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Abstract

Polygenic scores link the genotypes of ancient individuals to their phenotypes, which are
often unobservable, offering a tantalizing opportunity to reconstruct complex trait evolution. In
practice, however, interpretation of ancient polygenic scores is subject to numerous assumptions.
For one, the genome-wide association (GWA) studies from which polygenic scores are derived,
can only estimate effect sizes for loci segregating in contemporary populations. Therefore, a
GWA study may not correctly identify all loci relevant to trait variation in the ancient popula-
tion. In addition, the frequencies of trait-associated loci may have changed in the intervening
years. Here, we devise a theoretical framework to quantify the effect of this allelic turnover on
the statistical properties of polygenic scores as functions of population genetic dynamics, trait
architecture, power to detect significant loci, and the age of the ancient sample. We model the
allele frequencies of loci underlying trait variation using the Wright-Fisher diffusion, and employ
the spectral representation of its transition density to find analytical expressions for several er-
ror metrics, including the correlation between an ancient individual’s polygenic score and true
phenotype, referred to as polygenic score accuracy. Our theory also applies to a two-population
scenario and demonstrates that allelic turnover alone may explain a substantial percentage of
the reduced accuracy observed in cross-population predictions, akin to those performed in hu-
man genetics. Finally, we use simulations to explore the effects of recent directional selection,
a bias-inducing process, on the statistics of interest. We find that even in the presence of
bias, weak selection induces minimal deviations from our neutral expectations for the decay
of polygenic score accuracy. By quantifying the limitations of polygenic scores in an explicit
evolutionary context, our work lays the foundation for the development of more sophisticated
statistical procedures to analyze both temporally and geographically resolved polygenic scores.

1 Introduction

Decay in linkage disequilibrium (LD) between tagging and causal sites, population stratification,
variation in allele frequencies within and across populations, and environmental heterogeneity,
among other factors, are all thought to negatively impact the prediction accuracy of polygenic
scores (see e.g. [1, 2, 3, 4, 5, 6, 7], and more recently in humans, e.g. [8, 9, 10, 11, 12, 13]). Many of
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these issues likely influence both within- and out-of-sample predictions; where out-of-sample may
refer to an individual sampled from a distinct time or location relative to that of the GWA study.
While empirical [14, 12] and simulation [1, 15, 13] or combined [16] studies have explored particular
population genetic scenarios or experimental contexts, we still do not know the extent to which
each of these factors compromises prediction accuracy in general.

In this work, we address an issue pertinent to out-of-sample prediction: that causal loci may
have different allele frequencies in the GWA study and focal populations. Variants common in the
GWA study may be rare in the focal population, and vice versa. We refer to this phenomenon
as allelic turnover. Allelic turnover implies that effect estimates ported across space and time, or
both, may not reflect all of the genetic variation relevant to phenotypic variation in an ancient or
geographically distinct population. Allelic turnover further suggests that the statistical properties
of ancient polygenic scores depend on when an ancient individual was sampled—a feature not cur-
rently accounted for in aDNA analyses. Similarly, statistical properties of geographically disparate
polygenic scores depend on the divergence time between GWA study and focal populations. An
understanding of allelic turnover in these contexts may ultimately improve statistical analyses of
temporally (e.g. [17, 18, 19, 20]) and geographically resolved polygenic scores (e.g. [10, 9]), analyses
which are increasingly commonplace.

We aim to quantify the effect of allelic turnover on the polygenic scores of such out-of-sample
individuals when they are computed using effect estimates from a contemporary population. We
expect that increases in ancient sampling time or divergence time will be associated with declines
in polygenic score accuracy due exclusively to allelic turnover. The question is, by how much does
accuracy decline? And, can allelic turnover alone explain the reduced accuracy of out-of-sample
predictions observed in numerous human (e.g. [16, 15]), animal (e.g. [1, 2, 4]) and plant (e.g. [21, 22])
experiments and simulation studies. The answer is likely to depend on the particular population
genetic, trait, and GWA study features of the system under study [3]. We attempt to capture some
important aspects of this diversity in our modeling framework.

Here, we consider a standard implementation of the polygenic score Ŷ which attributes non-
zero effects to a particular set of loci, S. An individual’s polygenic score is a weighted sum of its
genotype, where the weights are the estimated allelic effects. The loci in S and their estimated
effects are usually identified in large-scale GWA studies, often performed in regional biobanks with
sample sizes in the tens to hundreds of thousands of individuals (e.g. the UK Biobank [23], BioBank
Japan [24]). Frequently, the set S includes loci which are approximately independent and surpass
some allele frequency and p-value thresholds. Though there are numerous ways to define a polygenic
score (e.g. [25, 26]), this implementation is commonly used and proves analytically tractable in our
framework.

In contrast to previous quantitative genetic approaches [27, 16], we embed the ancient polygenic
score in an explicit population genetic framework. Our theoretical framework allows us to take into
account changes in allele frequency as well as the statistical constraint imposed by a finite GWA
study sample size. And, distinct from previous approaches to the evolutionary modeling of polygenic
scores [28], we track the frequencies of all loci that potentially contribute to a trait—not just the
loci included in the polygenic score (i.e. loci in S).

Henceforth, we frame our study exclusively in terms of ancient polygenic scores. However, we
formally demonstrate that our theoretical results apply to out-of-space polygenic scores, where
the population divergence time multiplied by two is analogous to the ancient sampling time (see
Supplementary Text S1.1).

We use several statistics to characterize ancient polygenic score error in distinct population ge-
netic and GWA study scenarios. Each statistic is indexed by the ancient sampling time τ : the bias,
bias(τ), mean-squared error, mse(τ), estimated additive genetic variance, V̂A(τ), and polygenic
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score accuracy, ρ2(τ), which approximates the expectation of the squared sample correlation coef-
ficient between polygenic scores and phenotypes in an ancient sample. We derive general forms for
these statistics that are agnostic to almost all of our modeling assumptions, and which provide con-
ceptual insights into the effects of allelic turnover. Next, we derive explicit, parameter-dependent
expressions for each statistic when the trait is neutrally evolving in a population of constant size sub-
ject to recurrent mutation—which for small mutation rates approximates the infinite sites model.
We take advantage of the spectral representation of the transition density function of the Wright-
Fisher diffusion (tdf ) to execute these computations [29, 30, 31, 32]. We then find interpretable
linear approximations for the initial rate of increase (or decrease) of the metrics under study. These
approximations apply for the small ancient sampling times typical of ancient humans remains (e.g.
see [18]).

Consistent with our expectations, mse(τ) increases and the estimated additive genetic vari-
ance V̂A(τ) decreases with increasing sampling age τ . Despite the fact that mse(τ) and V̂A(τ) are
measuring distinct quantities—and indeed have different functional forms—our linear approxima-
tions reveal that, under our assumptions, both statistics initially change at approximately the same
rate. This rate is proportional to the product of the mutation rate and the power to detect trait-
associated loci in the GWA study, which in turn, is influenced by both study size, the magnitude
of the true per-locus effect, and the underlying distribution of the allele frequencies of causal loci.

