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Abstract 9 

Rhythmic neural activity, so called oscillations, play a key role for neural information transmission, 10 

processing and storage. Neural oscillations in distinct frequency bands are central to physiological 11 

brain function and alterations thereof have been associated with several neurological and psychiatric 12 

disorders. The most common methods to analyse neural oscillations, e.g. short-term Fourier transform 13 

or wavelet analysis, assume that measured neural activity is composed of a series of symmetric 14 

prototypical waveforms, e.g. sinusoids. However, usually the models generating the signal, including  15 

waveform shapes of experimentally measured neural activity are unknown. Decomposing asymmetric 16 

waveforms of nonlinear origin using these classic methods may result in spurious harmonics visible in 17 

the estimated frequency spectra. Here, we introduce a new method for capturing rhythmic brain 18 

activity based on recurrences of similar states in phase-space. This method allows for a time-resolved 19 

estimation of amplitude fluctuations of recurrent activity irrespective of or specific to waveform-20 

shapes. The algorithm is derived from the well-established field of recurrence analysis, which has rarely 21 

been adopted in neuroscience. In this paper, we show its advantages and limitations in comparison to 22 

short-time Fourier transform and wavelet convolution using periodic signals of different waveform 23 

shapes. Further, we demonstrate its application using experimental data, i.e. intracranial 24 

electrophysiological recordings from the human motor cortex of one epilepsy patient. 25 

 26 

Keywords: oscillations, waveform, recurrence analysis, nonlinear time series analysis, wavelet, 27 
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Introduction 29 

 30 

During the last two decades, neural oscillations have gained increasing attention as a fundamental 31 

mechanism of neural communication (Buehlmann and Deco 2010; Agostina Palmigiano et al. 2017). 32 

Neural oscillations are defined as temporally recurring patterns of neuronal activity, also referred to 33 

as periodic and rhythmic activity. Oscillations mainly represent synchronized input to neural ensembles 34 

consisting of thousands of cells (Buzsáki and Draguhn 2004). The spatial specificity of recorded activity 35 

mainly depends on the measurement device used, with e.g. surface electrocorticography covering a 36 

much broader scale than e.g. invasive local field potential recordings (LFPs). Classically, oscillatory 37 

activity in the human brain is subdivided into five frequency bands: delta (<4 Hz), theta (4-8 Hz), alpha 38 

(8-13 Hz), beta (13-30 Hz) and gamma (>30 Hz) (Buzsáki and Draguhn 2004). A wide range of 39 

physiological processes in the animal and human brain is associated with fluctuations of oscillations in 40 

distinct frequency bands, e.g. such as deep sleep (delta oscillations, Amzica and Steriade 1998), long-41 

term memory and inhibitory top-down control (theta oscillations, Oehrn 2018), attention and local 42 

inhibition (alpha oscillations, Bollimunta et al. 2011) and motor control (beta oscillations, Engel and 43 

Fries 2010). Further, alterations in distinct frequency bands occur in neurological and psychiatric 44 

diseases, e.g. changes in beta band activity during Parkinson’s disease (Hemptinne et al. 2013; Kühn et 45 

al. 2006; Little and Brown 2014) and theta activity during essential tremor (Pedrosa et al. 2012; 46 

Schnitzler et al. 2009).  Nowadays, neuroscientists commonly use wavelet analysis for the 47 

quantification of oscillatory activity (Hramov et al. 2015; van Vugt et al. 2007) and Fourier-based 48 

analysis tools, such as multitapering or short time Fourier transformation (van Drongelen 2018). While 49 

being computational efficient, these methods have certain limitations that one needs to consider 50 

during interpretation.  Classical Fourier and wavelet analysis usually implicitly assume that the 51 

analysed signal is a superposition, i.e. summation of stationary sinusoidal or wavelet shaped 52 

components. However, Fourier transformation of a non-periodic or non-sinusoidal signal may be 53 

difficult to interpret. While it is theoretically possible to deconstruct any non-periodic signal into a 54 

series of infinite sinusoidals using the Fourier transform, one has to be careful not to over interpret 55 
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frequency components which arise due to the decomposition of a non-periodic non-sinusoidal signal 56 

into periodic sinusoidals (Lozano-Soldevilla et al. 2016; Gebber et al. 1999). Thus, the question arises 57 

which frequency components do indeed carry meaningful information, and which are redundant or 58 

even artificial.  59 

The rationale behind using Fourier-based methods is the basic assumption, that most 60 

electrophysiologically recorded data, e.g. from electroencephalography (EEG) or LFPs, represent the 61 

summed activity of large neuronal populations (Franaszczuk and Blinowska 1985; Buzsáki and Draguhn 62 

2004). However, despite few attempts at data-driven modelling of  specific waveforms (Sherman et al. 63 

2016; Lewis et al. 2012) most often the signal generating mechanisms and models and the prototypical 64 

waveform shapes of neuronal activity are unknown (Cole and Voytek 2017). In recent years, waveform 65 

shapes have gained increasing interest in the neuroscientific community (for reviews see Jones 2016 66 

and Cole and Voytek 2017). Several studies revealed stereotypical variants of classic frequency bands 67 

which deviated from the sinusoidal waveform shape, e.g. the sensorimotor “mu rhythm” which is a 68 

variation of an alpha wave (Arroyo et al. 1993; Debnath et al. 2019; Muthukumaraswamy et al. 2004; 69 

Tiihonen et al. 1989) or motor cortical beta activity with a saw tooth shape (Cole et al. 2017). This non-70 

sinusoidal rhythmic activity is functionally relevant. In Parkinson’s disease, asymmetric beta waves 71 

have been associated with the pathological state and shown to become more symmetric with 72 

successful treatment i.e. deep brain stimulation (Cole et al. 2017).  While waveform shape is 73 

increasingly recognized to carry meaningful physiological information, there is still a lack of tools which 74 

specifically quantify non-sinusoidal activity. While recently, algorithms to characterize waveform 75 

shapes have been proposed, methods to incorporate non-sinusoidal activity into frequency analysis 76 

are still lacking (Cole et al. 2017; Pullon et al. 2019; Escobar Sanabria et al. 2017). Using classic 77 

approaches like Fourier analysis on asymmetric signals leads to the generation of harmonics in the 78 

respective spectra, which can be falsely interpreted as meaningful physiological or pathological 79 

activity. This is particularly true for measures of coupling, e.g. phase-amplitude coupling  where non-80 

sinusoidal signals may lead to spurious results (Lozano-Soldevilla et al. 2016; Yeh et al. 2016).  81 
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Here, we introduce a parsimonious way to analyse rhythmic activity that is not based on assumptions 82 

regarding waveform shapes. In this approach, we quantify recurrences of similar dynamic states ,based 83 

on the established framework of recurrence analysis (Webber and Marwan 2015). We derive a new 84 

algorithm for the estimation of a time-resolved recurrence amplitude spectrum and demonstrate its 85 

advantages and limitations in comparison to classic approaches, in particular in regard to non-86 

sinusoidal signals. For this purpose, we use artificial data with known ground truth, as well as real 87 

intracranial brain recordings from the human motor cortex of one epilepsy patient.  88 

