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Abstract 

Knowledge-based statistical potentials have been shown to be rather effective in protein 3-dimensional (3D) 

structure evaluation and prediction. Recently, several statistical potentials have been developed for RNA 3D structure 

evaluation, while their performances are either still at low level for the test datasets from structure prediction models 

or dependent on the “black-box” process through neural networks. In this work, we have developed an all-atom 

distance-dependent statistical potential based on residue separation for RNA 3D structure evaluation, namely 

rsRNASP, which is composed of short- and long-ranged potentials distinguished by residue separation. The extensive 

examinations against available RNA test datasets show that, rsRNASP has apparently higher performance than the 

existing statistical potentials for the realistic test datasets with large RNAs from structure prediction models including 

the newly released RNA-Puzzles dataset, and is comparable to the existing top statistical potentials for the test 

datasets with small RNAs or near-native decoys. Additionally, rsRNASP is also superior to RNA3DCNN, a recently 

developed scoring function through 3D convolutional neural networks. rsRNASP and the relevant databases are 

available at website https://github.com/Tan-group/rsRNASP. 
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SIGNIFICANCE 

RNAs play crucial roles in catalyzing biochemical reactions and regulating gene expression, and the biological 

functions of RNAs are generally coupled to their structures. Complementary to experiments, developing 

computational models to predict RNA 3D structures can be very helpful for understanding RNA biology functions. 

For a computational model, a reliable energy function is essentially important either for guiding conformational 

folding or for structure evaluation. For this purpose, we developed a residue-separation-based distance-dependent 

statistical potential, named rsRNASP which distinguishes the short- and long-ranged interactions, for RNA 3D 

structure evaluation. Our rsRNASP were examined against extensive test sets and shows overall superior performance 

over existing top traditional statistical potentials and a recently developed scoring function through 3D convolutional 

neural networks, especially for realistic test set from various computational structure prediction models. 
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INTRODUCTION 

Non-coding RNAs have critical biological functions in cell life activities, such as gene regulations and catalysis 

(1, 2). Generally, the functions of non-coding RNAs are coupled to their structures and consequently, understanding 

RNA structures, especially 3-dimensional (3D) structures, is crucial for understanding their biological functions (3, 

4). However, due to the high cost and technical difficulty in experiment measurements, RNA 3D structures with high 

resolution deposited in protein data bank (PDB) database are still limited up to now (5). To complement experimental 

methods, various computational models have been developed to predict RNA 3D structures in silico (6, 7), including 

fragment-assembly-based models such as RNAComposer (8), MC-Fold/MC-Sym pipeline (9), Vfold3D (10, 11), 

3dRNA (12, 13), and FARFAR (14, 15), and physics-based models such as iFold (16, 17), NAST (18), SimRNA (19), 

and a coarse-grained model with salt effect (20-25). Generally, a computational model for 3D structure prediction 

requires to involve an energy function, either for guiding conformational folding (26, 27), or for structure refinement 

(28) or for structure evaluation. Therefore, a reliable energy function is very important for the computational models 

for RNA 3D structure prediction. 

Existing energy functions for protein and RNA 3D structure evaluation can be roughly grouped into two 

categories: physics-based force fields and knowledge-based statistical potentials (9, 12, 16, 19, 20, 29-43). Although 

physics-based force fields generally involve more lucid energy terms associated with bond lengths, bond angles, 

torsional angles, van der Waals and electrostatic interactions, they can become very inefficient or ineffective for large 

proteins or RNAs due to the required involvements of explicit solvent and salt. In contrast, knowledge-based 

statistical potentials derived from the experimental structures deposited in the PDB database have been shown to be 

very efficient and effective for the quality assessment of protein 3D structures, protein-protein and protein-ligand 

docking (44-54). The core difference between various statistical potentials mainly originates from the choice of 

different reference states (55), and up to now, six representative reference states have been proposed to build distance-

dependent pairwise statistical potentials for proteins, i.e., averaging (48), quasi-chemical approximation (56), atom-

shuffled (57), finite-ideal-gas (58), spherical-non-interacting (59) and random-walk-chain reference states (60). 

For RNA 3D structure evaluation, several statistical potentials have been built based on different reference states. 