Moreover, we show that polygenic score accuracy ρ2(τ) is proportional to V̂A(τ), which, as
stated, is sensitive to the GWA study and evolutionary parameters. Unlike V̂A(τ), ρ2(τ) depends
on the trait heritability h2, with larger values of h2 increasing its rate of decay. In contrast, for
small mutation rates, relative accuracy, defined as the ratio of ρ2(τ) to accuracy measured in a
present-day sample ρ2(0), is insensitive to h2, the true per-locus effect size, and the GWA study
parameters, as long as the GWA study size n exceeds some minimum threshold. We show that
this result likely holds for an arbitrary distribution of effects. Importantly, accuracy and relative
accuracy decay considerably over the short time spans characteristic of ancient human samples and
geographically distinct human populations.

With equal probability of detecting positive versus negative effect alleles, and under neutrality,
the bias of the polygenic score is zero for all ancient sampling times. In practice, both of these
conditions are likely violated. For example, detection imbalances have been observed in case-control
GWA studies [33], and many polygenic traits are likely under some form of selection [34, 35].
Unequal thresholds indeed yield a non-zero bias(τ) within our framework. But, the magnitude of
this bias is small, implying that other perturbations would be necessary to explain any observed,
appreciable bias. To relax the neutrality assumption, we simulate recent directional selection. We
find that when the selection coefficient is large enough (4Ns ≥ 1), selection indeed yields biased
polygenic scores. Though this selection-induced bias is several orders of magnitude larger than that
induced by asymmetry in the detection thresholds, it is still small relative to the variance explained
by segregating genetic variants. Additionally, weak selection only induces small deviations from the
neutral theoretical expectations, suggesting that our neutral theory may still accurately capture
accuracy declines in the presence of weak directional selection. Altogether, our theoretical results
suggest that allelic turnover may make large contributions to out-of-sample reductions in accuracy,
even under neutrality.

2 Model and metrics

We consider a scenario in which the focal individual is sampled from the same population in which
the GWA study was performed, but at a previous point in time τ . We specify τ in coalescent time
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units: An ancient sampling time of τ corresponds to 2N · τ generations in the past, with N as the
population size. When τ = 0, the focal individual is an independent sample from the GWA study
population.

We summarize the full model in Figure 1 and detail its constituent parts in the proceeding
subsections. Briefly, the genotype of the ancient individual is sampled conditional on the population
allele frequencies at τ . The ancient individual’s phenotype is then sampled conditional on its
genotype. Population allele frequencies for all loci that potentially affect the trait evolve until
present day, at which point the GWA study is conducted. In particular, the effect sizes included
in the polygenic score model are estimated from the genotypes and phenotypes of n contemporary
individuals. Finally, the ancient polygenic score is computed from the ancient individual’s genotype
and the polygenic score model derived from the results of a contemporary GWA study.

{Xi}ni=1X(τ)

{Yi}ni=1Y (τ)

β̂, ĈŶ (τ)

Z(τ) Z(0)

0τ

time

pop. allele
frequency

sampled
genotypes

phenotypes

estimated
quantities

ancient individual
sampled

GWA study
conducted

Figure 1: A population genetic model for an ancient polygenic score. A graphical model relating the random
variables explicit and implicit in the polygenic score Ŷ (τ) and phenotype Y (τ) of an ancient individual sampled τ
generations in the past. Darkly shaded and thickly bordered nodes are observed quantities. Unshaded and thinly
bordered nodes are unobserved. Lightly shaded nodes bordered by dashed lines denote estimated quantities. Edges
denote direct dependencies between connected nodes. For example, conditional on the ancient genotype X(τ), the
polygenic score Ŷ (τ) is independent of the population allele frequencies Z(τ). Quantities in blue are associated with
the present day only, and include the population allele frequencies Z(0); the genotypes of the n individuals in the
GWA study, {Xi}ni=1 and their phenotypes, {Yi}ni=1; and, the effects and intercept term estimated in the GWA study,
β̂ and Ĉ, respectively.

2.1 Sampling the genotype of a time-indexed individual

We assume that each site is at most bi-allelic, with possible alleles A1 and A2. We denote the
genotype of an individual sampled at some time t (in coalescent units) as Xi`(t), where i indexes
the individual, and ` the locus. For the ancient individual(s), t = τ ; for the participants in the
GWA study, t = 0. For mathematical convenience, we use a symmetric genotype encoding, that is
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Xi`(t) ∈ {−1, 0, 1}, corresponding to genotypes A1A1, A1A2, and A2A2, respectively. Conditional
on the population allele frequency of allele A2 at t, Z`(t), the distribution of Xi`(t) is given by the
Hardy-Weinberg sampling probabilities: P{Xi`(t) = −1|Z`(t) = z} = (1−z)2, P{Xi`(t) = 0|Z`(t) =
z} = 2z(1− z), and P{Xi`(t) = 1|Z`(t) = z} = z2.

2.2 Modeling the true phenotype

The genetic basis of a polygenic trait, Y , is determined by a set L, consisting of L distinct genetic
loci (|L| = L), each with a true per-locus additive effect β` ∈ R (for ` = 1, 2, . . . , L). We further
assume that the L loci contribute linearly to the trait, such that the true phenotype of the i-th
individual sampled at t is specified by the commonly used additive genetic model [36],

Yi(t) = C +
L∑
`=1

Xi`(t)β` + εi(t), (1)

where C is a constant; β` is the true additive effect of locus `; and εi(t) ∼ N (0, σ2
e) is a normally

distributed random variable that incorporates variance in the phenotype due to the environment.
The summation in Equation (1) is often referred to as an individual’s genetic value. A locus `
contributes ±β` to the genetic value (and phenotype) of an individual who is homozygous (at `),
and zero to that of a heterozygous individual. C is thus the phenotype of an hypothetical all
heterozygous individual. Without loss of generality, we set C = 0. In addition, we assume, without
loss of generality, that all β` ≥ 0 such that locus ` contributes −β` to the genetic values of A1A1

individuals and +β` to the genetic values of A2A2 individuals.
A fixed locus, Z`(t) ∈ {0, 1}, will affect the mean phenotype of the population at t by ±β` but

will not contribute to phenotypic variation. We illustrate this fact by conditioning on the allele
frequencies of all loci in L at t, Z(t) ∈ [0, 1]L. Assuming independence between the environmental
and genetic effects, we have,

V [Yi(t)|Z(t)] = 2

L∑
`=1

β2
`Z`(t)[1− Z`(t)] + σ2

e . (2)

The summation in Equation (2) is the additive genetic variance at t, VA(t). For a segregating site,
the summand is proportional to Z`(t)(1 − Z`(t)), with 0 < Z`(t)(1 − Z`(t)) < 1. For a fixed site,
the summand is zero and the site does not contribute to the additive genetic variance VA(t). An
important feature of our model is that some of the L loci may not exhibit genetic variation in the
population at a given time. More concretely, the set of loci with non-zero estimated effects on the
polygenic score, S, may only be a small subset of L. Thus, we assume that L is a superset of S.

