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ABBREVATIONS 
AUC Area Under the Curve 

Eglob: Global Efficiency 

FDR False Discovery Rate 

M1: Primary motor cortex  

MCA: Middle Cerebral Artery 

TMS: Transcranial Magnetic Stimulation  

TP: Time Point 
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ABSTRACT 

 
 

Background and Purpose: Does the brain become more resilient after a first stroke to reduce 

the consequences of a new lesion? Although recurrent strokes are a major clinical issue, whether 

and how the brain prepares for a second attack is unknown. This is due to the difficulties to 

obtain an appropriate dataset of stroke patients with comparable lesions, imaged at the same 

interval after onset. Furthermore, timing of the recurrent event remains unpredictable. Methods: 

Here we used a novel clinical lesion simulation approach to test the hypothesis that resilience 

in brain networks increases during stroke recovery. 16 patients with a lesion restricted to the 

primary motor cortex were recruited. At 3 time points of the index event (10 days, 3 weeks, 3 

months), we mimicked recurrent infarcts by deletion of nodes in brain networks (resting-state 

fMRI). Graph measures were applied to determine resilience (global efficiency) and wiring cost 

(mean degree) of the network. Results: At 10 days and 3 weeks after stroke, resilience was 

similar in patients and controls. However, at 3 months, while motor function had fully 

recovered, resilience to clinically representative simulated lesions was higher compared to 

controls (cortical lesion p=0.012; subcortical: p=0.009; cortico-subcortical: p=0.009). Similar 

results were found after random (p=0.012) and targeted (p=0.015) attacks. Conclusion: Our 

results suggest that, after a lesion, brain networks reconfigure to increase resilience to future 

insults. Lesion simulation is an innovative approach, which may have major implications for 

stroke therapy. Individualized neuromodulation strategies could be developed to foster resilient 

network reconfigurations after a first stroke to limit the consequences of future attacks.  

 

KEYWORDS : Stroke, Resilience, Brain Network, Lesion simulation, graph measures 
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INTRODUCTION 

 

Does the brain become more resilient to further events, following a first stroke? Despite major 

progress in secondary prevention, recurrent strokes are frequent, occurring in up to 20% of 

patients within 3 months of onset1. In stroke animal models, the behavioral impact of a second 

lesion decreases with time2, suggesting that resilience to new events - defined here as the 

capacity of the brain to resist, overcome, or thrive in the face of adversity3 - progressively builds 

up during recovery. In humans, it is still debated whether the occurrence of an ischemic event 

limits the consequences of a second event4-6. If proven to be true, the hypothesis that resilience 

increases within days or months after stroke to circumvent the impact of a potential recurrent 

stroke, may lead to major physiological and clinical implications3. Understanding how and why 

the brain reorganizes in a certain configuration after stroke could help promote 

neuromodulatory therapeutic strategies that will aim not only at restoring function, but also at 

promoting network configuration that minimize the effects of a potential recurrent stroke. 

Investigating resilience after a first stroke in humans is however challenging. This is due to the 

difficulties to obtain an appropriate dataset of patients with comparable lesions, imaged at the 

same interval after stroke onset. Furthermore, timing and localization of the recurrent event 

remain unpredictable in a given patient. 

 

To circumvent our inability to predict a new event, we evaluated resilience in brain networks 

by simulating “recurrent” lesions through node deletions in a population of patients with similar 

infarcts restricted to the primary motor cortex. In previous studies, node deletion has been key 

to determine that brain networks of healthy subjects are organized to optimize the balance 

between integration and segregation7-10. By deleting nodes randomly or according to their 

importance in the network, it was also possible to demonstrate that brain networks architecture 

confers robustness despite vulnerability of central nodes11, 12. Deletion of contiguous nodes was 

only recently considered as a method to represent strokes with their anatomical characteristics, 

in term of size and location13, 14. In humans, this method seems a particularly promising 

alternative to empirical studies to study resilience after stroke, given the unpredictable nature 

of the second clinical event. 

 

Here, we tested the hypothesis that resilience in brain networks increases during stroke 

recovery. For that purpose, we considered resilience as the network capacity to maintain 

information capacity based on the measure of the global efficiency (Eglob). Resilience was 
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investigated by simulating two types of attacks. In one classical approach, nodes of whole brain 

networks were serially deleted, randomly or based on their importance in the network. We then 

simulated clinically representative lesions and evaluated their impact on network 

reorganization. Operationally, we used lesion simulation in a population of stroke patients with 

a lesion restricted to the primary motor cortex and contralateral hand paresis at three time points 

within 3 months of onset. All patients had a detailed motor examination and functional 

connectivity analyses (resting-state fMRI and graph measures) at each time point. 

