

We inferred gene trees from all alignments with at least four species (18,484 alignments) 430 

in IQ-TREE v2.0.6 (Nguyen et al. 2015) with nucleotide substitution models selected using 431 

ModelFinder (Kalyaanamoorthy et al. 2017) as implemented in IQ-TREE. The full IQ-TREE 432 

command used on each alignment was ‘iqtree2 -s alignment name -m MFP -c 1 -pre alignment 433 

name’. We also inferred gene trees from all 18,484 alignments using the maximum parsimony 434 

criterion in PAUP* v 4.0a (Swofford 2001). We treated gaps as missing data, obtained a starting 435 

tree via random stepwise addition, held a single tree at each step, and used the TBR branch-436 

swapping algorithm with a reconnection limit of 8. We kept a maximum of 1000 trees and did 437 

not collapse zero-length branches.  438 
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 439 

Filtering 440 

We considered three major groups of filtering methods: 441 

1) Single-copy clusters (SCCs): We considered a dataset that consisted only of those clusters 442 

that included a single gene copy from each species.  443 

2) Tree-based decomposition approaches: We considered several methods that involved 444 

trimming branches of gene trees to extract orthologs. All custom branch-cutting operations 445 

were written in python3 and used the python package ete3 (Huerta-Cepas et al. 2016) to read, 446 

traverse, trim, and output gene trees and modified sequence alignments. We used postorder 447 

node traversal when traversing trees, and prior to custom trimming operations, we midpoint-448 

rooted gene trees. 449 

i. Lineage-specific duplicates: In this dataset we identified gene duplications that were 450 

specific to a single species. For such lineage-specific duplicates, we selected the sequence 451 

copy that was closest in length to the median length of sequences in the alignment, kept 452 

that copy, and trimmed the other copy or copies from both the alignment and the gene tree. 453 

ii. Two-lineage duplicates: To expand our data beyond lineage-specific duplicates, in addition 454 

to trimming lineage-specific duplicates, we identified gene duplications specific to a pair of 455 

species. For such duplicates, we selected the two sequence copies with the minimum 456 

branch distance separating them and trimmed the remaining copies from the tree and the 457 

alignment.  458 

iii. Minimum Inclusion: We applied the minimum inclusion (MI) approach described in (Yang 459 

and Smith 2014) to trim gene trees. We used the python script provided by Yang and Smith 460 

(2014; prune_paralogs_MI.py) and used as input one of three sets of gene trees: the original 461 

18,484 gene trees, the original 18,484 gene trees with lineage-specific duplicates trimmed, 462 

and the original 18,484 gene trees with lineage-specific and two-lineage duplicates 463 

trimmed. For the MI approach, branches longer than a specified threshold are trimmed to 464 

remove potential pseudoorthologs; we used the following branch-length cutoffs: 0.4 465 

substitutions per site for the ML gene trees and 500 changes for MP trees. We explored 466 

additional cutoffs in the Supplementary Material (Appendix A). 467 

iv. Monophyletic Outgroups: We also applied the monophyletic outgroups (MO) approach 468 

described in (Yang and Smith 2014) to trim gene trees. We used the python script provided 469 
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by Yang and Smith (2014; prune_paralogs_MO.py) and used as input one of three sets of 470 

gene trees: the original 18,484 gene trees, the original 18,484 gene trees with lineage-471 

specific duplicates trimmed, and the original 18,484 gene trees with lineage-specific and 472 

two-lineage specific duplicates trimmed. 473 

v. Subtree Extraction: Finally, we evaluated a new tree-based decomposition approach 474 

introduced here (subtree extraction; SE). In this approach we start by midpoint-rooting 475 

gene trees, followed by trimming lineage-specific and two-lineage duplicates. We then 476 

extract subtrees with a single representative from each taxon (i.e., subtrees with no 477 

duplicates) and keep those subtrees that meet minimum taxon-sampling thresholds. 478 