 89 

Methods 90 

 91 

1. Basic definitions 92 

For the remainder of this paper, let xt be the realizations of stochastic variables Xt at time t generating 93 

a stochastic process X. Normal case letters indicate scalar valued observations, while bold letters 94 

indicate d-dimensional vector valued states. A state is defined as a collection of past mostly 95 

independent or temporally uncorrelated variables Xt-Δt, which are sufficient to predict the present 96 

observation Xt. States can be reconstructed using Taken’s delay embedding theorem (Takens 1981) by 97 

time shifting the scalar time series X (d-1) times by a factor τ=Δt. 98 

 
𝒙𝑡

𝑑𝑥 = [xt−(d𝑥−1)τ, xt−(d𝑥−2)τ, … , xt−τ, xt]𝑇 , ( 1 ) 

with T indicating the transpose of the vector. The dimension d represents the minimum number of 99 

degrees of freedom necessary to sufficiently describe the process X.  100 

The collection of all realized states xt is defined as the state-space of process X. For example, a 101 

perturbed frictionless pendulum creates a closed trajectory in a two-dimensional phase-space spanned 102 

by the variables position and velocity (Figure 1). The coloured dots in Figure 1B correspond to the  103 

pendulum positions shown in Figure 1A. 104 

 105 
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 106 

Fig. 1: Example of a periodic phase-space representation. A: A frictionless pendulum perturbated from its resting 107 

position (orange) to a new position with small amplitude (green). B: Phase-space representation of the pendulum 108 

with two different amplitudes (grey-shaded circles). The state of the pendulum is uniquely determined by its 109 

momentary position and velocity. Colored circles in b correspond to the positions shown in a. Lengths of the red 110 

arrows indicate the absolute amplitudes for both phase-space representations. 111 

 112 

Assuming the process X to be Markovian, i.e. stochastic with finite memory, the dimension d and the 113 

delay τ can be reconstructed from univariate time series using Ragwitz criterion (Ragwitz and Kantz 114 

2002) or a combination of the false nearest neighbour algorithm (Hegger and Kantz 1999) and the 115 

auto-mutual information (Fraser and Swinney 1986) (for details see Supplement).  116 

2. Quantification of recurrent states 117 

 118 

2.1 Frequency estimation: the recurrence period 119 

A state xt+Δt is defined to be recurrent after Δt time steps, if it is within a neighbourhood Uε of Xt   with 120 

radius ε (Eckmann et al. 1987): 121 

 
𝒙𝑡+𝛥𝑡

𝑑𝑥  𝑈𝜀(𝒙𝑡
𝑑𝑥) 

 

( 2 ) 
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For infinitely small neighbourhoods, i.e.  ε → 0, xt+Δt is periodic with period Δt (Little et al. 2007). All 122 

recurrences of an arbitrarily high dimensional phase-space may be represented by calculating a two-123 

dimensional binary recurrence matrix (Eckmann et al. 1987): 124 

 
𝑀𝑡,𝑡+𝛥𝑡 = 𝛩(ε − ||𝒙𝑡 − 𝒙𝑡+𝛥𝑡||) 

 

( 3 ) 

 

Θ is the Heaviside step function and ||.|| is the Euclidean distance norm: 125 

 

||𝒙𝑡 − 𝒙𝑡+𝛥𝑡|| = √∑(𝒙𝑖,𝑡 − 𝒙𝑖,𝑡+𝛥𝑡)
2

𝑑𝑥

𝑖=1

, 

 

( 4 ) 

where i are the components of phase-space vectors. If (ε-||xt-xt+Δt||) is negative Θ is 0 else 1. This 126 

recurrence matrix M can be graphically represented by a recurrence plot, where each black dot 127 

represents one recurrence of time i at time j (Figure 2).  128 

Depending on the system’s local dynamics, the recurrence plot depicts different motifs. Parallel 129 

diagonal lines indicate periodicity and determinism while vertical lines appear due to laminar, i.e. 130 

unchanging behavior. White corners arise because of slow drifts or non-stationarity and isolated dots 131 

most often indicate stochastic behavior (Eckmann et al. 1987). The recurrence period T of any closest 132 

temporal neighbor xt+Δt of xt within a spatial neighbourhood Uε may be estimated as the difference 133 

(Little et al. 2007): 134 

 T = (t + Δt − ρ) − (t + γ), 
( 5 ) 

 

where γ is the difference in samples between xt and xt first leaving Uε and ρ is the sample difference 135 

between xt reentering Uε and xt+Δt (Figure 3A). In the recurrence matrix, T is equal to the number of 136 

states between vertical line segments starting from the main diagonal in M (see Figure 2B).  137 
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 138 

Fig. 2: Examples of Recurrence Plots. At each time i each black dot indicates a spatial recurrence at time j. Parallel 139 

lines indicate periodic activity. Recurrence plots show characteristic patterns depending on the system’s 140 

qualitative dynamics: A: Random white noise. B: Sinusoid with period of 100 samples. C: Recurrence plot of a 141 

classic deterministic nonlinear system, i.e. the Lorenz system (Lorenz 1963).  142 

 143 

2.2. Amplitude estimation 144 

As can be seen in Figures 1B and 3A, recurrent systems form closed or nearly closed trajectories in 145 

phase-space. Here, the energy is contained in the phase-space volume of each recurrent state. In 146 

reference to our example, the phase-space portrait would increase in size, if the pendulum would be 147 

moved with a greater amplitude. Thus, a reasonable approximation of the amplitude of each period 148 

would be to estimate its maximum diameter in phase-space (see red arrows in Figure 1B).  149 

 𝑎̅𝑑𝑖𝑎𝑚(𝑇) = ∑ 𝑚𝑎𝑥 ||𝐱i − 𝐱j||

𝑞

𝑘=1

∗ 𝑞−1,⩝ 𝑖, 𝑗 ∈ 𝑛 
( 6 ) 

 

With q being the number of recurrences per T, i.e. how often a reccurence of duration T has occurred 150 

and n being the number of samples per recurrence (see Figure 3A). 151 

This may be repeated for each recurrent trajectory per recurrence period T and subsequently averaged 152 

(Figure 3B). 153 

2.3. Recurrence probability 154 

By estimating the recurrence period T for all phase-space vectors, it is possible to calculate a histogram 155 

R(T), where the bin number is equal to the longest recurrence period Tmax. The recurrence probability 156 
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may thus be estimated by normalizing R(T) by the total number of recurrences (Figure 3C, Little et al. 157 

2007). As noisy experimental data may lead to a high number of short period recurrences it is useful 158 

to calculate P(T) for a predefined range of T ( Tmin - Tmax): 159 

 160 

 
𝑃(𝑇) =

𝑅(𝑇)

∑ 𝑅(𝑖)
𝑇𝑚𝑎𝑥
𝑖=𝑇𝑚𝑖𝑛

 , 𝑇 = 𝑇𝑚𝑖𝑛 … 𝑇𝑚𝑎𝑥 

 

( 7 ) 

 

 161 

 162 

Fig. 3: Estimation of recurrence periods. A: A closed local trajectory in phase-space. A reference point (red) is 163 

tracked in time until it reenters its spatial neighbourhood (examples of two neighbourhoods with different sizes 164 

in yellow). In this example the recurrence period is equal to 23, as it takes 23 samples (green) until the trajectory 165 

reenters the inner neighbourhood (dark yellow). B: Example estimation of recurrence amplitudes using the 166 

maximum norm. Recurrence amplitude of 5 s of a 20 Hz periodic signal with an amplitude of two. C: Example 167 

estimation of recurrence probabilities for a nonperiodic but highly recurrent deterministic system, i.e. the classic 168 