 

MATERIAL AND METHODS 

Participants 
 

We included 16 consecutive stroke patients (6 women; age 73 ± 12 y) with a small lesion 

restricted to the primary motor cortex (M1) and isolated contralateral hand paresis. These 

patients were prospectively recruited out of the 1656 patients admitted in our stroke center 

during the study period. Exclusion criteria were i) left handedness, ii) significant carotid or 

intracranial artery stenosis (>50%), iii) history of stroke or psychiatric disease. 16 healthy 

subjects, matched for age, gender, and cardiovascular risk factors (6 women; 70 ± 10 yo) were 

included This cohort was used in a recent study with the distinct aim of investigating surrogates 

of motor recovery focusing on the periinfarct within three weeks after stroke.15 This previous 

study did not include graph analysis in whole brain networks, nor lesion simulation. Detailed 

measures of motor function and imaging data were obtained on the same day at three time 

points (TP) in patients: TP1; <10 days; TP2; 3 weeks and TP3; 3 months post stroke and at one 

time points in healthy subjects. Consent was obtained according to the Declaration of Helsinki. 

The study was approved by the Geneva Ethical Committee. 

 

Behavior Assessment 
Hand motor function was evaluated by measuring hand dexterity (nine-hole pegboard task) and 

isometric grip strength (JAMAR dynamometer, Asimow Engineering Co., Los Angeles, CA). 

A two-point discrimination task applied to the index fingers was used to exclude sensory 

deficits. For subsequent analysis of dexterity and grip strength, performance of the paretic hand 

was normalized by the one of the non-paretic hand (paretic hand/unaffected hand). Owing to 

the non-normality of the data, Wilcoxon tests were used to examine changes in hand motor 

function.  
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Imaging acquisition 
Images were acquired on a 3T MRI (MAGNETOM Prisma, Siemens Healthcare, Erlangen, 

Germany; 64-channel head-coil) the same day as behavioral testing. Acquisition of resting state 

functional images was performed using a gradient EPI sequence (TE/TR = 30/1200 ms, voxel 

size = 3 mm isotropic, 400 volumes, total acquisition time 8 minutes). Continuous eye-tracking 

was used to check wakefulness. Respiratory movements were recorded using a transducer at 

the level of maximum respiratory expansion (BioPac Inc, Santa Barbara, USA). T1-weighted 

anatomical scans were acquired with an MPRAGE sequence (TE/TR = 2.27/2300 ms, voxel 

size = 1.0 mm isotropic), together with T2-weighted (TE/TR = 108/6090 ms, voxel size = 0.4 

x 0.4 x 4.0 mm) and DWI images (TE/TR: 52/4300 ms, voxel size = 1.4 × 1.4 × 4.0 mm). 

Finally, the protocol included Brain MR angiography (TOF) and precerebral Doppler 

ultrasound to rule out intracranial or precerebral stenosis. 

 

Imaging data analysis 
Imaging data preprocessing 

Data were preprocessed using SPM12 and in-house MATLAB scripts according to an 

established pipeline (https://miplab.epfl.ch/index.php/software/wFC) with additional signal 

cleaning.16 First, functional images were realigned for each subject. Then, anatomical T1 

images were co-registered to the mean functional image of the corresponding subject and 

segmented into grey matter, white matter, and cerebrospinal fluid maps. We used the 

Brainnetome atlas, which provides a parcellation of the human brain in 246 regions and includes 

a fine-grained parcellation of the motor cortex, to atlas the grey matter of each subject in native 

space.17 The resulting map was co-registered to the mean image of the functional data of the 

corresponding participant.  

