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ABSTRACT  

 

Phenotype transition takes place in many biological processes such as differentiation and 
reprogramming. A fundamental question is how cells coordinate switching of expressions of 
clusters of genes. Through analyzing single cell RNA sequencing data in the framework of 
transition path theory, we studied how such a genome-wide expression program switching 
proceeds in three different cell transition processes. For each process we reconstructed a reaction 
coordinate describing the transition progression, and inferred the gene regulation network (GRN) 
along the reaction coordinate. In all three processes we observed common pattern that the 
effective number and strength of regulation between different communities increase first and 
then decrease. The change accompanies with similar change of the GRN frustration, defined as 
overall confliction between the regulation received by genes and their expression states, and 
GRN heterogeneity. While studies suggest that biological networks are modularized to contain 
perturbation effects locally, our analyses reveal a general principle that during a cell phenotypic 
transition intercommunity interactions increase to concertedly coordinate global gene expression 
reprogramming, and canalize to specific cell phenotype as  Waddington visioned. 

 

 

 

INTRODUCTION 

A lasting topic in science and engineering is how a dynamical system transits from one stable 
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attractor to a new one in a corresponding state space (Hanggi et al, 1990). For example,  a 
substitution reaction in organic chemistry can proceed either through first breaking an existing 
chemical bond to form an intermediate planar structure followed by forming a new bond, termed 
as a SN1 mechanism, or through forming a trigonal bipyramidal intermediate complex where 
breaking of the old bond and formation of the new bond take place concertedly, termed as a SN2 
mechanism (Fig. 1A top) (Morrison & Boyd, 2010). Which mechanism dominates a process is 
determined by both the relative thermodynamic stability of the two intermediate structures, and 
the kinetics of forming them.   

Another example of transitions that attracts increased interest recently is transitions between 
different cell phenotypes, partly due to available genome-wide characterization of the cell gene 
expression state throughout a transition process aided with advances of single cell genomics 
techniques. A cell is a nonlinear dynamical system governed by a complex regulatory network. 
The latter is formed by a large number of interacting genes, and can have multiple stable 
attractors corresponding to different cell phenotypes. Typically a large number of phenotype-
specific genes maintain a specific phenotype through mutual activation while suppressing 
expression of genes corresponding to other exclusive phenotypes. In some sense it resembles a 
spin system segregating into upward and downward domains. When a cell phenotypic transition 
(CPT) takes place, the genes need to switch their expression status, analogous to flipping some 
upward and downward spin domains.  

A question arises as how a CPT proceeds. The transition may be sequential with gene silence 
first to form an intermediate with the initial cell phenotype destabilized without commitment to a 
new phenotype,  followed by activation of other genes to instruct the cell into one specific final 
stable phenotype (similar to the SN1 mechanism). Alternatively gene activation and silence may 
happen concurrently as in the SN2 mechanism,  with hybrid intermediate states co-expressing 
genes corresponding to the two phenotypes. One can vision two qualitatively different 
characteristics of the two mechanisms.  

Testing the two mechanisms requires examining how a genome-wide gene regulatory network 
(GRN) changes during a CPT, for which we exploited a recently developed RNA velocity 
formalism (La Manno et al, 2018). While scRNA-seq data only provide snapshots of cell 
transcriptomic states, RNA velocity analysis makes it possible to extract some dynamical 
information  RNA velocity is a high-dimensional vector that can be inferred from the quantity of 
spliced and un-spliced RNA, and predicts the future state of individual cells on a timescale of 
hours. Using the data we further developed a dynamical model, and analyzed the transition 
dynamics in the framework of reaction rate theories and network science theories. A concerted 
mechanism is supported by characterizations of three CPT processes with a number of statistical 
quantities, notably a conserved pattern of peaked intercommunity interactions at an intermediate 
stage of each transition. 

 

RESULTS 

Dynamical model reconstructed from scRNA-seq data of epithelial-mesenchymal transition 
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We first analyzed a scRNA-seq dataset of epithelial-mesenchymal transition (EMT) of human 
A549 treated with TGF-β (Cook & Vanderhyden, 2020), a total of N = 3003 single cell samples 
measured at several time points (Fig. 1B). During EMT cells change from epithelial to 
mesenchymal phenotypes with increased EMT hallmark gene set score. We selected M = 583 
genes whose variations correlate with the transition direction during EMT to form an M-
dimensional state space (see Materials and Methods for details). Following Qiu et al. (Qiu et al, 
2021), from the RNA velocities we constructed a Markov transition model with an N × N 
transition matrix T  specifying the transition probabilities among the N measured cells using a 
Fokker-Planck kernel (Fig. 1B).  