3) Paralog methods: We considered two approaches that included paralogs in addition to 479 

orthologs. First, we included all genes (All Paralogs). Additionally, we randomly sampled a 480 

single gene (without regard to orthology) per species (One Paralogs). 481 

 For all datasets, we considered a stringent (minimum of 27 of 29 taxa) and relaxed (minimum of 482 

4 of 29 taxa) missing data threshold. 483 

 484 

Species tree inference 485 

We inferred species trees using six methods. Three methods inferred species trees from 486 

concatenated datasets: maximum parsimony, maximum likelihood, and SVDQuartets. To infer 487 

an MP tree from the concatenated datasets we used PAUP* v4.0a (build 168) (Swofford 2001). 488 

We set the criterion to parsimony, and used 500 bootstrap replicates to assess nodal support. For 489 

all other options we used PAUP* defaults. To infer an ML tree from the concatenated dataset we 490 

used IQ-TREE v2.0.6 (Nguyen et al. 2015) with nucleotide substitution models selected using 491 

ModelFinder (Kalyaanamoorthy et al. 2017) as implemented in IQ-TREE. We used an edge-492 

linked, proportional partition model (Chernomor et al. 2016) and 1000 ultrafast bootstrap 493 

replicates (Hoang et al. 2018). The full IQ-TREE command used on each alignment was ‘iqtree2 494 

-s alignment name -p partition file name -c 1 -pre alignment name -B 1000’. For three 495 

alignments, IQTree v2.0.6 failed to run, and, based on a suggestion from the developers, we 496 

reverted to IQTree v.1.6.12 to infer the species trees for these alignments. For these three 497 

alignments, the full IQ-TREE command used was ‘iqtree -s alignment name -spp partition file 498 

name -pre alignment name -bb 1000 -nt 4’. Finally, to infer a species tree from the concatenated 499 

alignments using SVDQuartets, we used PAUP* v4.0a (build 168) (Swofford 2001).  We 500 
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evaluated all quartets and treated ambiguous sites as missing to infer the species tree topology. 501 

To assess nodal support, we evaluated 10,000 random quartets for each of 100 bootstrap 502 

replicates. We used the multilocus bootstrapping option and again treated ambiguous sites as 503 

missing.  504 

In addition to the three concatenation-based methods, we inferred species trees using 505 

three gene-tree based methods. Prior to inferring species trees or estimating discordance (see 506 

below) from filtered gene trees, we collapsed all zero-length branches. For each gene tree, we did 507 

the following: First, we midpoint-rooted the gene tree. Then, we calculated site concordance 508 

factors using IQ-Tree v2.0.6 (Minh et al. 2020) for the alignment with the rooted gene tree as the 509 

reference tree. We used 100 randomly sampled quartets to compute the sCF, collapsing any 510 

nodes where sN == 0; in other words, any nodes for which no sites were informative.  511 

We inferred a species tree using ASTRAL-III v5.7.3 (Sayyari and Mirarab 2016; Zhang 512 

et al. 2018; Rabiee et al. 2019). ASTRAL infers a species tree from a set of gene trees by 513 

extracting quartets and finding the species tree that maximizes the number of shared quartet 514 

trees. It has been demonstrated to be consistent under the multispecies coalescent (MSC) model 515 

(Mirarab et al. 2014) and under models of gene duplication and loss (Legried et al. 2020). Gene 516 

trees obtained using ML and MP, from all datasets described above, and with zero-length 517 

branches collapsed, were used as input to ASTRAL; local posterior probabilities were used to 518 

assess nodal support. For the All Paralogs dataset, we used the mapping file and treated each 519 

gene copy as a separate individual. Additionally, we inferred species trees using ASTRID v2.2.1 520 

(Vachaspati and Warnow 2015), again using the filtered and zero-length collapsed ML and MP 521 

gene trees as input.  ASTRID is a distance-based approach that estimates species trees using 522 

internode distances and is statistically consistent under the MSC model (Vachaspati and Warnow 523 