2.3 Constructing a model for the polygenic score

As our aim is to isolate the effects of allelic turnover on the statistical properties of polygenic scores,
we make two additional assumptions: (i) the genotyped sites are the causal sites; and (ii) all loci are
in linkage equilibrium. Akin to [37], we employ a simple threshold model for the effect estimates.
For a GWA study consisting of n individuals (and 2n chromosomes),

β̂` :=

{
β` if D` ∈ (d`1, 2n− d`2)

0 else,
(3)
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where D` is the allele count of the trait-increasing allele A2 at the `-th site in the GWA study
sample; and d`1 and d`2 are the site-specific detection thresholds. In this simplified model, the
true effect is estimated perfectly for all sites with allele counts within the intervals (d`1, 2n − d`2)
for ` ∈ L. We allow the two thresholds to differ in order to encompass scenarios in which power
is an asymmetric function of the sample allele frequencies, e.g. there is more power to detect low
frequency (D` < n) versus high frequency (D` > n) trait-increasing alleles. Such situations may
arise with polygenic disease inheritance and imbalanced case and control sample sizes [33]. In
most cases, however, we will consider symmetric detection thresholds, with d`1 = d`2 = d`. The
threshold d` depends on on the phenotypic variance, genome-wide significance threshold, true per-
locus effect β`, and GWA study size n. In Supplementary Text S1.2, we give an explicit form for
this dependency for a continuous focal trait and equal detection thresholds, see Equation (S11).
Varying d` while keeping the GWA sample size fixed is equivalent to varying the true per-locus
effect β`. Varying the GWA study size n while keeping β` and the other parameters fixed is akin to
varying the GWA study’s power to detect loci of a particular effect size. In Section 3, we do both.

The threshold model arises in the large GWA study size n limit for the model of β̂` provided in
Equation (S5). Namely, as long as D` is not too small, the variance of β̂` goes to zero as n grows.
Thus, the threshold model in Equation (3) will necessarily underestimate the true variance of β̂
(Supplementary Text S1.4). Still, this model captures the dependency of β̂` on the GWA study
sample size n and the true per-locus effect β`, while still facilitating our analytical treatment.

In order to compare the polygenic score with an individual’s true phenotype, we need to account
for all sites in the mutational target L, not just those in S, the set of sites with non-zero effect
estimates in the polygenic score. As β̂` = 0 for any site in L but not S, we express the polygenic
score as a function of all loci in L. The ancient polygenic score of individual i sampled τ generations
in the past is then given by,

Ŷi(τ) := Ĉ +
L∑
`=1

Xi`(τ)β̂`, (4)

where Ĉ is the average phenotype of the GWA sample after subtracting the estimated genetic
effects at all loci,

Ĉ := Ȳ −
L∑
`=1

β̂`X̄`, (5)

with Ȳ = 1
n

∑n
j=1 Yj and X̄` = 1

n

∑n
j=1Xj` as the mean phenotype and genotype at locus ` in the

GWA study sample, respectively. Here, and in the remainder of our study, we omit time-indexing
for random variables associated with the GWA study at t = 0. By design, the estimated intercept
Ĉ absorbs the effects of all loci which were not detected as significant in the GWA study, i.e.
those sites for which β̂` = 0. Its presence in the polygenic score of Equation (4) is necessitated
by the fact that, to facilitate our analytical treatment, we did not center nor scale the genotypes
and phenotypes in the GWA study. Importantly, all of our results are independent of this choice
(Supplementary Text S1.5). Henceforth, unless otherwise noted, we refer to Equation (4) as the
polygenic score and to the summation in Equation (4) as the genetic prediction.

2.4 Modeling population genetic dynamics

Population genetic processes govern the correlations between allele frequencies at distinct points
in time. We model this correlation using the Wright-Fisher diffusion with recurrent mutation.
As we assumed all loci were in linkage equilibrium, their allele frequencies evolve forward in time
independently, subject to genetic drift and mutation. At each site, alleles mutate from A1 → A2
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with rate µ, and from A2 → A1 with rate ν. While our results readily generalize to arbitrary µ and
ν, we restrict ourselves to equal mutation rates, µ = ν.

We further assume that the population is at equilibrium. In this setting, the marginal allele
frequencies are beta-distributed, with shape and scale parameters specified by the population-scaled
mutation rate; we denote the latter quantity by a, with a = 4Nµ = 4Nν.

The relative magnitudes of mutation and genetic drift determine which force dominates an allele
frequency trajectory. For example, as a approaches 0, the effects of mutation on the frequencies of
segregating mutations become negligible and genetic drift dominates. In this low mutation regime
(a � 1, or equivalently µ � 1

2N ), the recurrent mutation model approximates the infinite sites
model, while still retaining the features that make it attractive for our analytical treatment. In
particular, the stationary allele frequency distribution is a well-defined probability distribution
under the recurrent mutation model, but not under the infinite sites model. We concern ourselves
almost exclusively with the low mutation regime.

2.5 Quantifying out-of-sample prediction errors

To quantify how well the polygenic score approximates the true phenotype of an individual randomly
sampled from the population τ generations ago, we use several statistics:

Bias. We define the bias as the expectation of the difference between the polygenic score and true
phenotype,

bias(τ) := E
[
Ŷ (τ)− Y (τ)

]
, (6)

where, here and elsewhere, we omit the subscript when there is only one sample. The expectation in
Equation (6) is with respect to the entire random process, encompassing the underlying population
genetic dynamics, estimation of the per-locus effects in the GWA study, and computation of the
ancient polygenic score (illustrated in Figure 1).

Mean-squared error (mse). We define the mse as the expectation of the squared prediction
error,

mse(τ) := E
[(
Ŷ (τ)− Y (τ)

)2
]
. (7)

As in Equation (6), the expectation in Equation (7) is with respect to all sources of randomness in
the model. The mse captures variance in the predictor that exceeds the square of the bias.

Expected estimated additive genetic variance (V̂A). The estimated additive genetic variance
is an estimate of the amount of phenotypic variance in the ancient population explained by additive
genetic effects alone. We use V̂A(τ) to represent the expectation of this quantity,

V̂A(τ) :=

L∑
`=1

V̂A`(τ) = 2

L∑
`=1

E
[
β̂2
` Ẑ`(τ)(1− Ẑ`(τ))

]
, (8)

where Ẑ`(τ) is an estimate of the ancient population allele frequency computed from a sample of
na individuals sampled at τ . The expected true additive genetic variance, E[VA], can be found by
taking the expectation of the summation in Equation (2).

Polygenic score accuracy (ρ2). Practitioners often compute the sample correlation coefficient
r2 to measure the accuracy of a predictor in a sample. Here, our sample is na ancient individuals
sampled from time τ , thus,

r2(τ) :=
Cov[Ŷ (τ),Y (τ)]2

V ar[Ŷ (τ)]V ar[Y (τ)]
, (9)
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where Cov[·, ·] and V ar[·] are the sample covariance and variance operators, respectively, and
Ŷ (τ),Y (τ) ∈ Rna are the na-dimensional vectors of polygenic scores and phenotypes of the ancient
individuals, respectively. Ideally, we would compute the expectation of this quantity—but, this
is challenging within our framework due to the common difficulty of computing an expectation
of a ratio of random variables. Thus, we approximate the expectation of r2(τ) as the ratio of
expectations,

E
[
r2(τ)

]
≈ E[Cov[Ŷ (τ),Y (τ)]]2

E[V ar[Ŷ (τ)]]E[V ar[Y (τ)]]
:= ρ2(τ), (10)

where, as above, the covariance and variances are taken with respect to the sample of na ancient
individuals, while the expectation is over all sources of randomness in Figure 1 (see Supplementary
Text S2.4 for more details). We present simulations in Section 3.4 showing that ρ2(τ) is a good
approximation for the expectation of r2(τ) in the parameter regimes of interest.