Bernauer et al have derived fully differentiable statistical potentials (KB) at both all-atom and coarse-grained levels, 

based on the quasi-chemical approximation reference state (61). Capriotti et al have built all-atom and coarse-grained 

statistical potentials (RASP) based on the averaging reference state (62). Wang et al have derived a combined 

distance- and torsion angle-dependent statistical potential (3dRNAscore) based on the averaging reference state, and 
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3dRNAscore emphasizes the local interactions through explicitly involving the backbone torsional angles (63). Zhang 

et al have proposed a distance-dependent statistical potential using finite-ideal-gas reference state (DFIRE-RNA) 

(64). In our recent work, for RNA 3D structure evaluation, we have made a comprehensive survey on the six existing 

reference states widely used for proteins with the same non-redundant RNA training set and parameters for RNA 3D 

structure evaluation (65). We have found that, the finite-ideal-gas and random-walk-chain reference states are 

modestly better than other ones in identifying native structures and ranking decoy structures and the existing 

traditional pair-wise statistical potentials only achieve a poor performance for realistic test dataset — RNA-Puzzles 

dataset (65). Beyond traditional pair-wise statistical potentials, Masso has proposed an all-atom four-body statistical 

potential to involve four-body effect in identifying native RNA structures (66). Recently, machine/deep learning 

approaches have also been applied to address this kind of problem (67, 68). Despite of “black-box” training/learning 

process, RNA3DCNN, a scoring function built by 3D deep convolutional neural networks, exhibits remarkably 

improved performance in identifying native structures for the realistic RNA-Puzzles test dataset whereas does not 

work so well for other test datasets composed of small RNAs or near-native decoys, compared with the existing top 

traditional statistical potentials (67). A newly released scoring function ARES from deep neural network based on 

training data from FARNAR showed good performance for evaluating structures from FARNAR while may has 

structure evaluation bias for FARNAR. Therefore, there is still lack of a reliable distance-dependent statistical 

potential with high performance for various structure prediction models. 

Until now, most statistical potentials for RNAs do not distinguish the contributions of short-, medium- and long-

ranged interactions. But for proteins, the explicit consideration of local (short- and medium-ranged) and nonlocal 

(long-ranged) interactions has been shown to be very helpful for understanding protein folding mechanism and 

predicting protein 3D structures (44, 69-75). Since RNA structure formation is generally hierarchical (76), the 

different residue-separation-ranged interactions may play different roles in RNA folding process or in stabilizing 

folded RNA structures. In RASP for RNAs, local interactions were separated from non-local ones with the residue 

(nucleotide) separation treated as topological factor, while the consideration of every residue separation for local 

interactions is too subtle to avoid sparse data problem, and RASP cannot achieve a good performance for RNA 3D 

structure evaluation (62). 

In this work, we have developed an all-atom pair-wise distance-dependent statistical potential based on residue 

separation for RNA 3D structure evaluation, named rsRNASP, which is composed of short- and long-ranged 

potentials distinguished by residue separation. The extensive examinations show that rsRNASP has significantly 
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improved performance than the existing statistical potentials for the realistic test datasets with large RNAs from 

various structure prediction models. It is encouraging that our traditional distance-dependent rsRNASP is overall 

superior to RNA3DCNN, a recently released scoring function through 3D convolutional neural networks. 

METHODS 

Residue separation and distance-dependent statistical potential 

Since RNA structure folding is generally hierarchical (76), the different residue-separation-ranged interactions 

can play different roles in stabilizing folded RNA structures, and the potential energy of atomic pair interactions may 

strongly depend on their residue separations (45). Here, the residue separation k is defined by 𝑘 = |𝑚 − 𝑛|, where 

m and n correspond to the observed residue sequence positions of a pair of atoms along an RNA chain. Thus, 

according to the inversed Boltzmann law, a pairwise distance-dependent statistical potential based on residue 

separation k can be given by (45) 

𝛥𝐸𝑘(𝑖, 𝑗, 𝑟) = −𝑘𝐵𝑇ln
𝑃𝑘

obs(𝑖,𝑗,𝑟)

𝑃𝑘
ref(𝑖,𝑗,𝑟)

,                                (1) 

where 𝑘𝐵  is the Boltzmann constant, and 𝑇  is the Kelvin temperature.  𝑃𝑘
obs(𝑖, 𝑗, 𝑟)  and  𝑃𝑘

ref(𝑖, 𝑗, 𝑟)  is the 

probability of the distance between atom pairs of types 𝑖 and 𝑗 with residue separation k in distance interval (𝑟, 𝑟 +