Lorenz system (Lorenz 1963). The plot shows the recurrence probabilities of each period T. 169 

 170 

Finally, we weight each estimated mean amplitude by its recurrence probability to get an average for 171 

each recurrence frequency bin. This is equivalent to estimating the expected value of the amplitude 172 

for every recurrence frequency: 173 
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 𝐴(𝑇) = 𝑅(𝑇) ∗ 𝑎̅(𝑇) 
( 8 ) 

 

 174 

Influence of neighbourhood ε on recurrence estimation 175 

The recurrence probability is an estimate of the probability of a recurrence occurring after T time steps. 176 

The estimation of P(T) is dependent on ε. A choice of ε too small would result in many empty 177 

neighborhoods and thus in a high degree of statistical errors. If ε is chosen too large recurrences are 178 

not local anymore and recurrence periods are underestimated. The recurrence period gets 179 

approximately underestimated by two samples for every increase of ε by a multiple q of the sampling 180 

period fs (e.g. see the light yellow area in Figure 3A): 181 

 
𝑅𝑒𝑟𝑟(𝑇, ε𝑒𝑟𝑟) =  𝑅(𝑇) − 2𝑞, 

 

( 9 ) 

 

with 182 

 

ε𝑒𝑟𝑟

2
=

ε

2
+ 𝑞 ∗

1

𝑓𝑠
 , 

 

( 10 ) 

 

To better understand the influence of the parameter ε on recurrences , P(T) may be estimated over a 183 

wide range of neighbourhood-sizes, resulting in a spatially-resolved recurrence period spectrum 184 

(SREPS). In the SREPS, one would expect to find three regions of interest depending on ε. For very small 185 

ε the SREPS is governed by statistical errors and a uniform distribution across all T. For very high ε the 186 

distribution of P(T) is heavily shifted to small T with only few state vectors leaving and reentering any 187 

neighbourhood, with the extreme case of a neighbourhood-size fully engulfing the phase-space. If the 188 

signal contains any oscillatory activity slowly shifting but continuous “spectral” peaks occur in the 189 

intermediate range of ε. As stated above the best estimate of the recurrence period may thus be found 190 

at the crossing of the continuous spectral peaks and the noise regime for low ε (Figure 4).  191 
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 192 

Fig. 4: Spatially resolved recurrence probability. The plot shows recurrence probabilities P(T) of 50 s of a 3 Hz 193 

signal as a function of periods T=1-5000 samples and increasing neighbourhood-sizes ε=1-300. ε is represented 194 

in % of the standard deviation of the raw time series. 195 

 196 

3. Time-resolved recurrence amplitude 197 

In neuroscientific research it is often of interest to analyse spectral activity changes relative to some 198 

intervention, e.g. some stimulus or response. For this purpose, methods like short-term Fourier or 199 

Wavelet transform estimate power spectral density as a function of time (Hramov et al. 2015). 200 

Similarly, the recurrence amplitude spectrum may be estimated for n short overlapping time windows 201 

wn of definite length: 202 

 P(T, wn) =
R∗(T, wn)

∑ R(i, wn)
Tmax
i=Tmin

 , T = Tmin … Tmax 
( 11 ) 

 

The length of each time window determines the maximum resolvable recurrence period and should 203 

thus be chosen with respect to the minimum frequency of interest.  204 

 205 

  206 
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4. Comparison between recurrence estimation, Fourier transform and wavelet transform 207 

In Figure 5 we demonstrate the raw (Figure 5A) and weighted recurrence amplitude spectrum (Figure 208 

5B) using an artificial signal of three signals of different concatenated waveform shapes, each with a 209 

length of five seconds, a frequency of 33 Hz and an amplitude of two: 1) a sinusoid, 2) a sawtooth wave 210 

and 3) a rectangle wave. While the frequency resolution succeedingly decreases for the three 211 

waveform types using the raw amplitude spectrum, it stays nearly the same for the weighted 212 

spectrum. However, the amplitude of the rectangle curve is slightly under- and its frequency slightly 213 

overestimated. Using the weighted amplitude spectrum increased the frequency resolution for the 214 

non-sinusoidal signals. For comparison with classic approaches, we analysed the same signal with 215 

short-time Fourier Transform (STFT, Figure 5C) and Wavelet analysis (Figure 5D). For the recurrence 216 

amplitude spectrum and the short-time Fourier spectrum we used 50 % overlapping windows of 600 217 

ms lengths. For Wavelet analysis we used 30 cycles in order to approximate the window length for the 218 

other methods (1s). For STFT and Wavelet analysis, spurious harmonics can be seen for the non-219 

sinusoidal waveform shapes in addition to the true frequency at 33 Hz. In contrast, the weighted 220 

recurrence amplitude spectrum shows only one spectral peak at a relatively narrow frequency band.   221 
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 222 

Fig. 5: Recurrence amplitude spectrum. The recurrence amplitude spectrum of a compound signal of three 33 223 

Hz oscillatory signals of different shapes is shown. The first five seconds are composed of a sine wave, the next 224 

five seconds of a sawtooth wave and the last five seconds of a rectangle wave. A: Raw unweighted amplitudes. 225 

B: Raw amplitudes were weighted with their respective probability densities. C: Short-time Fourier transform of 226 

the same signal. Window length was set to 1s with 50% overlap. Note the spurious harmonics for the nonlinear 227 

waveform shapes, i.e. rectangle (5-10s) and sawtooth shape (10 -15s). D: Wavelet transform of the signal. 228 

Wavelet width was set to 18. Note the spurious harmonics for the nonlinear waveform shapes, i.e. rectangle (5-229 

10s) and sawtooth shape (10 -15s). 230 

 231 

 232 
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5. Waveform-specific filter 233 

While the proposed estimator is independent of waveform, it is possible to tailor it to distinct 234 

waveform shapes. For this, we introduce a gain factor to the amplitude estimation step which is simply 235 

the Pearson correlation of the waveform shape of each recurrence and a scaled template waveform ζ. 236 

 𝑎̅(𝑇) = ∑ 𝑚𝑎𝑥 ||𝐱i − 𝐱j|| ∗ 𝐺𝛼

𝑞

𝑘=1

∗ 𝑞−1,⩝ 𝑖, 𝑗 ∈ 𝑛 
( 12 ) 

 

With α being chosen arbitrary and G being the gain factor: 237 

 𝐺(𝑘) = max (
𝑐𝑜𝑣(𝑥, 𝜁𝑚)

𝜎𝑥𝜎𝜁
𝑚 ) , 𝑚 = 𝜁𝑚 … 𝜁𝑚+𝑇 ,  

( 13 ) 

 

with cov being the covariance, σ being the variance and ζm being the template waveform from sample 238 

m to m+T. For perfectly matching waveforms, the gain is unity and thus the amplitude estimation is 239 

unaffected (Figure 6). In Figure 6 we used the same artificial signal as in Figure 5 and analysed it using 240 

waveform templates of a sinusoid (Figure 6A), sawtooth (Figure 6B) and rectangle shape (Figure 6C), 241 

respectively.  The exponent α determines the strength of the gain factor and thus how much specific 242 

waveform shapes are filtered. In this example, it was set to five. 243 
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 244 