3 Analytical Results

By how much does the prediction accuracy of a polygenic score decrease as the time between
sampling the ancient individual and conducting the GWA study increases? To answer this question,
we consider a trait potentially influenced by L genetic loci, each with true effect β` ≥ 0, ` = 1, . . . , L.
The forward evolution of sites underlying this trait is modulated by a per site, per generation
mutation rate, µ, and a population scaled rate of a = 4Nµ. The diploid population of size 2N
chromosomes is assumed to be at equilibrium. The parameters dictating the GWA study are the
sample size n and the detection thresholds specified by d1,d2 ∈ {1, . . . , n}L. The metrics are
indexed by the ancient sampling time τ in coalescent time-units. An ancient sampling time of τ
corresponds to 2N · τ generations in the past. We omit the time index for variables associated with
the GWA study, which occurs at present day (t = 0).

Each subsection is structured as follows: We first derive a general expression for the statistic
that does not depend on how we model the population genetic dynamics nor the GWA study.
Second, we derive an analytical expression for the statistic under the population genetic assumptions
(Section 2.4) and the GWA study threshold model (Section 2.3).

3.1 Bias

We can rewrite the sampling time-dependent bias defined in Equation (6) as,

bias(τ) =

L∑
`=1

bias`(τ) =

L∑
`=1

E
[(
X̄` −X`(τ)

) (
β` − β̂`

)]
, (11)

where bias`(τ) is the contribution of locus ` to bias(τ). From Equation (11), we see that bias`(τ) ≈ 0
when either or both of β̂` ≈ β` and X̄` ≈ X`(τ) are true. Thus, bias`(τ) is minimal when (i) effect
estimates are accurate, and (ii) the allele frequencies have not changed substantially in the interval
[τ, 0].

Under the assumption of equal mutation rates and detection thresholds (d`1 = d`2), bias`(τ) = 0
for τ ≥ 0 for a reason distinct from those stated above (see Supplementary Text S2.1). Trait-
increasing alleles at high frequencies (D` > n) and low frequencies (D` < n) are detected as
significant (β̂` 6= 0) with equal probability. An equivalent assumption is that power is not affected
by whether the most prevalent allele is trait-increasing or decreasing. Subsequent evolution of the
allele frequencies preserves this symmetry and bias(τ) remains equal to zero for all τ .
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However, if we introduce asymmetry in the detection thresholds (d`1 6= d`2), bias(τ) is non-zero
for all τ (Supplementary Text S2.1). Using the spectral representation of the transition density
of the Wright-Fisher diffusion (tdf ), we derive the per-locus contribution to the bias, bias`(τ)
(Supplementary Text S2.1). For a small population-scaled mutation rate a and a large GWA study
size n, we approximate this expression, Equation (S38), as,

bias`(τ) ≈
(
e−aτ − 1

) (
P (d`1) − P (d`2)

)
, (12)

where,

P (d`i) =

d`i−1∑
i=0

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)
(13)

is the probability that the allele count of site ` is less than d`i, i.e. D` < d`i for i = 1, 2; and,
B(·, ·) is the beta function. Thus, the magnitude of bias`(τ) is approximately proportional to the
difference in the probability of detecting high (D` > n) versus low (D` < n) frequency alleles, and
increases exponentially with τ . With a large GWA study size n and a small mutation rate a, this
difference is small relative to the square root of the additive genetic variance—the ratio of these
two quantities is smaller than O(a) (Figure S2a). This is due to the fact that when the mutation
rate is small, most alleles are close to fixation or fixed. The stationary population allele frequency
density κ(z) ∝ za−1(1− z)a−1 behaves like z−1(1− z)−1 for small a. Varying d`i then has relatively
little impact on P (d`i), constraining the difference between the one-sided detection probabilities
(Figure S2).

3.2 Mean-squared error

The sampling time-dependent mean-squared error mse(τ) can be expressed as,

mse(τ) =
L∑
`=1

mse`(τ) +

(
n− 1

n

)
σ2
e =

L∑
`=1

E
[(
X`(τ)− X̄`

)2 (
β̂` − β`

)2
]

+

(
n− 1

n

)
σ2
e , (14)

where σ2
e is the variance in the phenotype due to the environment (Supplementary Text S2.2). Note

the similarity of the left term in Equation (14) to the form of bias(τ) given in Equation (11)—similar
heuristics apply. Under the threshold model specified in Equation (3), sites at moderate frequencies
in the GWA study sample, D` ∈ [d`, 2n − d`], will not contribute to mse(τ) since β̂` = β`. Only
sites with frequencies outside this interval (including sites invariant in the GWA study sample) will
contribute, and their contributions will be proportional to the squared difference between X`(τ)
and X̄`. In practice, moderate frequency loci will also contribute to mse(τ) due to errors in the
estimation of the effect estimates and any difference between the ancient genotypes and the average
genotypes in the GWA study sample (Supplementary Text S1.4).

We use the spectral representation of the tdf (Supplementary Text S1.6) to derive an analytical
expression for mse`(τ), the per-locus contribution to the mse (Supplementary Text S2.2). From
this expression, Equation (S43), we derive a linear approximation for the initial per-locus increase
in this statistic, ∆mse`(τ). With a symmetric detection threshold (d`1 = d`2 = d`) we have,

∆mse`(τ) := mse`(τ)−mse`(0) ≈ 2β2
` aP

(d`)τ, (15)

where mse`(0) is the contribution of site ` to mse(τ) for τ = 0, see Equation (S64); and 2P (d`),
defined in Equation (13), is the probability that the allele count of site ` is outside the detection
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interval and β̂` = 0. Both mse`(0) and P (d`) depend on the mutation rate a, the GWA study size
n, and the detection threshold d`.

∆mse`(τ) reflects the time-dependent contributions of sites not detected in the GWA study. To

see this, we condition on the effect estimate β̂`, mse`(τ) = β2
`E
[
(X`(τ)− X̄`)

2|β̂` = 0
]
· 2P (d`) + 0 ·

(1−2P (d`)). Thus, Equation (15) implies that
dE[(X`(τ)−X̄`)

2|β̂`=0]
dτ ≈ a for small τ , and consequently,

the combined effects of drift and mutation on mse`(τ) are captured in the product of the mutation
rate and sampling time aτ .