For rate theory analyses we estimated the kernel density of the day 0 samples using Scikit-learn 
(Pedregosa et al, 2011), and defined the cells whose local densities 0dρ  are in top 100 as within 
the initial state A.  Similarly we estimated the kernel density of the day 3 samples and selected 
those cells whose 3dρ  are in top 100 as within the final state B. We randomly selected pairs of 
cells in state A and the state B, and obtained an ensemble of Dijkstra shortest paths between 
them based on the transition matrix (Fig. 1C). We applied a modified finite temperature string 
method (E et al, 2005; Vanden-Eijnden & Venturoli, 2009; Wang & Xing, 2020) to the 
ensembles of transition paths (see Materials and Methods for details), and obtained an array of 
reaction coordinate (RC, denoted by { }r ) points from the simulated shortest paths (Fig.1d). The 
RC is a central concept in rate theories (Hanggi et al., 1990) that reflects progression of the EMT 
process.  The RC points divide the M-dimensional state space into Voronoi cells, so the value of 
RC of each cell was assigned by the Voronoi cell that it locates in.  

Next, to study how the regulatory network reconfigures along the RC, we need the governing 
dynamical equations of the EMT process. Lamanno et al. showed that from scRNA-seq data one 
can obtain both the single cell expression vectors of the spliced mRNAs{xα} , and estimate the 

instant RNA velocity vectors {vα = (dx / dt)α}  from reads of spliced and unspliced mRNAs, with 
α representing the α-th cell. Qiu et al. (Qiu et al., 2021) further developed a procedure of 
reconstructing the generally nonlinear equations from the data. Here we adopted a simpler linear 
model by assuming the governing equation as v = Fx+ε , with 𝜀 being random white noises, and 
Fij quantifying the regulation of gene j on gene i so the node strength and direction in the 
intracellular gene regulatory network (GRN). The regulation can be direct such as gene j acting 
as a transcription factor on gene i, or indirect mediated through molecular species not resolved 
by the scRNA-seq measurements. We inferred the matrix F, which is in general asymmetric, 
from the data {xα ,vα}with the partial least square regression (PLSR) together with  local false 
discovery rate (LFDR) methods to ensure F is sparse (see Materials and Methods) (Pihur et al, 
2008).  

With F being the same for all cells, the expression states of genes within the GRN may differ 
between different cells. Notice that a prerequisite for gene j acting on i is that gene j is expressed 
in the cell, otherwise the j à i edge is treated as non-existent in this specific cell.  

Reconstructed gene regulatory network reveals increased intercommunity interactions at 
intermediate EMT stage. 
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Similar to the SN1 v.s. SN2 mechanisms, the concerted but not the sequential mechanism 
predicts significantly increased gene-gene interactions. Therefore, to evaluate the two possible 
mechanisms, we calculated the number of effective edges, i.e., edges with nonzero Fij and gene j 
expressed (sj = 1) in the cell, which indeed increases first and then decreases during EMT (Fig. 
EV1A).  

To examine the nature of the increased interactions, we divided the inferred GRN into four 
communities using the Louvain method (Blondel et al, 2008; Traag et al, 2019). Each 
community contains both E and M genes, and the number of effective intra-community edges 
correlates with the number of active genes. We did not observe a universal pattern among the 
four communities on how intracommunity interactions change along the reaction coordinate. 
Actually the number of intracommunity edges for community 0 and 1 have different trends of 
variation,, while the community 2 and 3 have peaked changes (Fig. EV1B). In contrast, the 
number of effective inter-community edges increases first and then decreases (Fig. 1E). For 
visual inspection, we examined intercommunity interaction strengths, defined as the total number 
of effective edges between different communities, at several points along the RC, which clearly 
show strongest intercommunity interactions at r = 10 (Fig. 1F). This variation of intercommunity 
effective edges is not related with the number of genes that are active (Fig. EV1C ). 