𝑑𝑟] for native and reference states, respectively. In addition, the observed probability from native structure database 

can be obtained by 

 𝑃𝑘
obs(𝑖, 𝑗, 𝑟) =

𝑁𝑘
obs(𝑖,𝑗,𝑟)

𝑁𝑘
obs(𝑖,𝑗)

,                                 (2) 

where 𝑁𝑘
obs(𝑖, 𝑗, 𝑟) is the number of the distance between atom pair of atom types 𝑖 and 𝑗 with residue separation 

k in distance interval (𝑟, 𝑟 + 𝑑𝑟], and 𝑁𝑘
obs(𝑖, 𝑗) is the summation of 𝑁𝑘

obs(𝑖, 𝑗, 𝑟) over r. As for 𝑃𝑘
ref(𝑖, 𝑗, 𝑟), its 

form depends on the choice of simulated reference state, and as mentioned above, there have been six major reference 

states either based on the PDB database or based on various physical models (65). 

rsRNASP statistical potential based on residue separation 

As discussed above, the classification of interaction ranges in a statistical potential may involve more accurate 

information extracted from native structure database (76). In developing rsRNASP, due to the severe sparse data 

problem arising from the current limited native RNA database, a residue separation threshold 𝑘0 was involved to 

distinguish between short- and long-ranged interactions instead of explicitly involving interactions at each residue-

separation level. Through the statistical analyses on loop length distribution, 𝑘0 was taken as 4; see Section S2 and 

Fig. S1 in the Supporting Material for details. In addition, the local interactions between atoms within two residue 

intervals were ignored since such strong local interaction associated with local-chain connectivity restraints can 
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overwhelm the other short- and long-ranged interactions essentially for stabilizing RNA global structures. Therefore, 

in rsRNASP, the interactions within  2 < 𝑘 ≤ 𝑘0 were considered as the short-ranged interactions, and the energy 

for a conformation C of a given sequence S can be calculated by rsRNASP: 

∆𝐸(𝑆, 𝐶) = ∑ ∆𝐸short(𝑖, 𝑗, 𝑟)𝑘≤𝑘0
𝑘>2 + 𝑤 ∗ ∑ ∆𝐸long(𝑖, 𝑗, 𝑟)𝑘>𝑘0

,                   (3) 

where 

        ∆𝐸short(𝑖, 𝑗, 𝑟) = −𝑘𝐵𝑇ln
𝑃2<𝑘≤𝑘0

obs (𝑖,𝑗,𝑟)

𝑃2<𝑘≤𝑘0
ref (𝑖,𝑗,𝑟)

,                             (4) 

and 

        ∆𝐸long(𝑖, 𝑗, 𝑟) = −𝑘𝐵𝑇ln
𝑃𝑘>𝑘0

obs (𝑖,𝑗,𝑟)

𝑃𝑘>𝑘0
ref (𝑖,𝑗,𝑟)

.                              (5) 

Here, w is a weight parameter to balance the contributions of short- and long-ranged interactions. 

As shown in Eq. (1), the choice of reference states is crucial for building statistical potentials. Based on our 

previous work (65), in rsRNASP, we employed the random-walk-chain and averaging reference states to build long-

ranged and short-ranged potentials since the random-walk-chain reference state has relatively good performance in 

identifying native structures and ranking decoy structures and the database-based averaging reference state may be 

complementary to those physical model-based ones (65). It is also noted that the random-walk-chain reference state 

with chain connectivity can directly distinguish interactions at different residue separations. The flow chart of 

building and testing steps of rsRNASP has been illustrated in Fig. 1. 

Training set and parameters 

Beyond the training set in our previous work (65), we updated our non-redundant training set based on the RNA 

3D Hub non-redundant set (77) (Release 3.102, 2019-11-27), which can be found in 

http://rna.bgsu.edu/rna3dhub/nrlist. First, 1641 representative RNA chains with an X-ray resolution < 3.5 Å were 

collected from RNA 3D Hub list (Release 3.102). Afterwards, we removed the chains whose structures are complexed 

with proteins or DNAs and those with chain length ≤10 nt. Finally, using BLASTN program (78), we removed the 

RNA structures with sequence identity > 80% and coverage > 80%. Through the prior operation steps, our training 

set contains 191 RNA structures and the PDB IDs of these 191 RNAs were presented in Table S1 in the Supporting 

Material. It should be noted that a small amount of RNAs in the test sets have sequence identity > 80% and coverage > 