 
Extraction of brain signals 

The first 5 volumes were discarded to account for magnetization equilibrium. Time-courses 

were linearly detrended at each voxel, averaged for each region of the atlas, and scaled by the 

signal mean of the given region. The six motion parameters, their first derivatives, and the 

average signal of CSF were regressed out. Additionally, respiratory movements were corrected 

using RETROICOR. To correct for remaining outlying spikes, time courses were winsorized 

to the 5th and 95th percentiles. They were then filtered into 4 frequency subbands using a wavelet 

transform (cubic orthogonal B-spline). We focus here on scale 4 of this decomposition 

(frequency range 0.03 < f < 0.06 Hz). We further checked for undesirable motion effects by 

computing the mean framewise displacements for all subjects and time points.18 There was no 
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difference in motion across time points (Friedman test; χ2(2) = 0.462, p = 0.794) and no volumes 

were removed. Connectivity matrices were derived by computing pairwise Pearson correlation 

coefficients between the 246 regions of the Brainnetome atlas. Six regions of interest (ROIs), 

for which signal drop-out was observed in at least one subject, were removed, yielding a total 

of 240 ROIs. Finally, we flipped left and right hemisphere ROIs data within the connectivity 

matrices level for patients with right lesions (N=4) 

 

Graph construction 

Graphs were constructed following four steps. First, each connectivity matrix was normalized 

by its total connectivity strength and this full graph was used to calculate global connectivity 

strength. In the next step, each connectivity matrix was thresholded using an absolute threshold 

w > 0 to remove negative weights (Figure 1). A proportional (edge density) thresholding t was 

then applied, from t = 0 (no connection) to t = 1 (all connections retained) with a density 

increment of 0.1. This procedure allows filtering connectivity weights according to the 

strongest weights in a cumulative manner. Thus, this approach precludes the use of an arbitrary 

threshold and allows examining graph properties over a range of edge density values instead. 

Finally, each matrix was binarized before computing all other graph metrics. To derive 

efficiency and cost in the network, we used the brain connectivity toolbox.19  

 

Graph Metrics 

The resilience of the network was estimated using the measure of global efficiency (Eglob).8, 11, 

20 This metric provides a measure of information transfer across all nodes of the network. It 

quantifies the extent to which nodes communicate with distant nodes. It is proportional to the 

inverse of the shortest path length.21 
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where Ei is the efficiency of node i, V is the set of all nodes in the network, and N is the number of 
nodes. (i, j) is a link between nodes i and j, (i, j ∈ V), dij is the shortest path length (distance) between i and 
j. 

As global efficiency depends on network density, we checked the density range in which graphs 

remained connected in each subject. As a result, we retained the density range 0.3-1 for 

subsequent analyses rather than selecting arbitrary thresholds. We then derived the area under 

the curve (AUC) over the selected density range for Eglob : 
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The total wiring cost or density of the network was estimated using the mean node degree of 

the network which can be estimated as the number of edges connected to each node, averaged 

over all nodes of the network. AUC(Mean degree) was computed in the same fashion as AUC(Eglob) 

 

For better readability of the manuscript, we will use the terms “Eglob” and “mean degree” instead 

of “AUC(Eglob)” and “AUC(Mean degree)” in the next sections. 

 
Statistical Analysis 

 

General Strategy 

To investigate changes in resilience after stroke, we compared global efficiency (Eglob) in 

whole-brain functional networks at three time points within 3 months of stroke in 16 patients 

with a lesion restricted to the primary motor network. We evaluated the impact of different 

simulated lesions (node deletion), beginning with random and targeted attacks in the whole 

brain network and then using attacks mimicking cortical and subcortical strokes that can be 

observed in clinical practice. For both the spontaneous evolution and the impact of simulated 

attack, we first used a linear mixed model to capture the global evolution along timepoints. T-

tests were then used to compare measurements between individual timepoints and between 

patients and controls. Finally, we evaluated whether changes in resilience were correlated with 

changes in total wiring costs of the network. 

 

1. Spontaneous changes in resilience during recovery  

Eglob  was measured at each of the three time points in patients (10 days, 3 weeks, 3 months) 

and in controls. To evaluate changes in resilience over time in patients, we first used a linear 

mixed model with Eglob as the dependant variable, “timepoint” as a fixed effect factor and 

“subjects” as a random effect. Significance was evaluated by using the Satterthwaite 

approximations for degrees of freedom.22 Within patients, longitudinal comparisons between 

Eglob at the three time points were then performed using paired t-tests with false discovery rate 

(FDR) corrections (Benjamini–Hochberg procedure) for multiple comparisons. Between 

patients and controls, comparisons between the Eglob for patients at each time point and the Eglob 

for controls at their single time point was performed by a t-test, with FDR correction. 
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2. Impact of lesion simulation on resilience in brain networks 

 

1) Random and targeted attacks. We first deleted nodes in random order. Global efficiency was 

recalculated after each node deletion (i.e. 240 times) and then averaged at each density 

threshold (30-100%) for each patient. AUC were then derived as described above, resulting in 

one value per patient at each timepoint and in one single value per control. We then performed 

a similar analysis with nodes deleted based on their importance within the network (targeted 

attack, i.e., by decreasing order of node degree). For comparison between timepoints in patients 

and between patients and healthy controls, we first used a linear mixed model using the same 

fixed and random effects as described above followed by t-tests with FDR correction for 

multiple comparisons.  