Network analyses identify the increase of frustration and network heterogeneity during 
EMT 

In a SN2 mechanism, the increased bond number is due to coexistence of the bonds that are to 
form and break. Analogously, for a concerted mechanism one expects co-expression of genes 
that normally only express in one stable phenotype, leading to confliction on the expression state 
of a gene and the regulation acting on it. To quantify existence of such conflicting interactions, 
with the gene expression binarized as 0 for silence, and 1 for active expression, we defined a 
cell-specific effective matrix, Fij = (2si −1)Fij . Then we defined a frustration value for the 

interaction between a pair of genes (i, j) as fsij = s j sgn Fij( ) , assuming a value 1 (not frustrated), 

0 (no regulation), and -1 (frustrated), and sgn(x) is the usual sign function,  

sgn x( ) =
1  if x > 0 
0  if x = 0 
−1 if x < 0

⎧

⎨
⎪

⎩
⎪

.

 

Furthermore we defined the overall frustration score of a cell-specific GRN as the fraction of 
frustrated edges out of all edges in the whole network of the cell (Tripathi et al, 2020). For EMT, 
the average frustration score along RC increases first and reaches a peak when cells were treated 
with TGF-β for about one day, then decreases (Fig. 1G), consistent with the concerted but not the 
sequential mechanism. We also calculated 

,
ij

i j
H fs= −∑ , 

analogous to the pseudo-Hamiltonian 

of a cell defined by Font-Clos et al (Font-Clos et al, 2018) but with directed regulation,  which 
also shows similar peaked profile along the RC (Fig. EV1D). 
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Gao et al defined three additional quantities to characterize network topological structures (Gao 
et al, 2016). Define vectors of outgoing and ingoing weighted degrees of gene connectivity in the 
network as, dout =1T F ' , and din = F '1 , respectively, with 1 the unit vector 1 = (1, …, 1)T, and  F '  
the Fmatrix excluding the diagonal terms. Network heterogeneity measures how homogenously 
the weighted connections are distributed among the genes, ℋ = 𝜎!"𝜎!"# 𝑑 , with 𝜎!"  and 
𝜎!"# the square roots of variances of the elements of 𝑑!" and 𝑑!"#, respectively. For the EMT 
data the network heterogeneity shows a similar pattern of first increase upon leaving the 
epithelial region, reaching a maximum, then decrease when approaching the mesenchymal 
region (Fig. 1H). 

To rule out the possibility that the observed properties are specific for the Markov model we 
used, we repeated the above analyses with a transition matrix reconstructed from a correlation 
kernel of Bergen et al. (Bergen et al, 2020) The analyses gave similar RC,  and the frustration 
score as well as the number of effective edges (Fig. EV2A-C) change along the RC similarly as 
observed with the model obtained using that of Qiu et al. 

In total, several lines of evidence support that EMT proceeds through a concerted mechanism. 
Indeed, both in vivo and invitro studies have identified intermediate states of EMT that have co-
expressed epithelial and mesenchymal genes (Pastushenko et al, 2018; Zhang et al, 2014). A 
schematic summary of the concerted mechanism is shown in Fig. 1I. Co-expression of 
conflicting genes leads to increased intercommunity edges, and frustrated edges. Some of the 
genes transiently act as hub genes, which lead to increased network heterogeneity.   

Reconstructed gene regulatory network reveals similar concerted mechanism in two 
additional developmental systems. 

To investigate whether the concerted mechanism is general for CPTs, we performed the same 
analyses on two additional CPT scRNA-seq datasets. One is on development of pancreatic 
endocrine cells (Bastidas-Ponce et al, 2019). During embryonic development Ngn3-low 
progenitors first transform into Ngn3-high precursors then Fev-high cells. The latter further 
develop into endocrine cells, specifically glucagon producing α-cells that we focus on here (Fig. 
2A). A calculated RC characterizes this transition process (Fig. EV3A). The number of effective 
inter-community edges increases first and then decreases while low Ngn3 expression cells transit 
into α-cells (Fig. 2B &2C). The number of effective edges shows similar trend (Fig. EV3B). 

The cells in state A and B were selected from Ngn3-low progenitors and glucagon producing α-
cells, respectively. Along the RC, the peak of the average frustration score locates at the cell 
population with high Ngn3 expression (Fig. 2D). The network heterogeneity and the pseudo-
Hamiltonian value show a trend similar to the frustration score (Fig. 2E and Fig. EV3C).  