80% with the native RNAs in the training set, and these RNAs were still kept in the training set for maintaining the 

full structure spectrum (65). For these RNAs, the leave-one-out or jackknife method was used for testing the 

performance of rsRNASP (62, 65). 
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Moreover, according to previous works (63, 65) and Section S3 as well as Figs. S2 and S3 in the Supporting 

Material, the distance bin width was taken as 0.3 Å, and the distance cutoffs were set to 13 Å and 24 Å for short- and 

long-ranged potentials in rsRNASP, respectively. For the situation that some atom pairs were not observed within a 

certain bin width, the potentials were set to the highest potential value in the whole potential range of corresponding 

atom pair types, and 𝑘𝐵𝑇 was taken as the unit of potential energy in this work.  

To derive the weight 𝜔 between short- and long-ranged interactions, we used a training decoy set to optimize 

it. First, 35 single-stranded RNAs in our training set were selected, including wide structure spectrum of hairpin loops, 

internal loops, junction loops and tertiary interactions; see the PDB IDs of these 35 RNAs in Table S1 in the 

Supporting Material. Afterwards, for the 35 RNAs, we employed four RNA 3D structure prediction models 

(FARFAR2 (15), RNAComposer (8), SimRNA (19) and 3dRNA v2.0 (13)) to generate about 10 decoy structures for 

each RNA by giving secondary structures parsed by x3DNA-dssr (79) from the webservers with default output 

(FARFAR2 (15), RNAComposer (8) and 3dRNA v2.0 (13)) or first frames of clusters (obtained with a 3.5Å RMSD 

threshold) of a simulated conformation trajectory (SimRNA (19)), thus about 40 decoy structures were generated for 

each RNA. Simultaneously, an RNA length N-dependent function f(N) was involved to normalize the N-dependent 

atom-pair number of the long-ranged interactions due to the large residue-separation range and the consequent N-

dependent atom-pair number, and f(N)= 
−2685

(𝑁+16)0.5 + 542 based on the statistical analyses on the training native set. 

Consequently, 𝑤 = 𝑤0/𝑓(𝑁) and 𝑤0 was chosen to be 16, according to the extensive examinations on the training 

decoy dataset. Please see Section S4 and Figs. S4 and S5 in the Supporting Material for the details of weight w. 

Test datasets 

To evaluate the performance of rsRNASP and make comparisons with other existing statistical potentials, similar 

to previous works (63, 67), three test sets were used in this work, including a new test subset built by ourselves. 

Test set Ⅰ, called randstr decoy set (62), consists of 85 RNAs with decoy structures generated by MODELLER 

(80) with a set of Gaussian restraints for atom distances and dihedral angles, and there are 500 decoy structures for 

each native RNA. Test set Ⅰ can be downloaded from http://melolab.org/supmat/RNApot/Sup._Data.html. Test set Ⅱ 

is composed of decoys built by Bernauer et al (61) and Das et al (14). The former includes two subsets (61): MD 

subset consists of 5 RNAs with about 3500 decoy structures for each RNA generated by replica-exchange molecular 

dynamics simulations with atom position restrained, and NM subset consists of 15 RNAs with 500 decoy structures 

for each RNA generated by normal mode perturbation method. The third subset called FARNA subset is composed 

of 20 RNAs with about 500 decoy structures for each RNA, which was generated by FARNA (14). 
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Test set Ⅲ is composed of RNA-Puzzles_standardized (81) and prediction-model subsets (PM subset). The 

former subset was obtained from RNA-Puzzles, which is a CASP-like evaluation of blind 3D RNA structure 

predictions (81). RNA-Puzzles_standardized subset contains 22 different puzzles and dozens of decoy structures for 

each native RNA from different RNA structure prediction models and can serve as a realistic test set for illustrating 

the performance of a statistical potential in evaluating RNA 3D structures. The older version of RNA-Puzzles 

(Puzzles_normalized) including only 18 puzzles, may have smaller number of decoys for some puzzles compared 

with the updated version. Since the existing RNA statistical potentials were almost often assessed against the older 

version, the test on normalized-submissions was also presented in this work. Furthermore, for more extensive 

examination against realistic decoy structures, we built a new test subset, named prediction-models (PM) subset. 