Fig. 6: Recurrence amplitude spectrum with templates. The recurrence amplitude spectrum of a compound 245 

signal of three 33 Hz oscillatory signals of different shapes and a waveform dependent gain is shown. The first 246 

five seconds are composed of a sine wave, the next five seconds of a sawtooth wave and the last five seconds of 247 

a rectangle wave. Shown are the raw unweighted amplitudes. A: Five cycles of a sine wave were used as a shape 248 

template. B: Five cycles of a sawtooth wave were used as a shape template. C: Five cycles of a rectangle wave 249 

were used as a shape template. α was always set to 5. Window length was set to 1s with 50% overlap. 250 

 251 

Example application 252 

While the recurrence amplitude spectrum might me estimated for all types of oscillatory activity, it is 253 

particularly suited for the analysis of electrophysiological neural activity. Thus, we briefly demonstrate 254 

its application using  intracranial brain recordings, from the motor cortex of one epilepsy patient. The 255 

patient had received a 48 electrode electrocorticography (ECoG) grid for diagnostic purposes. 256 

Electrodes were localized by co-registration of pre-operative MRI and post-operative CT scans using 257 
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the Fieldtrip toolbox (Oostenveld et al. 2011) (Figure 7A).  As oscillatory activity in the motor cortex 258 

has been well characterized in previous studies, we selected three electrodes located on the precentral 259 

gyrus, i.e. the motor cortex (two medial electrodes in the proximity of the hand area and one lateral 260 

electrode). Anatomical selection was based on the AAL atlas implemented in FieldTrip (Tzourio-261 

Mazoyer et al. 2002) (Figure 7A). We recorded electrophysiological data by means of the Neurofax-262 

system of Nihon Kohden (Nihon Kohden, Rosbach, Germany) at a sampling rate of 1000 Hz. The patient 263 

participated in a study where he was asked to press a button on a standard computer keyboard. The 264 

study protocol was approved by the medical ethics committee Marburg and conducted in accordance 265 

with the latest version of the Declaration of Helsinki. To minimize edge effects occurring after 266 

convolution with a wavelet kernel, we segmented the data into relatively large time intervals of two 267 

seconds before until two seconds after response onset and discarded two seconds on each end of the 268 

segment after wavelet convolution. We removed line-noise,  visually rejected artifacts and  performed 269 

trend correction. We performed a  response-locked data analysis, i.e. neural data is analysed time-270 

locked to the patient’s button press. To this end, we used time-recurrence amplitude analysis and 271 

compared results to classic time-frequency analysis, i.e. wavelet convolution, in order to analyse power 272 

in different frequency bands.  273 

We used window lengths of 600 samples (=1.67s) and 50% overlap for the time-resolved estimation of 274 

recurrence amplitudes (Figure 7Bi, Ci, Di). Phase-space parameters, i.e. dimension d and delay τ were 275 

optimized for each time window using false nearest-neighbourhood algorithm and auto-mutual 276 

information, respectively. Neighbourhood-size was chosen ad-hoc at 70% of the standard deviation of 277 

each time series. For comparison with classic methods, we used a combined wavelet (for frequencies 278 

3-30 Hz) and multitaper approach (for frequencies above 30 Hz; Figure 7Bii, Cii, Dii), as  suggested for 279 

better frequency resolution and frequently adopted in the literature (van Vugt et al. 2007). To this end, 280 

we convolved the data with a continuous complex Morlet wavelet with seven cycles. From the wavelet-281 

transformed signal, we extracted power values between 3 and 30 Hz in 1 Hz steps (lower frequencies 282 

are difficult to estimate using wavelet convolution in short time windows). For the multi-taper analysis, 283 
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we used five tapers and a sliding 600 ms time window centered at one ms steps. Both spectra were 284 

normalized, using the complete time-period as baseline. Using  wavelet analysis, we found a 285 

desynchronisation around the button press (~-1 - 0 ms), ranging across frequency bands delta to beta 286 

(~ 3- 32 Hz) in all three electrodes (Figure 7CBii,Cii,Dii). After the motor response (~ 1s post-response), 287 

we observed an enhancement in activity in this broad spectrum approximately one second after the 288 

response. This this so-called rebound activity occurred in a broad frequency range from delta to low 289 

gamma with it being most prominent in the beta band of electrode two. This beta rebound is a well-290 

described phenomenon in the motor cortex during motor tasks (Crone et al. 1998; Pfurtscheller and 291 

Da Lopes Silva 1999; Jurkiewicz et al. 2006; Miller et al. 2007). Recurrence analysis showed a more 292 

specific beta desynchronisation and rebound for electrodes two, which was also more narrow band. 293 

In contrast to wavelet analysis, we additionally found a broad gamma activation during the button 294 

press, which was most prominently followed by a gamma desynchronisation in electrode two, but also 295 

visible in electrodes one and three to a lesser degree. In contrast, recurrence analysis did hardly reveal 296 

any changes in the theta band. Taken together, recurrence analysis was more sensitive for broad band 297 

high frequency activity that was not detected by wavelet convolution.  298 

 299 

Fig. 7: Example application on real invasive EEG data. A: Selected electrodes in the motor area of one epilepsy 300 
patient. The blue area indicates the precentral gyrus located with the AAL atlas in fieldtrip. Bi, Ci, Di: Recurrence 301 
analysis of three example electrodes. Plots have been convolved with a 5x5 smoothing kernel for visualization 302 
purposes. Bii, Cii, Dii: Corresponding Wavelet analysis of the same electrodes. All power values were normalized 303 
with respect to the total power of the analysed time window. 304 
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Discussion 305 

Here, we introduce a new method to analyse oscillatory activity in neural systems. We validated our 306 

approach with synthetic data and demonstrate its application with real experimental ECoG data of one 307 

epilepsy patient. Using artificial data, we show that the power estimates resulting from our method 308 

are more frequency-specific for non-sinusoidal waveforms and are not associated with spurious 309 

harmonics visible in the estimated frequency spectra. However, by applying specific waveform 310 

templates we demonstrate that our method is also able to detect specific shapes if necessary. Using 311 

human intracranial recordings from the motor cortex of one epilepsy patient, we show that recurrence 312 

analysis compares to conventional methods, such as wavelet analysis and Fourier transformation, in 313 

detecting movement-related oscillatory activity in the motor cortex.  314 

With both methods, we found beta desynchronisation in the motor cortex around the button press 315 

followed by beta rebound (Salmelin et al. 1995; Jurkiewicz et al. 2006; Parkes et al. 2006). Both 316 

methods indicate that this effect is spatially specific, as it was most prominent in one of the two medial  317 

electrodes in proximity of the hand area of the primary motor cortex.  318 

Further, recurrence analysis was more sensitive for detecting broad band gamma activity that is 319 

thought to represent multi-unit activity rather than narrow-band oscillations (Leszczyński et al. 2020). 320 