Another system is on development of the granule cell lineage in dentate gyrus, where radial glia-
like cells differentiate through nIPCs, Neuroblast 1 and 2, immature granule cells, and eventually 
into mature granule cells (Fig. 2F & Fig. EV4A) (Hochgerner et al, 2018).  The number of 
effective inter-community edges increases first and then decreases when low radial glia like cells 
transit into mature granule cells (Fig.2G &2H). The number of effective edges shows a similar 
trend (Fig. EV4B). 
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Along the calculated RC, the neuroblast has the highest frustration score (Fig. 2I). The network 
heterogeneity and the pseudo-Hamiltonian value again exhibits dynamics similar to the 
frustration score (Fig. 2J and Fig. EV4C). Therefore the dynamical properties of the two 
processes are consistent with the concerted mechanism. 

 

DISCUSSIONS 

The idea of relating CPTs and chemical reactions has been discussed in the literature (Moris et 
al, 2016). Here we presented a procedure of reconstructing the RC of a CPT process from 
scRNA-seq data. A related concept is the transition state. In chemical reactions it typically refers 
to short-lived intermediates or a state of maximal potential energy along the RC. It is tempting to 
identify the intermediate state with highest frustration as the “transition state”, while it is unclear 
whether it is indeed a dynamical bottleneck of the associated CPT process. 

The observed common pattern of transiently peaked intercommunity interactions provides a new 
angle to examine the structure-function relation of a biological network. Previous theoretical and 
experimental studies have shown that a biological network is generally modularized with dense 
intracommunity interactions and sparse intercommunity interactions, which helps insulating 
perturbations in one community from propagating globally and increases functional robustness 
of each module (Gardner & Ashby, 1970; Gilarranz Luis et al, 2017; May, 1972). The observed 
pattern supports that intercommunity interactions of a GRN are indeed minimized at stable 
phenotypes. During a CPT, a cell needs to escape a stable phenotype, and the increased 
intercommunity interactions help on coordinating gene expression profile change among 
communities. The decreased modularity is consistent with a critical state transition mechanism 
(Mojtahedi et al, 2016) that individual components become more connected and correlated, as 
what observed near the critical point of a phase transition. 

In the two developmental processes the frustration score of initial state A is higher than that of 
final state B. Notice that the initial states are stem-like cells, Ngn3-low progenitors and radial 
glia-like cells, respectively. The EMT process seems to be different with the final mesenchymal 
state being less frustrated than the initial epithelial state. However, EMT is generally regarded as 
a dedifferentiation process. Therefore the results of all three datasets suggest that frustration 
decreases with differentiation. Gulati et al. identified single-cell transcriptional diversity as a 
hallmark of developmental potential (Gulati et al, 2020). It remains to examine whether 
frustration provides an alternative and complementary measure on developmental potential. 

In summary, in this work through analyzing scRNA-seq data of CPTs in the context of 
dynamical systems theory we identify that many CPTs may share a common concerted 
mechanism. This conclusion is also supported by an increasing number of studies on various 
CPT processes reporting existence of intermediate hybrid phenotypes that have co-expression of 
marker genes of both the initial and final phenotypes such as the partial EMT state (Zhang et al., 
2014). Notice that a cell typically has multiple target phenotypes to choose, functionally the 
concerted mechanism may allow canalized transition for directing the cells to transit to a specific 
target phenotype, as visioned by the developmentalist C. H. Waddington (Waddington, 1942).  
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MATERIALS AND METHODS 

1. Data sets 

The scRNA-seq data of EMT, development of pancreatic endocrine cells, development of 
granule cell lineage were obtained from the GEO website with GEO number GSE121861 (Cook 
& Vanderhyden, 2020), GSE132188 (Bastidas-Ponce et al., 2019), and GSE95753 (Hochgerner 
et al., 2018), respectively. 

2 Gene selection 

We focused on genes showing switch-like behavior during the phenotype transition. For the 
EMT dataset, first we selected high-expression genes across the whole dataset. To avoid 
selection bias, we selected high-expression genes in 0 d, 8 h, 1 d and 3 d, separately. The 
filtering criterion is based on minimum number of counts and minimum number of cells, two 
parameters in scVelo. We set the minimum number of counts to be 20, and  minimum number of 
cells to be 5% of the number of cells of the corresponding cell group. The gene set is the union 
set of these selected genes, excluding genes unrelated to the transition process (see below for the 
filtering procedure). A total of the top 2000 high-expression genes of the whole dataset was 
selected for subsequent analyses.  