In addition, Equation (15) suggests that the rate at whichmse`(τ) increases will be shared across
parameter regimes when aP (d`) is similar (Figure S3a,d). To illustrate this, we use our analytic for-
mula in Equation (S43) to compute mse`(τ) for several low mutation rates, a ∈ {10−4, 10−3, 10−2},
and three GWA study sizes, n ∈ {104, 105, 106} (Figure 2a). These mutation rates and sample sizes
span the range of parameter values appropriate for human data. We depict our results in two ways:
(i) we plot the change in mse`(τ), and (ii) we plot mse`(τ) normalized by the expected additive
genetic variance contributed by a single site. At stationarity the expected additive genetic variance
is constant and equal to,

E [VA`] = E
[
2β2

`Z`(1− Z`)
]

= β2
` (a/(2a+ 1))

for a scaled-mutation rate a. The former plot, Figure 2a, exhibits the functional relationship
revealed by Equation (15), while the latter, Figure 2b, approximates the noise-to-signal ratio. In
Figure S4, we demonstrate that Equation (15) is a good approximation to mse(τ) for τ ≤ 0.2,
particularly when the GWA study size n is large.

To find the GWA study size specific detection thresholds used in Figure 2a-b, we solve Equa-
tion (S11) for a given effect size β, phenotypic variance Vp, and significance threshold α, while
varying the GWA study sample size. For β2 = 0.01, Vp = 1, and α = 10−8, the detection thresh-
olds are d = 4142, 3340, 3290 in order of increasing sample size, which corresponds to sample allele
frequencies of approximately 0.2, 0.02, amd 0.002, respectively. Thus, for a given effect size, larger
sample sizes will lead to the detection of alleles at more extreme allele frequencies, while smaller
samples will restrict detection to alleles at more intermediate frequencies. Due to non-identifiability,
the parameter choices are fairly arbitrary.

We find that for small mutation rates, the cumulative change in the mse, ∆mse`(τ), is mostly
insensitive to differences in the GWA study sample size (Figure 2a,b). The approximation in
Equation (15) helps to explain this result. The rate of increase is approximately proportional to
2aP (d`)τ . For small mutation rates (a� 1) and an arbitrary detection threshold d`, the probability
of not detecting a locus as significantly associated with the trait is roughly 2P (d`) ≈ 1 for all
sufficiently large n (Figure S2b). In this regime, increasing the GWA study sample size only yields
small increases in the probability of detecting a locus as significant. Thus, for small mutation
rates, the product of this quantity with the mutation rate is 2aP (d`) ≈ a, and indeed, we observe
a cumulative increase in mse`(τ) that is O(a) for τ = 1 (Figure 2a). We note that increasing the
GWA study sample size does enable detection of loci with smaller effects.

The result in Figure 2a, however, hides the fact that a small absolute increase in mse(τ) may
correspond to a substantial increase in the noise-to-signal ratio. Indeed, for a = 10−3 (blue lines
throughout), mse`(τ) ultimately exceeds the expected additive genetic variance E[VA`] for all GWA
study sample sizes (Figure 2b). By τ = 0.2, a sampling time characteristic of ancient humans,
mse`(τ) due to allelic turnover is approximately 20% of the additive genetic variance E[VA`]. For
sufficiently large τ , mse`(τ) is at least the same order of magnitude as the expected additive genetic
variance. In addition, while mse`(τ) increases at approximately the same rate irrespective of study
size, its initial value mse`(0) is sample size dependent (Figure 2b and see Figure S3b,e for a larger
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Figure 2: Per locus contributions to the mean-squared error and estimated additive genetic variance
across sample sizes, mutation rates, and detection thresholds. In (a), we plot the per-locus increase in
mse, ∆mse`(τ), normalized by β2, for three mutation rates a = 10−4, 10−3, 10−2 by color, and for the three sample
sizes, n = 104, 105, 106 by shape, respectively. For a squared effect size of β2 = 0.01, each sample size, in part,
specifies a value of d`, with d = 4142, 3340, 3290, or sample allele frequencies of approximately 0.2, 0.02, and 0.002,
in order of increasing sample size. In (b-c), we restrict ourselves to a = 10−3 as the lines for different mutation rates
would otherwise largely coincide. In (b), we plot mse`(τ) normalized by the expected additive genetic variance at
stationarity, E[VA] = β2(a/2a+ 1). In (c), we also fix n = 104 and vary the detection threshold over several orders of
magnitude, d ∈ {10, . . . , 105}, and plot mse`(τ) normalized by the expected additive genetic variance. In (d-f), we
repeat (a-c), but for the statistic V̂A`(τ), with the following exception: because V̂A`(τ) decreases with τ , we plot the
absolute value of its difference from V̂A`(0) in (a). For all plots the ancient sampling time τ ∈ [0, 1], which corresponds
to a time span of 2N generations.

parameter space). Yet, for a given value of d`, reductions in mse`(0) mediated by sample size
diminish once n is large enough (Figure S3b,e).

Further, Figure 2a obscures the fact that different mutation rates may yield similar noise-to-
signal ratios. As discussed, for small a, mse`(τ) increases with τ at a rate that is O(a). For small a,
the additive genetic variance is likewise O(a), yielding a relative increase that is mostly insensitive
to the mutation rate. Normalized mse`(0) is also similar across small mutation rates (Figure S3b,e),
rendering relative mse`(τ) mostly insensitive to a. We thus omitted the other two mutation rates
from Figure 2b.

Lastly, we fix the GWA study sample size at n = 105 and vary the detection threshold d (Fig-
ure 2c). Varying d while keeping n fixed is analogous to varying the true per-locus effect size β,
or keeping β fixed while varying the significance threshold α. The minimum threshold is d = 10,
whereas d = n = 105 maximizes mse`(τ) since β̂` would equal zero for all `. Consistent with our
analysis above, for small a, (i) mse`(0) depends critically on d, while (ii) mse`(τ)’s approximately
linear growth rate is largely insensitive to d. Furthermore, by our previous arguments, relative
mse`(τ) is similar across small mutation rates, and they are also omitted in Figure 2c. For inde-
pendent and identically distributed (iid) loci and σ2

e = 0, the per-locus mse`(τ) values presented
in Figure 2b-c are equal to the corresponding trait-wide statistics mse(τ).
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3.3 Additive genetic variance

The per-locus contribution to the expected estimated additive genetic variance V̂A(τ) is,

V̂A`(τ) = 2E
[
β̂2
` Ẑ`(τ)(1− Ẑ`(τ))

]
= 2

(
2na − 1

2na

)
E
[
β̂2
`Z`(τ)(1− Z`(τ))

]
, (16)

where Ẑ(τ) = 1
2na

∑na
i=1 (Xi(τ) + 1) is the estimated allele frequency at τ , computed in a sample

of size na ancient individuals. When β̂` = 0 or Z`(τ) ∈ {0, 1}, site ` will not contribute to
V̂A(τ). Thus, a site ` has a non-zero contribution to the estimated additive genetic variance only
when it is segregating at both times, the present day and τ . This condition is necessary for both
Ẑ`(τ)(1− Ẑ`(τ)) > 0 and β̂` > 0 to be true.