Specifically, to ensure the sequence identify < 80% and coverage < 80% with RNAs in our training set, 20 single-

stranded RNAs were filtered from recently updated PDB database (5) (2021-03-20). In accordance with the way of 

assembling the training decoy set, given the sequences and secondary structures, 10 decoy structures were generated 

for each RNA by four RNA 3D structure models (FARFAR2 (15), RNAComposer (8), SimRNA (19) and 3dRNA 

v2.0 (13)). Thus, PM subset consists of 20 RNAs with about 40 decoy structures for each native RNA. The RNA-

Puzzles_standardized dataset can be downloaded from https://github.com/RNA-Puzzles/standardized_dataset and the 

PM subset can be found in https://github.com/Tan-group/rsRNASP. 

Measuring RNA structure similarity 

To measure the structural similarity between two RNA structures, the metrics of DI (deformation index) was 

used in addition to root-mean-square-deviation (RMSD), and DI is defined as (83): 

DI(A, B) =
RMSD(A,B)

INF(A,B)
,                                  (6) 

where RMSD(A, B) and INF(A, B) reflects the difference of geometry and topology between structures A and B, 

respectively. INF(A, B)  is the interaction network fidelity between two structures A and B, and is measured by 

Matthews correlation coefficient of base-pairing and base-stacking interactions between A and B (84). If two 

structures occupy the most same interactions, the value of DI would be similar to RMSD, and otherwise, DI value 

would be relatively larger than RMSD. In this work, these two metrics of DI and RMSD were both used, and the 

tools for calculating DI and INF can be downloaded from https://github.com/RNA-Puzzles/BasicAssessMetrics (85). 

RESULTS AND DISCUSSION 

Evaluation metrics 

Generally, the ability of identifying native and near-native structures from corresponding decoy ones and the 
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ability of ranking the decoy structures reasonably can describe the performance of a statistical potential (63). 

Therefore, we used the number of native structures with the lowest energy, the number of native structures within top 

five ones of the lowest energies, enrichment score (ES) (61, 63-65, 67) and Pearson correlation coefficient (PCC) 

(62, 65) calculated by a statistical potential for test sets as evaluation metrics. ES is defined as (61): 

ES =
|𝐸top10% ⋂ 𝑅top10%|

0.1×0.1×𝑁decoys
,                                   (6) 

where |𝐸top10% ⋂ 𝑅top10%|  is the intersection between the top 10% near-native structures (measured by DI or 

RMSD) and the top 10% of the structures with the lowest energies. 𝑁decoys is the total number of decoy structures 

for one native RNA. The value of ES ranges from 1 to 10, and 10 represents the best performance. PCC is given by 

(62): 

    PCC =  
∑ (𝐸𝑛−�̅�)

𝑁decoys
𝑛=1

(𝑅𝑛−�̅�)

√∑ (𝐸𝑛−�̅�)2
𝑁decoys
𝑛=1

√∑ (𝑅𝑛−�̅�)2
𝑁decoys
𝑛=1

,                         (7) 

where 𝐸𝑛 and 𝑅𝑛 are the energy and DI (or RMSD) of the nth structure, respectively. �̅� and �̅� are the average 

energy and DI (or RMSD) of decoys, respectively. The value of PCC ranges from 0 to 1. If the relationship between 

energies and DIs (or RMSDs) is completely linear (PCC is equal to 1), the statistical potential would have a perfect 

performance. 

    In addition, since there are not enough predicted structures (decoys) for each RNA in RNA-

Puzzles_standardized and PM subsets, the DI (or RMSD) of structure with the lowest energy, and the rank of the 

nearest-native structure (DI or RMSD) were used instead of ES values. 

Performance of rsRNASP on test set Ⅰ 

Test set Ⅰ consists of 85 RNAs with decoy structures generated by MODELLER (62), and the RMSDs of decoy 

structures are mainly distributed in a narrow range of [0-6 Å] (65), suggesting that the decoy structures from the 

perturbation method are almost near-native ones. As shown in Table 1, rsRNASP can identify 82 native structures 

out of 85 RNA decoy sets. Thus, in identifying native structures, rsRNASP is apparently superior to RNA3DCNN 

and is slightly better than RASP while is slightly weaker than DFIRE-RNA and 3dRNAscore. RNA3DCNN, RASP, 

3dRNAscore and DFIRE-RNA identify 63, 80, 84 and 85 native structures out of decoy ones of 85 RNAs, respectively. 

In fact, the three native structures unidentified by rsRNASP generally have very low energies close to the lowest ones. 