Recurrence estimation was seemingly less sensitive for theta and delta oscillations revealed by wavelet 321 

analysis. In contrast to beta activity in electrode two, theta/delta was more broadband in all three 322 

electrodes for wavelet analysis and much more narrowband for recurrence analysis. It is possible that 323 

this activity does not represent true oscillatory or recurrent activity, but rather local nonstationarities 324 

or drifts, which can hardly be detected with recurrence analysis. This is because states of local 325 

nonstationarities, even if they are oscillatory, do not come sufficiently close to each other after the full 326 

period  to enter their respective neighbourhoods.  327 

Though only meant as a proof-of-principle analysis, this is the first time directly comparing classic 328 

methods (i.e. wavelets and taper) with a recurrence based tool. Despite their fundamental differences 329 

in estimation procedures it is nevertheless evident that both capture recurrent neural activity, which 330 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461229
http://creativecommons.org/licenses/by/4.0/


 

19 
 

validates both methodological concepts from different angles. However, discussing the mathematical 331 

equivalence of recurrence analysis and classic methods is beyond the scope of this study and should 332 

be analysed in future research. 333 

Classically, neural oscillatory activity is analysed using methods derived from Fourier transform. Using 334 

these methods, time series get decomposed into prototypical waveforms or “wavelets” e.g. sinusoids. 335 

While this approach is justified by the understanding that e.g. EEG activity is a summation or 336 

superposition of thousands of synchronously active cells (Buzsáki and Draguhn 2004), interpretation 337 

of spectral estimation may be limited in some cases. This is because the generating models of neural 338 

activity and thus the basal waveform shape is most often unknown. Decomposing an asymmetric or 339 

nonlinear waveform into a series of sinusoids results in an infinite number of spurious harmonics (as 340 

demonstrated in Figure 5C-D), which may be misinterpreted as independent oscillatory activity. Thus, 341 

for such nonlinear signals classic techniques may generate a high degree of redundant information. 342 

Note, however, that wavelet analysis is in theory capable of redundandly quantifying nonsinusoidal 343 

oscillations by applying special mother wavelets e.g. like the Daubechies wavelets (Zhang et al. 2016). 344 

However, one drawback is that using a specific mother wavelet would still restrict analysis to one 345 

specific waveform shape and would also require prior knowledge, while recurrence based methods 346 

may detect unspecified arbitrary shapes. It is also still very uncommon to use any other mother wavelet 347 

than the Morlet wavelet for oscillatory analysis, although few studies exist that used other types to 348 

detect recurring spiking events in the EEG (Milton 1994; Grubov et al. 2017). The problem of 349 

nonsinusoidal waveform shape has been especially demonstrated for connectivity measures i.e. cross-350 

frequency coupling (Yeh et al. 2016; Lozano-Soldevilla et al. 2016). Occurrences of nonlinear signals in 351 

electrophysiology are increasingly recognized to be commonly present in physiological (Arroyo et al. 352 

1993; Gebber et al. 1999; Lozano-Soldevilla et al. 2016; Muthukumaraswamy et al. 2004) and 353 

pathological states (Cole et al. 2017). The physiological meaning of waveform shape, however, is still 354 

insufficiently understood (Cole and Voytek 2017).  355 
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The approach applied in this study utilizes the concept of recurrences in phase-space. The probability 356 

of a state recurrence as a function of its period has been previously introduced by Little et al. (2007). 357 

Our method builds upon this by also estimating amplitudes, i.e. energy content of a recurrence by 358 

estimating the phase-space volume of the recurrence. Additionally, by windowing the estimation 359 

procedure it is also possible to calculate a time-resolved recurrence amplitude spectrum, similar to 360 

short-time Fourier transform or wavelet analysis. The major difference to Fourier-based techniques is 361 

that time series are not fitted to basal waveforms in a “model-based” kind of way. Instead, it is 362 

quantified after what time the system reassumes a previous state, independent of the specific 363 

waveform in between these recurrences. Thus, as has been demonstrated in this study, simple 364 

asymmetric waveforms can be described more parsimoniously, without any spurious harmonics 365 

(Figure 5A-B).  The most extreme example of this is a rhythmic idealized Dirac pulse, which has unity 366 

power over all frequencies in Fourier space (Beerends 2006), but can be parsimoniously represented 367 

with recurence based methods. Thus, another possible application of our proposed method might be 368 

analysis of spike train or electromyography data (EMG). The problems regarding the analysis of the 369 

latter with Fourier-based methods is widely recognized, which is why EMG data is often additionally 370 

preprocessed by e.g. extracting the Hilbert envelope or taking the absolute value (Myers et al. 2003). 371 

These preprocessing steps may, however, lead to spurious results depending on further analysis 372 

(Negro et al. 2015; McClelland et al. 2012).    373 

Parameters of recurrence analysis 374 

While the concept of recurrences in phase-space is well established in other scientific fields e.g. 375 

climatology (Beaufort et al. 2001), proteomics (Webber et al. 2001) or geology (Donner et al. 2019), it 376 

is still scarcely applied in neurosciences. Examples include classification of mild cognitive impairment 377 

(Timothy et al. 2017), multiple sclerosis (Carrubba et al. 2019) or emotional states (Khodabakhshi and 378 

Saba 2020).  One possible reason for this might be the number of parameters which need to be 379 

adjusted. While the algorithm is not parametric, i.e. not model-based per se, the estimation procedure 380 

may be sensitive to several key parameters due to the finiteness of measured data. These most 381 
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prominently include the neighbourhood-size ε and the embedding parameters d and τ. For perfectly 382 

periodic recurrences and infinitely precise sampled data, the neighbourhood-size may be chosen 383 

arbitrarily small. However, for experimental data ε should be ideally chosen to barely engulf most of 384 

recurrent states. If the neighbourhood-size is chosen too large, recurrence periods get underestimated 385 

for every multiple of the sampling frequency. If ε is chosen slightly too small, recurrences might be 386 

missed. This may result in “harmonics”, i.e. multiples of recurrence periods appearing in the spectrum, 387 

as recurrences missed in one period might get detected in the next one (as can be seen in Figure 4). 388 

However, as our algorithm weights amplitudes by their probability of occurrences, few missed 389 

recurrences do not severely impact the overall spectrum. In the case that ε is chosen much too small, 390 

all meaningful recurrences might be missed and the spectrum gets dominated by measurement noise. 391 

The choice of ε thus depends on experimental data. However, it is important to note, that for real 392 

experimental data, there is no true neighbourhood-size as neural systems are hardly ever perfectly 393 

periodic. For intermediate ranges of ε recurrence spectra are rather stable and frequencies should only 394 

slowly shift (Figure 4). Nevertheless, when reporting results, neighbourhood and embedding 395 

parameters should always be reported for reproducibility. One possible approach to optimise 396 

neighbourhood-size is to estimate the recurrence amplitude spectrum as a function of ε and visually 397 

identify the noise regime for small neighbourhood-sizes (Figure 4). However, as this might be quite 398 

computationally demanding, it suffices to estimate the non-time resolved spectrum for a subsample 399 

of the data. This is justified if the variance of noise is static over time. The subset should be chosen 400 

long enough to cover the longest recurrence period of interest.   401 

Of similar importance is an appropriate embedding of the measured data in phase-space. If the 402 

embedding dimension is too low, points which are far away from each other might get projected into 403 

close proximity. Thus, the time in between might be spuriously characterized as a specific recurrence 404 

period. On the other hand, if the embedding dimension is too high, estimation of recurrence periods 405 

becomes increasingly computational demanding and neighbouring points difficult to detect due to the 406 

increasing spaces between points otherwise known as “curse of dimensionality”. The embedding delay 407 
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is important for spreading out the phase-space volume. A delay which is too small would result in all 408 

points laying on the first intersect and thus no closed trajectories to measure. For our algorithm we 409 

used the well-established false-nearest neighbours algorithm (Hegger and Kantz 1999) for the 410 

optimization of the embedding dimension and the auto-mutual information (Fraser and Swinney 411 