For the pancreatic endocrinogenesis dataset, cells have been grouped into four types, and we first 
selected genes for each type separately, then combined them to select the top 2000 high-
expression genes of the whole dataset, excluding genes not related to the transition processes. 
We set the minimum number of counts to be 20 and minimum number of cells to be 10% of the 
number of cells of the corresponding cell type.   

For the Dentate gyrus neurogenesis dataset, cells have been grouped into seven types. We used 
the same parameters as for the pancreatic endocrinogenesis dataset.   

To filter out genes that are not related to a transition process under study, we used a number of 
regression methods including f-regression and mutual information regression (Pedregosa et al., 
2011). The regression targets were set as the sample time (for the EMT dataset) or the cell types 
(for the other two sets) along the transition direction of the CPT processes. For the EMT process, 
the sample time of 0 day, 8 hour, 1 day and 3 day were assigned values of 0, 1, 2, and 3, 
respectively. For the development of pancreatic endocrine cells, the regression target values of 
Ngn3-low progenitors, Ngn3-high precursors, Fev-high cells and glucagon producing α-cells 
were set as 0, 1, 2, and 3, respectively. For development of granule cell lineage in dentate gyrus, 
the regression target values of radial glia-like cells, nIPCs, Neuroblast 1, Neuroblast 2, immature 
granule cells 1, immature granule cells 2, and mature granule cells are set as 0, 1, 2, 3, 4, 5 and 6, 
respectively. The values of f-regression and mutual information were normalized by the 
maximum value of each gene. If a gene’s f-regression score is larger than the threshold fh  or 
mutual information is larger than the threshold mh , it was chosen for later analysis. For EMT 
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process, we set fh  = 0.1, and mh  = 0.15. For the other two processes, we set fh  = 0.1, and mh  = 
0.5. 

To binarize the expression state of a selected gene within one cell, we use the Kmeans method to 
determine its ON and OFF state by grouping cells into two clusters based on the expression value 
of the gene.  

3 Path analysis from single cell RNA velocity analysis  

With scRNA-seq velocity analysis, we reconstructed the velocity graph of the whole cell 
population, which is a transition matrix between all pairs of the cells. Each cell is treated as a 
node in this network. The distance between different cells is −𝑙𝑜𝑔 𝑃!" , where 𝑃!" is the transition 
probability between cells. Here we added one constrain in the velocity graph that only the 
transition between the cells that their sample time points are successive or they have the same 
sample time. We also took the cell density at each sample time point into consideration. The 
density of each single cell 𝜌! (normalized by the maimum) at its sample time was evaluated by 
kernel density estimation. The transition from cell 𝑖 to cell 𝑗 is penalized by the relative cell 
density of cell 𝑗 . The distance from cell 𝑖  to cell 𝑗  with penalty is 
−𝑙𝑜𝑔 𝑃!"×(1+ 5 ∗ exp − 𝜌! − 𝑟 ).  For EMT, we used r = 0.5, while for the other two 
datasets we used r = 0.8. A single cell trajectories is more likely to pass the high-density region 
of each sample time. A total of 100 cell pairs (𝑐! , 𝑐!) were randomly selected from high density 
regions in the first and last sample populations. The shortest paths between the cell pairs were 
calculated with Dijkstra's algorithm. These shortest paths are the probable single cell trajectories 
in the phenotype transition.  

4  Procedure for determining a RC 

We follow a procedure adapted from what used in the finite temperature string method for 
numerical searching of RC and non-equilibrium umbrella sampling (Dickson et al, 2009; 
Vanden-Eijnden & Venturoli, 2009). 

a) Identify the starting and ending points of the reaction path as the means of data points in 
the state A and state B, respectively. The two points are fixed in the remaining iterations. 
b) Construct an initial guess of the reaction path that connects the two ending points in the 
feature space through linear interpolation. Discretize the path with N (= 15) points (called 
images, and the kth image denoted as 𝑟! with corresponding coordinate X(rk)) uniformly spaced 
in arc length. 
c) For a given trial RC, divide the multi-dimensional state space by a set of Voronoi 
polyhedra containing individual images, and calculate the score function,  