For a further evaluation, we made statistics on the number of native structures identified within top five ones of the 

lowest energies for the statistical potentials. As also shown in Table 1, rsRNASP could identify 85 out of 85, i.e., 

rsRNASP, DFIRE-RNA and 3dRNAscore have the same top performance. In contrast, RASP and RNA3DCNN 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.20.461161doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461161
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

identify 84 and 79 out of 85, respectively. 

Furthermore, we calculated the average ES and PCC values for test set Ⅰ. As shown in Table S2 in the Supporting 

Material, the average ES values on DIs obtained by rsRNASP, RNA3DCNN, DFIRE-RNA, 3dRNAscore and RASP 

are 8.6, 8.9, 8.7, 9.0 and 9.0, respectively, and the average PCC values on DIs are 0.80, 0.84, 0.81, 0.82, 0.86, 

respectively. The ES and PCC values indicate that for test set Ⅰ, the correlations between DIs and energies are all very 

strong for those five statistical potentials which all reach high performance. Additionally, we calculated average ES 

and PCC values on RMSDs show the similar trend to those on DIs; see Table S2 in the Supporting Material. The 

RMSD-energy scatterplots for all the 85 RNAs in test set Ⅰ by rsRNASP were shown in Fig. S6 in the Supporting 

Material. 

Therefore, for test set I, the performance of our rsRNASP is very close to the top ones of the existing statistical 

potentials (e.g., DFIRE-RNA and 3dRNAscore) and is also at high level in identifying native and near-native 

structures and in ranking decoy structures. 

Performance of rsRNASP on test set Ⅱ 

MD subset composed of 5 RNAs was produced by replica-exchange molecular dynamics simulations (61) and 

the RMSDs of the decoy structures are distributed in a very narrow range of [0-3 Å] (65), suggesting that the decoy 

structures are very close to their native ones. For MD subset, as shown in Table 1, 3 native structures from the decoy 

ones of 5 RNAs are identified by rsRNASP, which is similar to DFIRE-RNA and superior to RASP while is slightly 

weaker than 3dRNAscore and RNA3DCNN. Furthermore, we also calculated the number of native structures 

identified within top five ones of the lowest energies for the subset. As shown in Table 1, rsRNASP identifies 4 out 

of 5 decoy sets, and its performance is superior to RASP while is still slightly lower than RNA3DCNN and 

3dRNAscore. Actually, the native RNA unidentified by rsRNASP is 1nuj, and its energy is ranked to the sixth in the 

corresponding decoy set. On the other hand, we calculated the ES and PCC values for MD subset. As shown in Table 

S3 in the Supporting Material, the average ES value on DIs calculated by rsRNASP is ~7.1, which is higher than that 

of RASP (~6.4) and similar to that of DFIRE-RNA (~7.1) and RNA3DCNN (~7.2) while is slightly lower than that 

of 3dRNAscore (~7.9). Furthermore, the average PCC values on DIs obtained by rsRNASP, RNA3DCNN, DFIRE-

RNA, 3dRNAscore and RASP are 0.81, 0.73, 0.82, 0.75 and 0.74, respectively. Additionally, the ES and PCC values 

calculated on RMSDs show the similar trend to those on DIs; see Table S4 in the Supporting Material. Therefore, for 

MD subset in test set II, the performance of our rsRNASP is very close to the top ones of the existing statistical 

potentials (e.g., 3dRNAscore for identifying near-native structures and DFIRE-RNA in ranking decoy structures). 
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The RMSD-energy scatter-plots of all five decoy sets in MD subset were provided in Fig. S7 in the Supporting 

Material. 

NM subset consisting of decoy structures for 15 RNAs was generated by normal-mode perturbation method (61) 

and the decoy structures are very close to the native ones, as reflected by the very narrow RMSD range of [1-4 Å] 

(65). For NM subset, as shown in Table 1, rsRNASP identifies 13 native structures out of 15 decoy sets, and is slightly 

superior to the existing traditional statistical potentials including DFIRE-RNA, 3dRNAscore and RASP while is 

slightly weaker than RNA3DCNN. It is noted that these two native structures unidentified by our rsRNASP are 1esy 

and 1kka, which were solved by NMR spectroscopy at low salt. The low salt solutions would cause the less compact 

structures for RNAs due to the polyanionic nature of RNAs (86-88). As shown in Table S3 in the Supporting Material, 

the average ES values on DIs calculated by rsRNASP, RNA3DCNN, DFIRE-RNA, 3dRNAscore and RASP are 5.6, 

6.1, 5.4, 6.4 and 5.3, respectively, and the average PCC values for five statistical potentials are 0.89, 0.88, 0.91, 0.90 

and 0.87, suggesting the high performance of these five statistical potentials for NM subset. Additionally, the ES and 

PCC values on RMSDs show the very similar trend to those on DIs; see Table S4 in the Supporting Material. 