1986). However, other techniques like e.g., the Ragwitz-algorithm are also frequently reported to 412 

optimize embedding parameters (Ragwitz and Kantz 2002; Michael Lindner et al. 2011; Weber et al. 413 

2020, supplementary methods). By automatically optimizing d and τ we effectively eliminate these 414 

parameters, which makes the estimation procedure much easier to apply. This procedure is well 415 

established and implemented in many toolboxes utilizing the concept of phase-space analysis (Michael 416 

Lindner et al. 2011; Lizier 2014; Donges et al. 2015).   417 

One limitation of the recurrence analysis is that it is by design not able to decompose a linear 418 

superposition of sine waves. For such artificially generated signals classic approaches are better suited. 419 

We thus propose to apply the demonstrated technique complementary in conjunction with classic 420 

approaches e.g. to discern possible spurious harmonics. 421 

 422 

Conclusion 423 

In this study, we introduced a new time-resolved technique to measure amplitudes of oscillatory 424 

signals in a waveform independent manner. This method estimates the energy of recurrent activity by 425 

measuring distances of closed trajectories in phase-space, which are subsequently weighted by their 426 

respective probability densities. Using artificial data, we demonstrate that the measure generates less 427 

spurious harmonics due to nonlinear waveform shapes in comparison to classic techniques like Fourier 428 

Transform. Further, the analysis of intracranial data of one epilepsy patient indicates that recurrence 429 

might be better suited to estimate high frequency activity than congenital methods, such as wavelet 430 

analysis or the Fourier transformIn addition, we show that recurrence analysis can be used to 431 

specifically analyse signals with defined waveform shapes. In summary, the proposed measure might 432 
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be well suited to complement classic frequency techniques, especially when the analysed signals are 433 

of nonlinear origin. 434 

Code availability statement 435 

All code used in this study is readily available at https://nolitia.com/Code_recurrence_paper.zip .  436 

 437 

Literature 438 

Agostina Palmigiano; Theo Geisel; Fred Wolf; Demian Battaglia (2017): Flexible information routing 439 

by transient synchrony. In Nat Neurosci 20 (7), pp. 1014–1022. DOI: 10.1038/nn.4569. 440 

Amzica, F.; Steriade, M. (1998): Electrophysiological correlates of sleep delta waves. In 441 

Electroencephalography and Clinical Neurophysiology 107 (2), pp. 69–83. DOI: 10.1016/S0013-442 

4694(98)00051-0. 443 

Arroyo, Santiago; Lesser, Ronald P.; Gordon, Barry; Uematsu, Sumio; Jackson, Darryl; Webber, Robert 444 

(1993): Functional significance of the mu rhythm of human cortex: an electrophysiologic study with 445 

subdural electrodes. In Electroencephalography and Clinical Neurophysiology 87 (3), pp. 76–87. DOI: 446 

10.1016/0013-4694(93)90114-B. 447 

Beaufort, L.; Garidel-Thoron, T. de; Mix, A. C.; Pisias, N. G. (2001): ENSO-like forcing on oceanic 448 

primary production during the Late Pleistocene. In Science (New York, N.Y.) 293 (5539), pp. 2440–449 

2444. DOI: 10.1126/science.293.5539.2440. 450 

Beerends, R. J. (2006): Fourier and Laplace transforms. Repr. Cambridge: Cambridge Univ. Press. 451 

Available online at http://www.loc.gov/catdir/description/cam032/2003055187.html. 452 

Bollimunta, Anil; Mo, Jue; Schroeder, Charles E.; Ding, Mingzhou (2011): Neuronal mechanisms and 453 

attentional modulation of corticothalamic α oscillations. In The Journal of neuroscience : the official 454 

journal of the Society for Neuroscience 31 (13), pp. 4935–4943. DOI: 10.1523/JNEUROSCI.5580-455 

10.2011. 456 

Buehlmann, Andres; Deco, Gustavo (2010): Optimal Information Transfer in the Cortex through 457 

Synchronization. In PLoS Computational Biology 6 (9). DOI: 10.1371/journal.pcbi.1000934. 458 

Buzsáki, György; Draguhn, Andreas (2004): Neuronal oscillations in cortical networks. In Science (New 459 

York, N.Y.) 304 (5679), pp. 1926–1929. DOI: 10.1126/science.1099745. 460 

Carrubba, Simona; Frilot, Clifton; Marino, Andrew A. (2019): Optimization of Recurrence 461 

Quantification Analysis for Detecting the Presence of Multiple Sclerosis. In J. Med. Biol. Eng. 39 (5), 462 

pp. 806–815. DOI: 10.1007/s40846-019-00462-1. 463 

Cole, Scott R.; van der Meij, Roemer; Peterson, Erik J.; Hemptinne, Coralie de; Starr, Philip A.; Voytek, 464 

Bradley (2017): Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's 465 

Disease. In The Journal of neuroscience : the official journal of the Society for Neuroscience 37 (18), 466 

pp. 4830–4840. DOI: 10.1523/JNEUROSCI.2208-16.2017. 467 

Cole, Scott R.; Voytek, Bradley (2017): Brain Oscillations and the Importance of Waveform Shape. In 468 

Trends in cognitive sciences 21 (2), pp. 137–149. DOI: 10.1016/j.tics.2016.12.008. 469 

Crone, N. E.; Miglioretti, D. L.; Gordon, B.; Lesser, R. P. (1998): Functional mapping of human 470 

sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in 471 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461229doi: bioRxiv preprint 

https://nolitia.com/Code_recurrence_paper.zip
https://doi.org/10.1101/2021.09.21.461229
http://creativecommons.org/licenses/by/4.0/


 

24 
 

the gamma band. In Brain : a journal of neurology 121 (Pt 12), pp. 2301–2315. DOI: 472 

10.1093/brain/121.12.2301. 473 

Debnath, Ranjan; Salo, Virginia C.; Buzzell, George A.; Yoo, Kathryn H.; Fox, Nathan A. (2019): Mu 474 

rhythm desynchronization is specific to action execution and observation: Evidence from time-475 

frequency and connectivity analysis. In NeuroImage 184, pp. 496–507. DOI: 476 

10.1016/j.neuroimage.2018.09.053. 477 

Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi 478 

et al. (2015): Unified functional network and nonlinear time series analysis for complex systems 479 

science: The pyunicorn package. In Chaos 25 (11), p. 113101. DOI: 10.1063/1.4934554. 480 

Donner, Reik V.; Balasis, Georgios; Stolbova, Veronika; Georgiou, Marina; Wiedermann, Marc; Kurths, 481 

Jürgen (2019): Recurrence‐Based Quantification of Dynamical Complexity in the Earth's 482 

Magnetosphere at Geospace Storm Timescales. In J. Geophys. Res. Space Physics 124 (1), pp. 90–108. 483 

DOI: 10.1029/2018JA025318. 484 

Eckmann, J. P.; Kamphorst, S. O.; Ruelle, D. (1987): Recurrence plots of dynamical systems. In EPL 485 