2

, , ,|k u t u t k k u
k u t k u

F s X X s w d= − ∈ +∑∑∑ ∑∑ , where 	 ,u tX
α
 stands for the points on simulated 

trajectory u  at step tα that reside within the kth polyhedron (containing image point sk); dk,u is the 
distance between image sk and trajectory u, defined as the distance between each image on the 

path to the closest point on the trajectory, 2
,

2
2
, ,argmin
argmin

k u t
k u k u r X
d r X

−
= − ; w is a parameter 
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that specifies the relative weights between the two terms in the right hand of the expression, here 
we use 2. 
d)  Carry out the minimization procedure through an iterative process. For a given trial path 
defined by the set of image points, we calculate a set of average points using the following 

equations, ( )
{ } 2

,
, , ,argmin
|

1
k u t

u t u t k u r X
u t u

k

X X r w X
X r

w
−

∈ +
=

+

∑∑ ∑
. Next we update the continuous 

reaction path through cubic spline interpolation of the average positions (Jones et al, 2001), and 
generated a new set of N images  ( ){ }kX r that are uniformly distributed along the new reaction 

path. We set a smooth factor, i.e., the upper limit of ( ) ( )( )
1

N

k k
k

X r X r
=

−∑ , as 1 for calculating the 

RC.  
e) Iterate the whole process in step 3 until there was no further change of Voronoi 
polyhedron assignments of the data points. 

5 Network inference  

We adopted a partial linear square regression (PLSR) method to infer the gene regulation 
networks. We used the velocity vector of each single cell 𝑑𝒙/𝑑𝑡 and the level of spliced mRNA 
𝒙 for inferring the GRN with the PLSR method, 𝑑𝒙/𝑑𝑡 = 𝑭𝒙+ 𝑒𝑟𝑟𝑜𝑟, where 𝑭 is a constant 
and generally asymmetric matrix describing gene regulation strength. Regression methods are 
widely used in network inference, and among which the PLSR has several advantages. First, it 
can be used when the number of features is larger than the number of samples. In the scRNA 
dataset, the number of genes is often comparable to or larger than the number of cells. Second, it 
can avoid over-fitting because it uses major components for regression. However, the regulation 
relation 𝐹 obtained from PLSR is typically a dense matrix, while most GRNs are sparse. To 
generate a sparse network, we further adopt the method of local false discover rate (LFDR) to 
select those regulation relations that are statistically significant. This procedure ensures the GRN 
is sparse (Pihur et al., 2008). Since cells within each Voronoi cell can scatter dispersively in the 
orthogonal space, we select only cells close to the RC for infering the F matrix. That is, among 
cells within each Voronoi cell, we selected the k-nearest-neighboring (KNN) cells of the 
corresponding RC point. Such cells from all Voronoi cells collectively form the set for F matrix 
inference. We performed the inference using scikit-learn (Pedregosa et al., 2011) by maximizing 
the covariance between 𝒙 and  𝑑𝒙/𝑑𝑡 in the PLSR method. The value of components was set to 
be 2 and data were standardize . In LFDR, the null hypothesis 0H  assumes that ,i jF , which is 

regulation from gene j to gene i, is 0. An interaction is identified as nonzero when ( ),i jfdr F q< , 

where ( ),i jfdr F  is the false discover rate and q  is the threshold (Efron, 2007). The following R 
package was used for calculation (https://rdrr.io/cran/locfdr/), with a central matching 
estimation method. The degrees of freedom was set as 10 in all calculations, and  q was set as 
0.1. 

 

Code availability: A python notebook is included in the package dynamo. 
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Figure captions 

 

Figure 1 Dynamical systems theory analyses of scRNA-seq data of A549 cells undergoing TGF-β -
induced epithelial-to-mesenchymal transition reveal a concerted transition mechanism.  
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(A) Competing mechanisms for substitution reactions. SN1 and SN2 mechanisms for chemical reactions. 
The nodes and edges represent chemical groups and chemical bonds, respectively.  

(B) scRNA-seq data and RNA velocity-based transition graph shown in the cell expression state space 
(shown in the 2D leading PCA space). Each dot represents a cell, and each edge between two dots 
indicates a transition between cell states corresponding to the two cells.  