As with the two previous statistics, we use the spectral representation of the tdf to derive an an-
alytical expression for V̂A(τ) under our population genetic assumptions (Supplementary Text S2.3).
The resulting expression, presented in Equation (S47), indicates that the expected additive genetic
variance decays exponentially. We then, to first order in the ancient sampling time τ , approximate
the initial decrease in the per-locus estimated additive genetic variance ∆V̂A`(τ),

∆V̂A`(τ) := V̂A`(τ)− V̂A`(0) = −2

(
2na − 1

2na

)
β2
` aP

(d`)τ, (17)

where V̂A`(0) is V̂A`(τ) evaluated at τ = 0, see Equation (S65); and 2P (d`), defined in Equation (6), is
the probability that β̂` = 0. The factor due to finite sampling, 2na/(2na−1), is ≈ 1 when the ancient
sample size na is large. Thus, apart from sign, ∆V̂A`(τ) is equal to ∆mse`(τ) of Equation (15).
Therefore, for small τ , V̂A(τ) decreases at approximately the same rate as mse(τ) increases. This
result further suggests that for a � 1 and a large GWA study size n, V̂A`(τ)/E[VA`] ≈ 1 −
mse`(τ)/E[VA`] for small τ (Figure 2c,f). Although, this relationship trivially breaks down for
large τ as mse`(τ) is not bounded by one.

To compare V̂A`(τ) across mutation rates, we mirror our treatment of mse`(τ) in the previous
section. We plot (i) its increase ∆V̂A`(τ) (Figure 2d); (ii) V̂A`(τ) normalized by the expectation
of the true additive genetic variance at stationarity, E[VA`] = β2

` (a/(2a+ 1)) (Figure 2e); and (iii)

normalized V̂A`(τ), varying the detection threshold for a fixed GWA study sample size (Figure 2f).
Akin to mse`(τ), normalized V̂A`(τ) is very similar across small mutation rates. And, while the
GWA study size n and the detection threshold d influence the initial estimated additive genetic
variance V̂A`(0), its rate of change is mostly insensitive to the two GWA study parameters.

As V̂A(τ) largely recapitulates our results for mse(τ), with opposing sign, we focus on their
differences. Indeed, they have different functional forms and behave differently for modest or
large τ (see Equation (S47) and Equation (S43), respectively). Conceptually, this discrepancy is
not unexpected: In the previous section, we showed that a site only contributes to mse(τ) if its
allele count falls outside the detection interval and β̂` = 0. Thus, mse(τ) increases with τ due to
alleles shifting from intermediate frequencies in the ancient population to frequencies outside of
the detection region in the contemporary population. For the expected estimated additive genetic
variance V̂A(τ), the converse is true: The slope represents the decline in V̂A(τ) due to alleles changing
from frequencies near or at fixation in the ancient population to frequencies within the detection
interval in the contemporary population. While our results reveal similar functional behavior for
these two quantities (with opposing signs) that applies for small τ , we caution that statements
about V̂A(τ) do not immediately translate to statements about mse(τ), particularly for τ ' 0.2.
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3.4 Polygenic score accuracy

While our framework, in principle, encompasses a trait with varying effect sizes, we will first
assume that all sites are iid with true effect size β. We find in Supplementary Text S2.4 that our
approximation to the expectation of the sample correlation coefficient simplifies to,

ρ2(τ) =
LβE

[
β̂(X(τ)− X̄(τ))2

]
Lβ2E

[
β̂(X(τ)− X̄(τ))2

]
+ σ2

e

=
E
[
β̂Z`(τ)(1− Z`(τ))

]
/β

E [Z`(τ)(1− Z`(τ))] + σ2
e′
, (18)

where the compound parameter σ2
e′ = σ2

e/Lβ
2 is the environmental variance normalized by the

product of the number of loci in the mutational target L and the squared per-locus effect size
β. By comparing Equation (18) with Equation (16), we can see that ρ2(τ) is closely related to
the estimated additive genetic variance. Thus, like V̂A(τ), ρ2(τ) will decrease with τ due to loci
having changed from frequencies close to zero or one in the ancient population to intermediate
frequencies in the contemporary population. However, unlike V̂A(τ), ρ2(τ) does not depend on the
ancient sample size. Therefore, to relate the two statistics, we multiply by the inverse of the ancient
sample size dependent factor implicit in V̂A(τ),

ρ2(τ) =

(
2na

2na − 1

)
V̂A`(τ)/β2

E [VA`(τ)] /β2 + σ2
e′
. (19)

For σ2
e = 0, barring the sample size factor, Equation (20) is equal to V̂A(τ) normalized by the

expected additive genetic variance. By extension, this quantity approximates the expected sample
correlation coefficient r2(τ). A full derivation of Equation (18) from the definition of r2(τ) is
provided in Supplementary Text S2.4. By invoking our additional population genetic and GWA
study assumptions, we arrive at an approximation for the decrease in polygenic score accuracy,

∆ρ2(τ) := ρ2(τ)− ρ2(0) ≈ − 2aP (d`)τ
a

2a+1 + σ2
e′
. (20)

Now, to relate our theory to empirical and simulation studies, one can compute ρ2(τ) for a given
narrow-sense heritability h2 and mutation rate a pair. We define h2 for a trait with a mutational
target of L loci of equal effects β,

h2 :=
E [VA]

E [VA] + σ2
e

=
a/(2a+ 1)

a/(2a+ 1) + σ2
e′
,

where the equality follows from our population genetic assumptions. Together with a, h2 fully
specifies the compound parameter σ2

e′ with,

σ2
e′ =

(
a

2a+ 1

)(
1− h2

h2

)
.

We plot our analytical expressions for both accuracy (Figure 3a) and relative accuracy (Figure 3b),
defined as the ratio of ρ2(τ) to ρ2(0) for τ ∈ [1, 0] or 2N generations. For humans, this time
span corresponds to approximately 500,000 years in the past, encompassing the “Out-of-Africa”
migration event, which is estimated to have occurred 50,000-100,000 years ago [38]. We set h2 =
0.5 and a = 10−3, and fix the GWA study sample size at n = 105. We then compute ρ2(τ),
varying the detection threshold over several orders of magnitude (Figure 3a-b). Our results for
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Figure 3: Polygenic score accuracy. We plot our theoretical results for both absolute (a, main) and relative
accuracy ρ2(τ) (a, inset) for ancient sampling times τ ∈ [0, 1] (or a time span of 2N generations) with a mutation rate
of a = 10−3. The GWA study size is shared in all plots and is equal n = 105. In (a), we vary the detection threshold
over the range of possible values, d` ∈ {10, . . . 105}. In (b), we compare our theoretical expectations with simulated
estimates of the approximate sample correlation coefficient ρ2(τ) (circles) and the statistic itself r2(τ) (crosses) for
a threshold of d = 104 (a minimum sample allele frequency of 0.05), and two values of heritability, h2 = 0.5, 1 (in
blue and gold, respectively). The ancient sample size is na = 100. In the inset of (b), we normalize the estimates by
their initial (estimated) values. Theoretical expressions for ρ2(τ) are also plotted in (b). Each simulated point is the
average of K = 5000 simulations of L = 5000 iid loci.