 

2) Clinically representative attacks. We mimicked 3 representative strokes (cortico-subcortical, 

subcortical, and cortical lesions (Figure 2)) using lesion masks corresponding to 3 patients 

admitted to our stroke center for infarction in the territory of the middle cerebral artery. The 3 

lesion masks were manually outlined on the T2 MRI and the resulting masks normalized to 

MNI space with the Clinical Toolbox.23 Deleted nodes were defined by the intersection between 

the lesion masks and the ROIs from the Brainnetome atlas. As a result, the subcortical and 

cortical masks included 13 nodes each (respective volumes: 1.51 cm3 and 2.98 cm3) and the 

cortico-subcortical mask comprised 54 nodes (volume: 5.7 cm3). Eglob was computed after node 

deletion and the AUC was computed over the density spectrum as described above. For 

comparison between timepoints in patients and between patients at each timepoint we first used 

a linear mixed model using “timepoints” as a fixed effect, “type of lesion” and “subjects” as 

random effects. We then performed t-tests to compare AUC between timepoints and with 

healthy controls using FDR corrections for multiple comparisons as described above. 

 

3. Correlation between wiring cost of resilience of the networks.  

To determine the “price” of changes in resilience between timepoints 2 and 3, we correlated the 

changes in resilience (Eglob) and the changes in total wiring cost (mean degree).  

 

Data availability 
Anonymized data are available on request. 
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RESULTS 

Changes in motor behaviour 

Hand dexterity improved from TP1 to TP2 (Nine hole peg test; median laterality ratio at TP1: 

1.18 (IQR: 1.06-1.71); at TP2: 1.03 (IQR: 0.94-1.27) p=0.01). At TP2, patients had fully 

recovered with no differences with healthy controls (median laterality ratio in controls=1.06 

(IQR: 0.98-1.1; p= 0.98)). There was no change in hand dexterity between TP2 and TP3 

(p=1.0). Grip strength remained stable over time (JAMAR dynamometer; TP1 to TP2: p = 0.41; 

TP2 to TP3: p = 0.06) and was not different from controls at any time point (TP1: p = 0.14; 

TP2: p = 0.21; TP3: p = 0.38). 

 

1. Changes in network resilience over time 

There was a statistically significant difference between time points (mixed model, F = 5.633; 

p=0.009). Eglob was similar between TP1 to TP2 (pBH = 0.941) and between patients and controls 

at TP1 (pBH = 0.222) and TP2 (pBH = 0.222). However, Eglob increased from TP2 to TP3 (pBH = 

0.017) and was higher in patients at TP3 compared to controls (pBH = 0.006). (Figures 3,4) 

 

2. Impact of lesion simulations on network resilience 

Random failure (Figure 5). There were significant changes in Eglob over time after random 

attacks (mixed model, F=4.236, p=0.025). Eglob did not differ after random attacks between 

patients and controls at TP1 (pBH =0.279) nor TP2 (pBH =0.279). However, patients displayed 

higher Eglob at TP3 compared to controls (pBH = 0.012) and to TP2 (pBH = 0.012)).  

Targeted attack. Using the measure of degree to target serially the nodes of the network, Eglob 

differed from control only at TP3 (pBH = 0.015). Longitudinally, Eglob significantly varied across 

time points (mixed model, F=6,176, p=0.006). Eglob increased from TP2 to TP3 (pBH =0.015) 

but not between TP1 and TP2 (pBH = 0.846).  

 

Clinically representative lesions. (Figure 6) Eglob varied significantly over time (mixed model, 

F=16.183, p<0.001). There was no significant change in global efficiency from TP1 to TP2 

after all attack types (cortical: pBH = 0.934; subcortical: pBH = 0.916; cortico-subcortical: pBH = 

0.788). At TP3 compared to TP2 however, a higher resilience was observed after all types of 

attacks (cortical: pBH = 0.045; subcortical: pBH = 0.045; cortico-subcortical: pBH = 0.047). When 

patients were compared to controls, a higher resilience was only found at TP3 (cortical: pBH = 

0.012; subcortical: pBH =0.009; cortico-subcortical pBH =0.009) but not at TP1 (cortical:  pBH = 
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0.261; subcortical: pBH = 0.261; cortico-subcortical: pBH = 0.245) nor at TP2 (pBH = 0.261 in all 

cases). 