(Europhysics Letters) (973). 486 

Engel, Andreas K.; Fries, Pascal (2010): Beta-band oscillations--signalling the status quo? In Current 487 

opinion in neurobiology 20 (2), pp. 156–165. DOI: 10.1016/j.conb.2010.02.015. 488 

Escobar Sanabria, David; Johnson, Luke A.; Nebeck, Shane D.; Zhang, Jianyu; Johnson, Matthew D.; 489 

Baker, Kenneth B. et al. (2017): Parkinsonism and vigilance: alteration in neural oscillatory activity 490 

and phase-amplitude coupling in the basal ganglia and motor cortex. In Journal of neurophysiology 491 

118 (5), pp. 2654–2669. DOI: 10.1152/jn.00388.2017. 492 

Franaszczuk, P. J.; Blinowska, K. J. (1985): Linear model of brain electrical activity?EEG as a 493 

superposition of damped oscillatory modes. In Biol. Cybern. 53 (1), pp. 19–25. DOI: 494 

10.1007/BF00355687. 495 

Fraser; Swinney (1986): Independent coordinates for strange attractors from mutual information. In 496 

Physical review. A, General physics 33 (2), pp. 1134–1140. DOI: 10.1103/physreva.33.1134. 497 

Gebber, Gerard L.; Zhong, Sheng; Lewis, Craig; Barman, Susan M. (1999): Human brain alpha rhythm: 498 

nonlinear oscillation or filtered noise? In Brain Research 818 (2), pp. 556–560. DOI: 10.1016/S0006-499 

8993(98)01303-1. 500 

Grubov, V. V.; Sitnikova, E.; Pavlov, A. N.; Koronovskii, A. A.; Hramov, A. E. (2017): Recognizing of 501 

stereotypic patterns in epileptic EEG using empirical modes and wavelets. In Physica A 486 (8), 502 

pp. 206–217. DOI: 10.1016/j.physa.2017.05.091. 503 

Hegger, R.; Kantz, H. (1999): Improved false nearest neighbor method to detect determinism in time 504 

series data. In Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary 505 

topics 60 (4 Pt B), pp. 4970–4973. DOI: 10.1103/physreve.60.4970. 506 

Hemptinne, Coralie de; Ryapolova-Webb, Elena S.; Air, Ellen L.; Garcia, Paul A.; Miller, Kai J.; 507 

Ojemann, Jeffrey G. et al. (2013): Exaggerated phase-amplitude coupling in the primary motor cortex 508 

in Parkinson disease. In Proceedings of the National Academy of Sciences of the United States of 509 

America 110 (12), pp. 4780–4785. DOI: 10.1073/pnas.1214546110. 510 

Hramov, Alexander E.; Koronovskii, Alexey A.; Makarov, Valeri A.; Pavlov, Alexey N.; Sitnikova, 511 

Evgenia (2015): Wavelets in Neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg. 512 

Jones, Stephanie R. (2016): When brain rhythms aren't ‘rhythmic’: implication for their mechanisms 513 

and meaning. In Current opinion in neurobiology 40, pp. 72–80. DOI: 10.1016/j.conb.2016.06.010. 514 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461229
http://creativecommons.org/licenses/by/4.0/


 

25 
 

Jurkiewicz, Michael T.; Gaetz, William C.; Bostan, Andreea C.; Cheyne, Douglas (2006): Post-515 

movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. In 516 

NeuroImage 32 (3), pp. 1281–1289. DOI: 10.1016/j.neuroimage.2006.06.005. 517 

Khodabakhshi, Mohammad Bagher; Saba, Valiallah (2020): A nonlinear dynamical approach to 518 

analysis of emotions using EEG signals based on the Poincaré map function and recurrence plots. In 519 

Biomedizinische Technik. Biomedical engineering. DOI: 10.1515/bmt-2019-0121. 520 

Kühn, Andrea A.; Kupsch, Andreas; Schneider, Gerd-Helge; Brown, Peter (2006): Reduction in 521 

subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. In 522 

The European journal of neuroscience 23 (7), pp. 1956–1960. DOI: 10.1111/j.1460-523 

9568.2006.04717.x. 524 

Leszczyński, Marcin; Barczak, Annamaria; Kajikawa, Yoshinao; Ulbert, Istvan; Falchier, Arnaud Y.; Tal, 525 

Idan et al. (2020): Dissociation of broadband high-frequency activity and neuronal firing in the 526 

neocortex. In Sci. Adv. 6 (33), eabb0977. DOI: 10.1126/sciadv.abb0977. 527 

Lewis, Laura D.; Weiner, Veronica S.; Mukamel, Eran A.; Donoghue, Jacob A.; Eskandar, Emad N.; 528 

Madsen, Joseph R. et al. (2012): Rapid fragmentation of neuronal networks at the onset of propofol-529 

induced unconsciousness. In Proceedings of the National Academy of Sciences of the United States of 530 

America 109 (49), E3377-86. DOI: 10.1073/pnas.1210907109. 531 

Little, Max A.; McSharry, Patrick E.; Roberts, Stephen J.; Costello, Declan A. E.; Moroz, Irene M. 532 

(2007): Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. In 533 

Biomedical engineering online 6, p. 23. DOI: 10.1186/1475-925X-6-23. 534 

Little, Simon; Brown, Peter (2014): The functional role of beta oscillations in Parkinson's disease. In 535 

Parkinsonism & Related Disorders 20, S44-S48. DOI: 10.1016/S1353-8020(13)70013-0. 536 

Lizier, Joseph T. (2014): JIDT: An Information-Theoretic Toolkit for Studying the Dynamics of Complex 537 

Systems. In Front. Robot. AI 1. DOI: 10.3389/frobt.2014.00011. 538 

Lorenz, Edward N. (1963): Deterministic Nonperiodic Flow. In J. Atmos. Sci. 20 (2), pp. 130–141. DOI: 539 

10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. 540 

Lozano-Soldevilla, Diego; Ter Huurne, Niels; Oostenveld, Robert (2016): Neuronal Oscillations with 541 

Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality. In 542 

Frontiers in computational neuroscience 10, p. 87. DOI: 10.3389/fncom.2016.00087. 543 

McClelland, Verity M.; Cvetkovic, Zoran; Mills, Kerry R. (2012): Rectification of the EMG is an 544 

unnecessary and inappropriate step in the calculation of Corticomuscular coherence. In Journal of 545 

Neuroscience Methods 205 (1), pp. 190–201. DOI: 10.1016/j.jneumeth.2011.11.001. 546 

Michael Lindner; Raul Vicente; Viola Priesemann; Michael Wibral (2011): TRENTOOL: A Matlab open 547 

source toolbox to analyse information flow in time series data with transfer entropy. In BMC 548 

Neurosci 12 (1), pp. 1–22. DOI: 10.1186/1471-2202-12-119. 549 

Miller, Kai J.; Leuthardt, Eric C.; Schalk, Gerwin; Rao, Rajesh P. N.; Anderson, Nicholas R.; Moran, 550 

Daniel W. et al. (2007): Spectral changes in cortical surface potentials during motor movement. In 551 

The Journal of neuroscience : the official journal of the Society for Neuroscience 27 (9), pp. 2424–552 