ρ2(τ) necessarily recapitulate those of V̂A(τ): While increasing the detection threshold d reduces
accuracy substantially (Figure 3a), it does not have a large impact on relative accuracy for n = 105

(Figure 3b). Indeed, for small mutation rates, the relative accuracy is insensitive to the mutation
rate and threshold, and is well approximated by e−τ , see Equation (S61). Thus, its derivative
is also exponential. Absolute accuracy ρ2(τ) likewise decays exponentially, but its derivative is
scaled by a quantity that reflects features of the GWA study and the phenotypic variance. For a
small mutation rate a� 1, its derivative is approximately 2P (d)(a/(a+ σ2

e′))e
−τ , which, in turn, is

approximately 2P (d)h2e−τ , see Equation (S60). The latter expression suggests that the probability
of not detecting a significant association P (d) and trait heritability h2 are the key determinants of
prediction accuracy. Importantly, ρ2(τ) declines considerably over the interval τ ∈ [1, 0] irrespective
of the detection threshold d.

In addition, we glean from Equation (18) that while heritability affects the magnitude of ρ2(τ)
through the compound parameter σ2

e′ , it does not influence the relative accuracy, consistent with
previous results [16]. Our simulations suggest that this is also true of the sample correlation
coefficient, as our simulated estimates agree extremely well with our theory for ρ2(τ) (Figure 3c-d).
We note that this result is contingent on the fact that the environmental variance σ2

e only enters
our simple threshold model in the specification of the threshold d, see Equation (S11), and does not
contribute directly to the variance of the polygenic score (Supplementary Text S2.4). Therefore, we
expect this result to hold only for large GWA study sample sizes for which the threshold model is a
good approximation to the distribution of β̂. While the finding that relative accuracy is insensitive
to the GWA study parameters relies on the assumption that all loci are iid and share a causal effect
β, we provide preliminary theoretical evidence that our results will hold when β varies across loci
(see Equation (S62) and ensuing comments).
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4 Simulation results for recent directional selection

We use simulations to explore if and how the statistics under study deviate from their neutral
expectations in the presence of recent directional selection. Each copy of the A2 allele at the `-th
site confers a fitness advantage of +s`, and so the fitness ratio of the three possible genotypes
A1A1 : A1A2 : A2A2 is 1 : 1 + s` : 1 + 2s`. In our simulations, the population evolves neutrally
until the onset of selection at N generations (or τs = 0.5 in coalescent time units) before present.
Thereafter, the population evolves according to discrete Wright-Fisher dynamics with selection.

In the presence of selection, the allele frequency distribution is no longer symmetric; rather, it
is skewed toward the beneficial allele. The severity of the skew depends on the selection coefficient
and mutation rate, as well as the amount of time that selection has been acting. As we restrict
s` to positive values, designating the A2 or + allele as beneficial, the allele frequency distribution
will be skewed toward one. Because bias(τ) is proportional to β, its sign will be sensitive to this
choice. The other statistics will not be affected as long as the detection thresholds are symmetric.
Therefore, our results are general up to the sign of bias(τ).

We conduct simulations over a range of selection coefficients, σ = 4Ns ∈ {0, 0.1, 1, 10}, for
a mutation rate of a = 10−3. In addition, we plot results for two different detection thresholds,
d ∈ {103, 104}, in a GWA study sample of size n = 104. More details on the simulation procedures
are provided in Supplementary Text S1.3.

When σ ≥ 1, the polygenic score is biased and positive for τ > 0 for both detection thresholds
(Figure 4a,b). In other words, with directional selection acting to increase the trait value, Ŷ (τ)
tends to overestimate Y (τ). The magnitude of bias`(τ) depends critically on the strength of selec-
tion relative to mutation: We observe a larger bias for σ = 10 relative to σ = 1, and likewise the
bias is larger for σ = 1 relative to σ = 0.1. In fact, the smaller selection coefficient σ = 0.1 is not
distinguishable from the neutral expectations. For 0 ≤ τ < τs, bias`(τ) increases at an accelerating
rate; for τ ≥ τs, bias(τ) appears constant in this parameter regime.

A higher detection threshold decreases the detection probability. Thus, we expect that the
magnitude of bias`(τ) will increase with the detection threshold. Indeed, bias`(τ) is larger and
increases more quickly for the larger detection threshold d = 104 compared to d = 103 (Figure 4a).
Further, our simulations suggest that the detection threshold coupled with the time of the onset
of selection govern the magnitude of the bias for τ > τs. For some large τ , bias`(τ) will reach an
equilibrium value that depends approximately on the asymmetry of the detection thresholds at the
present day, which in turn, depends on both the timing and strength of selection (Supplementary
Text S2.6).

The underlying allele frequency dynamics provide some insight into these patterns. Before the
onset of selection, the allele frequency distribution is stationary and symmetric around 0.5. After
the onset of selection, trait-increasing alleles tend to increase in frequency, skewing the distribution
toward one. Thus, alleles not detected in the GWA study will tend be at higher versus lower
frequencies, yielding E[X̄`|β̂` = 0] > 0 for σ > 0. For large τ , the frequencies of sites not detected
in the GWA study, i.e. with β̂` = 0, may have substantially changed. Each one of these sites will
make a contribution to bias(τ) that is proportional to β`E

[
(X̄` −X`(τ))|β̂` = 0

]
(Equation (11)).

Looking backward in time, the shift in the allele frequency distribution ensures that the conditional
expectation of X`(τ) is smaller than that of X̄`, yielding a positive bias`(τ) for τ > 0. Notably, the
magnitude of bias`(τ) induced by selection is several orders of magnitude larger than that induced
by asymmetry in the detection threshold alone (Figure S2a).

The effects of selection on mse`(τ) are qualitatively consistent with those on bias`(τ) (Fig-
ure 4b). Although, here, the only selection coefficient which induces significant deviations from
neutral expectations is σ = 10. And, mse(τ) is larger for d = 104 compared to d = 103. As with
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Figure 4: Ancient polygenic scores in the presence of genic selection. We conduct K = 5000 simulations,
each with a mutational target of L = 5000 loci, in a population of size 2N = 2 ·103, with a population-scaled mutation
rate, a = 10−3. We consider four selection coefficients, σ = 4Ns ∈ {0, 0.1, 1, 10} (indicated by color). The GWA study
sample size is 2n = 2 · 105, with d equal to either 103 or 104. In (a-d), we plot the various simulated statistics along
with their neutral expectations (solid or dashed black lines). The vertical gray lines indicate the onset of selection
at τs = 0.5 which corresponds to N = 1000 generations. The ancient sample times are τ ∈ [1, 0], corresponding to a
time span of 2N = 2000 generations. We computed, but did not plot, 95% confidence intervals for bias(τ), mse(τ),
and r2, as they largely overlapped with the symbols. We note that the oscillations observed in (a) and (b) are not
statistically significant.

bias(τ), for 0 ≤ τ < τs, mse`(τ) increases at an accelerating rate; before τs (τ ≥ τs), mse`(τ)
appears to increase linearly. Values of σ < 10 do not induce noticeable deviations from neutrality
for the correlation coefficient ρ2(τ) either. However, strong selection (σ = 10) does lead to substan-
tially larger reductions in accuracy relative to our neutral expectations. In addition, for σ = 10,
relative accuracy is sensitive to the detection threshold, with accuracy decreasing faster for the
larger detection threshold.