 

3. Correlation between wiring cost and network resilience 

Increase in resilience between 3 weeks (timepoint 2) and 3 months (timepoint 3) after stroke 

was significantly correlated with the increase in wiring cost of the network (Spearman’s 

rho=0.785; p=0.001; Figure 7). 

 

 

DISCUSSION 
 

In our population of patients with focal cortical strokes restricted to the primary motor cortex, 

we showed that resilience in brain networks increased between three weeks and 3 months after 

stroke. This was demonstrated using attacks mimicking clinically representative stroke by 

targeting specific or random nodes in the whole brain network. This represents the first evidence 

that network reorganization may prevent the consequences of a second stroke, at the price, 

however, of a higher wiring cost. 

 

Resilience to attacks against the network increased at three months compared to 3 weeks, while 

patients had recovered completely from the first event. This was determined by a higher global 

efficiency (Eglob) following lesion simulation of all types. Although network efficiency has not 

been studied in patients after a second lesion, observational studies have revealed distinct 

patterns of Eglob changes during recovery after a first stroke. In a study including patients with 

mainly subcortical lesions, a progressive decrease in Eglob in the contralateral hemisphere was 

observed.24 When Eglob was considered after normalization by random graphs, no changes were 

described up to 6 months after cortical or subcortical stroke.25, 26 More in line with our results, 

a higher Eglob was described within the contralateral hemisphere in mice recovering well from 

intraluminal occlusion of the right middle cerebral artery.27 Comparison of Eglob across studies 

proved however to be challenging, due to the differences in patient population and in the 

methods applied to determine connectivity (structural vs functional). Importantly, the increase 

in Eglob was obtained at a higher network cost, estimated by mean node degree. The price of 

shorter paths and of more efficient information propagation and exchanges during stroke 

recovery could be therefore related to the development of new connections. 
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We interpret the higher Eglob following lesion stimulation at three months as the reflect of a 

higher capacity of the network to preserve, if a second event occurs, the information integration 

across the entire network. Because clinical testing was impossible to perform after the lesion 

simulation, the clinical relevance of these findings remains hypothetical. However, animal 

studies demonstrated that the longer the event occurs after stroke, the lower the behavioural 

impact of the recurrent stroke.2 Our results may also suggest that the aim of network 

reconfiguration after stroke may not be limited to the restoration of lost function. New forms 

of network organization may increase brain resilience to new attacks. If confirmed in a larger 

stroke population, the results of our study may be relevant to inform neuromodulation strategies 

that intend to reconfigure network architecture during stroke recovery. 

 

Methodologically, this study opens new perspectives for the study of network reorganisation 

and resilience in stroke and other diseases. One experimental lesion simulation approach 

combines MRI-guided brain stimulation with functional connectivity MRI and high-density 

electroencephalography (EEG). In recent years, brain stimulation, when guided with MRI, has 

dramatically increased its spatial precision and high-density EEG provides a detailed measure 

of brain physiology. 28, 29 If this strategy represents one of the most promising technique to 

study brain resilience, it does not allow to mimic lesions that precisely correspond to those 

commonly observed in acute stroke patients. The use of node deletion to simulate lesions 

combines several essential characteristics for the study of brain resilience in human. First, it is 

a highly controllable and precise intervention, that is fully non-invasive. So far, studies using 

node deletion to simulate lesions, have been used to test the architecture of healthy or 

pathological networks with no intention to mimic clinically representative strokes.9, 20, 30-34. 

Here, we simulated clinically representative lesions by deleting contiguous nodes using masks 

of lesions observed in patients admitted to our stroke center. MCA lesions of various sizes and 

locations were considered in this proof of concept study. Large cortico-subcortical MCA 

lesions had a more dramatic effect on efficiency than lesions limited to the deep perforator of 

the MCA (subcortical lesion) or restricted to a superficial branch of the MCA (cortical lesion).  