2432. DOI: 10.1523/JNEUROSCI.3886-06.2007. 553 

Milton, John G. (1994): Wavelet transforms and surrogate data for electroencephalographic spike 554 

and seizure localization. In Opt. Eng 33 (7), p. 2162. DOI: 10.1117/12.172248. 555 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461229
http://creativecommons.org/licenses/by/4.0/


 

26 
 

Muthukumaraswamy, Suresh D.; Johnson, Blake W.; McNair, Nicolas A. (2004): Mu rhythm 556 

modulation during observation of an object-directed grasp. In Brain research. Cognitive brain 557 

research 19 (2), pp. 195–201. DOI: 10.1016/j.cogbrainres.2003.12.001. 558 

Myers, L.J; Lowery, M.; O'Malley, M.; Vaughan, C.L; Heneghan, C.; St Clair Gibson, A. et al. (2003): 559 

Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis. In Journal of 560 

Neuroscience Methods 124 (2), pp. 157–165. DOI: 10.1016/S0165-0270(03)00004-9. 561 

Negro, Francesco; Keenan, Kevin; Farina, Dario (2015): Power spectrum of the rectified EMG: when 562 

and why is rectification beneficial for identifying neural connectivity? In Journal of neural engineering 563 

12 (3). DOI: 10.1088/1741-2560/12/3/036008. 564 

Oostenveld, Robert; Fries, Pascal; Maris, Eric; Schoffelen, Jan-Mathijs (2011): FieldTrip: Open source 565 

software for advanced analysis of MEG, EEG, and invasive electrophysiological data. In 566 

Computational intelligence and neuroscience 2011, p. 156869. DOI: 10.1155/2011/156869. 567 

Parkes, Laura M.; Bastiaansen, Marcel C.M.; Norris, David G. (2006): Combining EEG and fMRI to 568 

investigate the post-movement beta rebound. In NeuroImage 29 (3), pp. 685–696. DOI: 569 

10.1016/j.neuroimage.2005.08.018. 570 

Pedrosa, David J.; Reck, Christiane; Florin, Esther; Pauls, K. Amande M.; Maarouf, Mohammad; 571 

Wojtecki, Lars et al. (2012): Essential tremor and tremor in Parkinson's disease are associated with 572 

distinct 'tremor clusters' in the ventral thalamus. In Experimental neurology 237 (2), pp. 435–443. 573 

DOI: 10.1016/j.expneurol.2012.07.002. 574 

Pfurtscheller, G.; Da Lopes Silva, F. H. (1999): Event-related EEG/MEG synchronization and 575 

desynchronization: basic principles. In Clinical Neurophysiology 110 (11), pp. 1842–1857. DOI: 576 

10.1016/S1388-2457(99)00141-8. 577 

Pullon, Rebecca M.; McCabe, Samuel; Gaskell, Amy; Sleigh, Jamie W. (2019): Non-sinusoidal waves in 578 

the EEG and their simulated effect on anaesthetic quantitative EEG monitors. In J Clin Monit Comput 579 

33 (6), pp. 1089–1096. DOI: 10.1007/s10877-019-00254-7. 580 

Ragwitz, M.; Kantz, H. (2002): Markov models from data by simple nonlinear time series predictors in 581 

delay embedding spaces. In PHYSICAL REVIEW E 6505 (5), p. 6201. 582 

Salmelin, R.; Hämäläinen, M.; Kajola, M.; Hari, R. (1995): Functional segregation of movement-related 583 

rhythmic activity in the human brain. In NeuroImage 2 (4), pp. 237–243. DOI: 584 

10.1006/nimg.1995.1031. 585 

Schnitzler, Alfons; Münks, Christian; Butz, Markus; Timmermann, Lars; Gross, Joachim (2009): 586 

Synchronized brain network associated with essential tremor as revealed by 587 

magnetoencephalography. In Movement disorders : official journal of the Movement Disorder Society 588 

24 (11), pp. 1629–1635. DOI: 10.1002/mds.22633. 589 

Sherman, Maxwell A.; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A.; Hämäläinen, 590 

Matti S. et al. (2016): Neural mechanisms of transient neocortical beta rhythms: Converging evidence 591 

from humans, computational modeling, monkeys, and mice. In Proceedings of the National Academy 592 

of Sciences of the United States of America 113 (33), E4885-94. DOI: 10.1073/pnas.1604135113. 593 

Takens, Floris. (1981): Dynamical systems and turbulence. Detecting strange attractors in turbulence. 594 

Berlin, Heidelberg: Springer. 595 

Tiihonen, J.; Kajola, M.; Hari, R. (1989): Magnetic mu rhythm in man. In Neuroscience 32 (3), pp. 793–596 

800. DOI: 10.1016/0306-4522(89)90299-6. 597 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461229
http://creativecommons.org/licenses/by/4.0/


 

27 
 

Timothy, Leena T.; Krishna, Bindu M.; Nair, Usha (2017): Classification of mild cognitive impairment 598 

EEG using combined recurrence and cross recurrence quantification analysis. In International journal 599 

of psychophysiology : official journal of the International Organization of Psychophysiology 120, 600 

pp. 86–95. DOI: 10.1016/j.ijpsycho.2017.07.006. 601 

Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N. et al. (2002): 602 

Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation 603 

of the MNI MRI Single-Subject Brain. In NeuroImage 15 (1), pp. 273–289. DOI: 604 

10.1006/nimg.2001.0978. 605 

van Drongelen, Wim (2018): Signal processing for neuroscientists. Second edition. London: Elsevier, 606 

Academic Press. 607 

van Vugt, Marieke K.; Sederberg, Per B.; Kahana, Michael J. (2007): Comparison of spectral analysis 608 

methods for characterizing brain oscillations. In Journal of Neuroscience Methods 162 (1-2), pp. 49–609 

63. DOI: 10.1016/j.jneumeth.2006.12.004. 610 

Webber, C. L.; Giuliani, A.; Zbilut, J. P.; Colosimo, A. (2001): Elucidating protein secondary structures 611 

using alpha-carbon recurrence quantifications. In Proteins 44 (3), pp. 292–303. DOI: 612 

10.1002/prot.1094. 613 

Webber, Charles L.; Marwan, Norbert (2015): Recurrence Quantification Analysis. Cham: Springer 614 

International Publishing. 615 

Weber, Immo; Florin, Esther; Papen, Michael von; Visser-Vandewalle, Veerle; Timmermann, Lars 616 

(2020): Characterization of information processing in the subthalamic area of Parkinson's patients. In 617 

NeuroImage 209, p. 116518. DOI: 10.1016/j.neuroimage.2020.116518. 618 

Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun (2016): Spurious cross-frequency amplitude-amplitude 619 

coupling in nonstationary, nonlinear signals. In Physica A 454, pp. 143–150. DOI: 620 

10.1016/j.physa.2016.02.012. 621 

Zhang, Zitong; Telesford, Qawi K.; Giusti, Chad; Lim, Kelvin O.; Bassett, Danielle S. (2016): Choosing 622 

Wavelet Methods, Filters, and Lengths for Functional Brain Network Construction. In PLoS ONE 11 623 

(6), e0157243. DOI: 10.1371/journal.pone.0157243. 624 

 625 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2021. ; https://doi.org/10.1101/2021.09.21.461229doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.21.461229
http://creativecommons.org/licenses/by/4.0/