5 Discussion

In this work, we devised a theoretical framework to quantify the effect of allelic turnover on the error
and accuracy of out-of-sample polygenic scores. Unlike previous theoretical approaches [16, 27],
we averaged over the evolutionary process governing trait evolution, the GWA study from which
a polygenic score model is constructed, and the ancient individual’s genotype and phenotype. In
doing so, we found explicit expressions for several commonly used metrics that depend on the focal
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individual’s sampling time, as well as the parameters governing the population genetic dynamics and
power to detect trait-associated loci in the GWA study. Mathematical properties of the recurrent
mutation model at stationarity enabled us to compute analytical expressions for the metrics of
interest under neutrality, and approximations thereof.

Our analytical expressions suggest that allelic turnover alone may be responsible for large reduc-
tions in accuracy: For small mutation rates, ρ2(τ) (and r2(τ)) decreases substantially within short
time-spans (by about 20 percent in 0.2N generations, corresponding to approximately 120,000 years
in humans), regardless of the detection threshold. Indeed, while the detection threshold influenced
the magnitude of the polygenic score accuracy, relative accuracy was insensitive to this parameter.
In other words, under neutrality, relative accuracy is insensitive to the magnitude of the per-locus
effect and only depends on the underlying allele frequency distribution. Our theory suggests that
this result will hold for arbitrary distributions of the true effect β. Although more work is required
to fully substantiate this claim.

Selection, however, induces a dependency between an allele’s effect and its frequency, and may
thereby render accuracy sensitive to the detection threshold. Our simulations provide preliminary
evidence in support of this claim. For a small mutation rate of a = 4Nµ = 10−3 and a large
per-locus selection coefficient σ = 4Ns = 10, relative accuracy was lower for the larger detection
threshold of d = 104 compared to d = 103. Yet, the difference between detection thresholds was
small relative to that induced by selection, and was negligible for smaller selection coefficients.
Indeed, smaller selection coefficients (σ ≤ 1) did not yield significant deviations from our neutral
expectations for the mse, accuracy, nor relative accuracy. Therefore, excluding strong selection
(σ > 1), our neutral expectations for these statistics appear to be good approximations to their
true values. Our theoretical results thus prove an apt description of temporally-resolved polygenic
scores when polygenic adaptation is achieved by concurrent small frequency changes at numerous
small effect loci—a plausible scenario [34, 28]. In addition, the simple patterns revealed by our
simulations suggest that it may be possible to derive (approximate) analytic expressions for the
given metrics in the presence of strong selection, when loci exhibit selective sweep-like behavior.

It is unclear whether our neutral expectations will hold in the context of more sophisticated
polygenic trait modeling. In our simulation study, as in our theoretical work, we focus on dynamics
at a single locus. Thus, our results are most relevant to scenarios in which single locus dynamics can
be decoupled from the evolution of the mean phenotype and the genetic background [39]. Namely,
the effect of an individual locus must be small relative to the mean phenotype [39, 37]. Future
work will assess polygenic score accuracy under more sophisticated models of polygenic adaptation
(e.g. [37, 40]).

Of the two bias-inducing processes explored, detection threshold asymmetry and directional
selection, the latter induced much larger deviations from our neutral expectation for the bias,
i.e. under neutrality bias(τ) = 0 for all ancient sampling times τ . In the presence of detection
asymmetry, bias(τ) is approximately proportional to the difference between the one-sided detection
probabilities. This difference is constrained by the shape of the stationary allele frequency density.
Under neutrality, and for small mutation rates, most alleles are at very low frequencies or fixed, such
that changing the detection threshold minimally influences the one-sided detection probabilities.
Selection, however, perturbs the underlying allele frequency density. At equilibrium, this density
is proportional to eσzz−1(1 − z)−1 for small a, where σ = 4Ns. Depending on σ, the one-sided
detection probabilities may differ markedly, yielding larger values of bias(τ). We thus suspect that
detection asymmetry has the potential to further exacerbate any bias induced by selection. These
results are interesting in light of those of Chan et al. 2014 [33], who demonstrated that polygenic
disease inheritance under the liability threshold model induced differences in the power to detect
protective versus susceptible alleles. This effect was further increased by imbalances in the case
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and control sample sizes in the GWA study.
Our results clarify relationships between various commonly used metrics of prediction error

and accuracy. For example, we demonstrated an approximate functional relationship between the
mean-squared error mse(τ) and the expected additive genetic variance V̂A(τ) that applies for small
ancient sampling times and mutation rates. This shared initial rate emerged despite fundamental
differences between these statistics: mse(τ) measures error due to variants near or at fixation in the
contemporary sample, which were segregating at intermediate frequencies in the ancient sample.
In contrast, V̂A(τ) measures error due to variants segregating in the contemporary sample, which
were near or at fixation in the ancient sample. This conceptual result does not rely on any of
our population genetic or GWA modeling assumptions, and perhaps could be exploited to learn
about the genetic architecture of quantitative traits from multi-population data. In addition, we
showed formally that polygenic score accuracy ρ2(τ), an approximation to the expectation of the
sample correlation coefficient r2(τ), is proportional to the ratio of V̂A(τ) to the total phenotypic
variance. We believe that these relations, and their evolutionary and GWA study dependent forms,
may facilitate the development of novel, more principled statistical procedures for the analysis of
out-of-sample polygenic scores.

At the same time, the simplifying assumptions underlying our results indicate that significant
challenges remain. Indeed, allelic turnover cannot explain all of the reductions in accuracy observed
in out-of-sample predictions. For example, to achieve the same accuracy reductions observed in both
simulated, e.g. [15] and empirical, e.g. [14, 41, 16], studies of cross-population polygenic scores for
contemporary humans, allelic turnover under neutrality would require population divergence times
that far exceed their estimated values. Differences in linkage disequilibrium between contemporary
human populations may largely explain this discrepancy as most trait-associated loci are likely to
be tagging rather than causal sites [16, 12]. As with geographically distinct populations, if LD
between the genotyped and causal sites differed in the ancient population, then polygenic score
accuracy would suffer [1]. We did not model this effect and assumed that the genotyped site was
the causal site. For small ancient sampling or population divergence times, high marker density
in the GWA study may mitigate accuracy losses due to LD decay, but, more theoretical work is
required to substantiate this claim. While our framework can readily incorporate LD, it is difficult
to obtain analytical results when the genotyped marker is not the causal site. In lieu of theoretical
results, large-scale simulations in simple population genetic scenarios may provide insight into the
relative contributions of LD—which depends on the allele frequencies of the tagging and causal
sites—and allelic turnover to declines in polygenic score accuracy. In addition, we assumed that
per-locus causal effects were shared by the ancient and contemporary samples. Indeed, differences in
causal effects across contemporary populations likely contributes to accuracy reductions [8, 12]. We
conjecture that fluctuations in the per-locus effects would increase mse(τ) and decrease accuracy,
but not profoundly alter our conclusions. Perhaps, if the fluctuations were asymmetric, e.g. effect
sizes tended to increase in time, then bias(τ) may be non-zero under neutrality. Lastly, technical
challenges inherent to the extraction and sequencing of ancient DNA often result in noisy estimates
of the ancient genotypes. This additional source of randomness is likely to reduce accuracy and
increase mse(τ), but otherwise should not substantially alter our conclusions.

Code availability

All of the code developed to produce the figures and simulations in this paper is available in the
github repository: https://github.com/marync/ancient_polygenic.
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