 

Lesion simulation is an innovative approach, which may have major implications for stroke 

therapy. In stroke patients, individualized neuromodulation strategies could be developed using 

TMS or tDCS to not only improve clinical function but also promote resilient network 

reconfigurations to limit the consequences of future attacks. This approach could also have 

important implications beyond the stroke field to support the development of individualized 

therapies for instance in neurodegenerative diseases, such as Alzheimer disease. Identification 
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and promotion of network configurations that are more resilient to the degenerative process 

may have a huge clinical impact.35   Network resilience has also been evaluated in patients at 

risk to develop post-traumatic stress disorder (PTSD) to tailor preventive cognitive therapies.36  

 

There are several limitations to this study. First, we included only patients with discrete lesions 

limited to the primary motor cortex, who fully recovered at 3 weeks. In patients with larger 

lesions in the MCA territory, a more severe impact on brain network topology could be 

expected.37 One of the advantages of our study population is the homogeneity of the lesions in 

term of size and location. Further, because patients have fully recovered clinically at 3 weeks, 

we were able to make the assumption that changes in connectivity occurring later were 

consistent with changes in resilience and were not or only partially related to motor recovery.15, 

38-41 Second, we arbitrarily simulated three cortical and subcortical lesions according to 

representative ischemic lesions. Stroke in vascular territories including highly central hubs may 

have a greater impact on efficiency.11 Further studies may investigate these hypotheses. 

 

CONCLUSION 

 

Our results suggest that the optimal network reconfiguration following stroke may not be 

identical to pre-stroke architecture. Natural selection may increase the robustness of neural 

networks by favoring their adaptability to unforeseen events.42, 43 Clinically, our results indicate 

that topological resilience may confer protection against the consequence of a novel stroke. In 

the future, simulation of clinically relevant lesions may have major implications for stroke 

therapy but also for other neurological and psychiatric diseases. Individualized 

neuromodulation strategies could be developed to improve clinical function but also promote a 

resilient network architecture to limit the consequences of future attacks. 
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Legend to Figures 

 

Figure 1. Pipeline of graph construction.  

1) Fully connected graph containing positive and negative connectivity weights. 2) 

Application of an absolute thresholding w>0 to retain positive weights only. 3) Sparsely to 

densely connected graphs are obtained by means of proportional thresholding by step of 

incremental steps of 0.1. 4) Binarization of connectivity matrices leads to unweighted graphs. 

 

 
Figure 2. Focal Middle Cerebral Artery (MCA) strokes used for lesion simulation 

Top: MRI (T2 sequence) shows the lesion for each stroke subtype (subcortical, cortical, 

cortico-subcortical MCA territory). Bottom: The masks (in red) correspond to normalized 

lesions overlaid on a standard MNI template. The list of ROIs enumerates the Brainnetome 

atlas regions overlapping with the lesion masks. 

 

Figure 3. Changes in network efficiency over time. Violinplots with inner boxplots for 

AUCs of global efficiency in patients (ST, shown in red) and healthy controls (HC, shown in 

green, blue and purple) at each timepoint. Each box extends from the 25th percentile to the 

75th percentile with a line indicating the median. Upper and lower whiskers show the range 

up to the upper and lower extremes (±1.5*inter-quartile range). Individual values are 

represented by grey dots. Outliers are represented by grey diamond shapes. Significance was 

evaluated with multiple t-tests with false discovery rate corrections; p-values are represented 

as * for ≤ 0.05 and ** ≤ 0.001. 
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Figure 4. Comparison of network cost and global efficiency between patients and 

healthy controls at different timepoints. Representation of mean degree and global 

efficiency, illustrated with means (lines) and standard deviations (filled areas) in patients and 

healthy controls (HC) at each time point.  

 

Figure 5. Network resilience after serial random and targeted attacks. Representation of 

global efficiency after (A) Random node deletion and (B) Targeted node deletion based on 

degree.  This representation is illustrated with mean global efficiency (lines) and standard 

deviations (filled areas) after attacks for patients at TP1, TP2 and TP3, as well as for healthy 

controls (HC). 

 

Figure 6. Network resilience after simulation of clinically representative lesions. Global 

efficiency after cortical, subcortical, and cortico-subcortical simulation of middle cerebral 

artery (MCA) strokes. (A) Pre- and post-lesion comparison in patients at TP2 and TP3. (B) 

cross-sectional comparison between healthy controls (HC) and stroke patients at TP3, 

illustrated with mean global efficiency before (straight lines) and after attack (dotted lines), as 

well as standard deviations (filled areas) for each group. 

 

Figure 7. Correlation of change in global efficiency and mean degree between timepoint 

2 and 3. Individual values are represented by blue dots. A regression line (straight blue line) 

is plotted with 95% confidence intervals (shaded area). Distributions for both variables are 

shown as histograms.   
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