(C)Dijkstra shortest path sampled on the transition graph, illustrated in the 2D leading PCA space. Each 
path is a single cell trajectory (labeled with cyan triangle) that starts from the epithelial state (labeled 
with magenta star) and transit into the mesenchymal state (labeled with lime cross).  

(D) 1-D Reaction coordinate (RC) reconstructed from the Dijkstra shortest paths using a revised finite 
temperature string method. The colored dots represent the RC points (start from blue and ends in red). 
The cyan dots are cells close to the RC to form a reaction tube, i.e., cells within each Voronoi cell that 
are k-nearest-neighbors of the corresponding RC point. These cells were used to infer the F matrix in the 
gene space. 

(E) Cell-specific network structure characterization with the number of effective intercommunity edges in 
the GRN of EMT. Each dot represents a cell. 

(F) Evolution of the number of effective intercommunity edges along the RCs during EMT. Each node 
represents a community (with the size of the node standing for the number of genes in the community). 
The width of an edge represents the number of effective edges. Arrow represents direction of regulation. 

(G) Frustration score along the RC of EMT. The mean and variance at each RC point were calculated 
using all cells within the reaction tube (cyan dots) and the corresponding Voronoi cell. 

(H) Cell-specific network structure characterization of GRN heterogeneity. 

(I) Schematic of the concerted mechanism for a cell phenotypic transition. Filled circles represent active 
genes. Empty circles represent silent genes. Colors represent marker genes of different cell states. The 
dash-line boxes represent communities. 
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Figure 2 Analyses on pancreatic endocrinogenesis and dentate gyrus neurogenesis 

(A) Transition graph of pancreatic endocrinogenesis based on RNA velocity. 

(B) Cell-specific variation of effective intercommunity regulation in endocrine cell development. Colors 
represent the number of effective intercommunity edges within each cell in the GRN. Arrow represents the 
direction of development. 

(C) Evolution of the number of effective intercommunity edges along the RC during pancreatic 
endocrinogenesis. Each node represents a community (with the size of the node standing for the number 
of genes in the community). The width of an edge represents the number of effective edges between two 
communities. 

(D) Frustration score along the RC in endocrine cell development.   

(E) Cell-specific variation of heterogeneity in endocrine cell development. 

(F)-(J) Same as in panel (a)-(e), respectively, except for the granule cell lineage development in dentate 
gyrus neurogenesis dataset. 
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Expanded View figure captions 

 

Figure EV1 Additional results on transition path analyses of the EMT dataset. 

(A) Cell-specific network structure characterization with the number effective regulation edges by color. 
Each dot represents a cell. 
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(B) Cell-specific network structure characterization with the number effective regulation edges inside 
each community by color. Each dot represents a cell. 

(C) Cell-specific characterization with the total number of effective genes by color. Each dot represents a 
cell. 

(D) Pseudo Hamilton values along the RC. 
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Figure EV2 Analysis of the EMT dataset with the package scvelo. 

(A) The RC calculated from the Dijkstra shortest paths. The colored dots represent the RC points (start 
from blue and ends in red). Each grey dot represents a cell. 
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(B) Variation of effective inter-community regulation edges in the GRN in the processes of EMT. Colors 
represent  the number of effective inter-community regulation edges in individual cells. 

(C) Frustration score along the RC of EMT. 

 

 

Figure EV3 Transition path analyses of the pancreatic development dataset. 

(A) Voronoi cells defined by an array of points equally distributed along the RC divide the expression 
space of pancreatic endocrinogenesis into different regions. The colored dots represent the RC points 
(start from blue and ends in red). Each grey dot represents a cell. 

(B) Cell-specific network structure characterization with the number of effective regulation edges by 
color. Each dot represents a cell. 

(C) Pesudo-Hamiltonian values along the RC. 
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Figure EV4 Transition path analyses of the dentate gyrus neurogenesis dataset. 

(A) Voronoi cells defined by an array of points equally distributed along the RC divide the expression 
space of dentate gyrus neurogenesis into different regions. The colored dots represent the RC points 
(start from blue and ends in red). Each grey dot represents a cell. 
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(B) Cell-specific network structure characterization with the number of effective regulation edges by 
color. Each dot represents a cell. 

(C) Pesudo-Hamiltonian values along the RC. 
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