2015). As in ASTRAL, for the All Paralogs dataset we treated gene copies from the same species 524 

as individuals using the mapping file. Finally, we inferred species trees from the All Paralogs 525 

datasets using ASTRAL-Pro (Zhang et al. 2020). ASTRAL-Pro uses an internal rooting-and-526 

tagging algorithm to label nodes as duplication or speciation nodes, and then infers quartets 527 

using only speciation nodes before finding the species tree that maximizes the number of shared 528 

quartet trees.  ASTRAL-Pro has been shown to be statistically consistent under a model of gene 529 

duplication and loss (Zhang et al. 2020). 530 

 531 
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Assessing discordance 532 

To assess levels of discordance across datasets we calculated site and gene concordance 533 

factors in IQ-Tree v2.0.6 (Minh et al. 2020). We used as the reference tree the tree shown in 534 

Figure 3, and to estimate sCFs, we used 1000 randomly sampled quartets. gCFs were estimated 535 

for filtered ML and MP gene trees after zero-length branches were collapsed. sCFs were 536 

estimated for the alignments that resulted from filtering the ML gene trees. 537 

 538 

Testing for introgression 539 

We used the approach used in (Vanderpool et al. 2020) to test for introgression. Briefly, 540 

the introgression test assesses whether there is a deviation from the expected equal numbers of 541 

alternative tree topologies (under the MSC model without gene flow) using the statistic D (Huson 542 

et al. 2005), where 543 

 544 

∆=
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝐹1	𝑡𝑟𝑒𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝐹2	𝑡𝑟𝑒𝑒𝑠
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝐹1	𝑡𝑟𝑒𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐷𝐹2	𝑡𝑟𝑒𝑒𝑠 545 

DF1 represents the most common minor topology, and DF2 represents the least common minor 546 

topology. In the absence of introgression, D is expected to be equal to zero. To test whether 547 

deviations from zero were significant, we followed the procedure of (Vanderpool et al. 2020) and 548 

used 2,000 datasets generated by resampling gene trees with replacement, considering only those 549 

nodes where more than five percent of trees were discordant. This distribution was used to 550 

calculate Z-scores and p-values for the observed D statistic, and for each filtered dataset, we 551 

corrected for multiple comparisons using the Dunn-Sidák correction (Dunn 1959; Šidák 1967).  552 

 553 

554 
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(github.com/meganlsmith/Primate_Paralogs). Alignments, gene trees, and species trees are 561 

available from FigShare (doi: 10.6084/m9.figshare.16653025).  562 

563 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.22.461252doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461252
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Tables 564 

 565 

Filter MIN4 MIN27 

Single-copy clusters 5771 1820 

Lineage-specific duplicates (LSD) 13627 7693 

Two-species duplicates (TSD) 14931 8719 

Minimum Inclusion 27880 4849 

Minimum Inclusion (LSD) 22360 11479 

Minimum Inclusion (TSD) 21793 12046 

Monophyletic Outgroups 9724 4805 

Monophyletic Outgroups (LSD) 16962 10222 

Monophyletic Outgroups (TSD) 17104 10254 

Subtree Extraction 20562 12198 

All Paralogs 18484 11555 

One Paralogs 18484 11555 

 566 

Table 1: Number of genes trees included with different filtering approaches. LSD and TSD 567 

indicate when lineage-specific and both lineage-specific and two-lineage specific duplicates were 568 

trimmed; the subtree extraction method trims these automatically. The MIN4 dataset required a 569 

minimum of 4 taxa (out of 29 total), while the MIN27 dataset required a minimum of 27 taxa. 570 

571 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2021. ; https://doi.org/10.1101/2021.09.22.461252doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.22.461252
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Figures 572 

 573 
 574 

Figure 1. Conceptual overview of methods for inferring species trees from genomic data. We 575 

begin with All Genes, clustering them into gene families. We can then use single-copy ortholog 576 

clusters for inference (Dataset 1), use tree-based decomposition approaches to extract orthologs 577 

from all clusters (Dataset 2), or infer species trees from all clusters (i.e., from datasets including 578 

orthologs and paralogs; Dataset 3). 579 
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 580 
Figure 2. Numbers of informative genes and sites across datasets using the MIN27 datasets. A) 581 

The distribution of the number of decisive sites (across branches) as calculated in IQ-Tree. 582 

Decisive sites are defined in Minh et al. (2020). B) The distribution of the number of decisive 583 

gene trees (across branches) as calculated in IQ-Tree. Decisive gene trees are defined in Minh et 584 

al. (2020). SCC=single-copy clusters; LSD=lineage-specific duplicates; TSD=two-species 585 

duplicates; MO=monophyletic outgroup; MI=minimum inclusion; SE=subtree extraction; 586 

ONE=one paralogs.  587 

588 
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 589 
 590 

Figure 3. Gene (gCF) and site (sCF) concordance factors among primate datasets using ML gene 591 

trees (MIN27). A) Primate phylogeny from ASTRAL using the ML gene trees (all input datasets 592 

give the same topology). Nodes show Node ID: gCF values from the SCC dataset. B) 593 

Distribution of gCF values across datasets. C) Distribution of sCF values across datasets. Node 594 

IDs correspond to the numbers displayed on the tree in panel A.  SCC=single-copy clusters; 595 

LSD=lineage-specific duplicates; TSD=two-species duplicates; MO=monophyletic outgroup; 596 

MI=minimum inclusion; SE=subtree extraction; ONE=one paralogs.   597 

598 
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 599 
Figure 4. Alternative resolutions of Platyrrhini relationships. A) The three most common tree 600 

topologies. Below each resolution, inference methods and filtering approaches that supported the 601 

topology are listed. B) The percentage of gene trees supporting Tree 1 minus the percentage of 602 

gene trees supporting Tree 2 for ML and MP gene trees across datasets. C) The percentage of 603 

sites supporting Tree 1 minus the percentage of sites supporting Tree 2 across datasets. 604 

SCC=single-copy clusters; LSD=lineage-specific duplicates; TSD=two-species duplicates; 605 

MO=monophyletic outgroup; MI=minimum inclusion; SE=subtree extraction; ONE=one 606 

paralogs. Results in B and C from MIN27 datasets. 607 
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 609 
Figure 5.  Branch lengths across datasets and species tree inference methods. Site-based branch 610 

lengths estimated using concatenated ML when A) SCCs and B) one randomly selected paralog 611 

per species are used for inference. Note the different scales in panels A and B. C) Difference 612 

between site-based branch lengths for internal branches from the SCC dataset and all other 613 

datasets, normalized by SCC branch length. D) Same as in panel C, but for terminal branches. 614 

Discordance-based branch lengths calculated on the All Paralogs dataset when E) ASTRAL-Pro 615 

and F) ASTRAL are used for inference. Note that terminal branch lengths are arbitrary in these 616 

panels. G) Difference between discordance-based branch lengths estimated with ASTRAL-Pro 617 

(APro) and all other methods, normalized by APro branch length. Colors represent different 618 

filtering methods, and each row is a different branch. SCC=single-copy clusters; LSD=lineage-619 

specific duplicates; TSD=two-species duplicates; MO=monophyletic outgroup; MI=minimum 620 

inclusion; SE=subtree extraction; ONE=one paralogs. Results from MIN27 datasets. 621 
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624 
Figure 6. Results of introgression tests on MIN27 ML gene trees. A) Pie charts are shown for 625 

branches with any significant introgression tests. Numbers are node numbers. B) For all branches 626 

with some significant tests, we show the number of informative genes versus D. Observations are 627 

colored by filtering method, and shapes indicate whether a particular test was significant. 628 

SCC=single-copy clusters; LSD=lineage-specific duplicates; TSD=two-species duplicates; 629 

MO=monophyletic outgroup; MI=minimum inclusion; SE=subtree extraction; ONE=one 630 

paralogs. 631 
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