Therefore, for NM subset, our rsRNASP is very close to the top statistical potentials (e.g., RNA3DCNN) in 

identifying native structures and ranking decoy structures (e.g., DFIRE-RNA). The RMSD-energy scatter-plots of all 

decoy sets in NM subset were provided in Fig. S7 in the Supporting Material. 

FARNA subset composed of decoy structures of 20 RNAs, was generated by FARNA (14), and the RMSDs of 

decoys are dispersed in the wide range of [1-15 Å] (65). For FARNA subset, as shown in Table 1, rsRNASP, 

RNA3DCNN, DFIRE-RNA, 3dRNAscore and RASP identify 15, 10, 17, 17, and 4 native structures out of 20 RNA 

decoy sets, respectively. Thus, rsRNASP can identify apparently more native structures than RNA3DCNN and RASP, 

while appears slightly worse than DFIRE-RNA and 3dRNAscore. However, Table 1 shows that 17 native RNAs can 

be identified within top five ones of the lowest energies by rsRNASP, i.e., the two unidentified native structures in 

the 17 RNAs also have very relatively low energies calculated by rsRNASP. Thus, rsRNASP has the similar 

performance to DFIRE-RNA and 3dRNAscore and better performance than RNA3DCNN and RASP in identifying 

native structures. As shown in Table S3 in the Supporting Material, for ES and PCC values on DIs, though 

RNA3DCNN performs the best than other statistical potentials, these five statistical potentials all have unsatisfactory 

performances with overall low mean ES values and PCC values. This may be attributed to that the energy landscapes 

composed of the decoy conformations are very rugged with some local energy minimums in addition to the native 

structures with lowest energies. The ES and PCC values on RMSDs were also shown in Table S4 in the Supporting 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 26, 2021. ; https://doi.org/10.1101/2021.09.20.461161doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461161
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

Material and the full RMSD-energy scatter-plots of all decoy sets for FARNA subset were provided in Fig. S7 in the 

Supporting Material. 

Performance of rsRNASP on test set Ⅲ 

Test set III is composed of Puzzles_standardized and PM subsets which are generated from various RNA 3D 

structure prediction models and contains large RNAs with large RMSD range, and consequently test set III can serve 

as a realistic test set for a statistical potential beyond test sets I and II composed of small RNAs or near-native decoy 

structures mainly from perturbation methods. 

RNA-Puzzles_standardized subset consists of dozens of decoy structures from the different 3D structure 

prediction models for 22 different RNA puzzles and was generally considered as a realistic test set for a statistical 

potential in evaluating RNA 3D structures (64, 67, 81). For the subset, as shown in Table 1, our rsRNASP can identify 

16 native structures out of decoys for 22 RNAs, while RNA3DCNN, DFIRE-RNA, 3dRNAscore and RASP identify 

13, 10, 2 and 2, respectively. For native structures identified within top five ones of the lowest energies, rsRNASP, 

RNA3DCNN, DFIRE-RNA, 3dRNAscore and RASP can identify 19, 17, 12, 6 and 6 out of 22 decoy sets, 

respectively; see Table 1. Moreover, as shown in Table 2, the average DIs of structures with the lowest energies from 

rsRNASP, RNA3DCNN, DFIRE-RNA, 3dRNAscore and RASP are 4.6, 5.9, 7.6, 17.1 and 17.8, respectively. As for 

PCC values on DIs, rsRNASP has a higher average PCC value of 0.57, compared with those from DFIRE-RNA 

(~0.52), RNA3DCNN (~0.35), 3dRNAscore (~0.35) and RASP (~0.38). Therefore, overall, for RNA-

Puzzles_standardized subset, our rsRNASP has the apparently better performance in identifying native structures and 

in ranking decoy structures, compared with the other statistical potentials including RNA3DCNN from neural 

network. The ES and PCC values on RMSDs were shown in Table S5 in the Supporting Material, and as an illustrative 

example, the relationships between RMSDs and energies calculated by these five scoring functions for puzzle-10 on 

which rsRNASP revealed the highest PCC value were respectively shown in the Fig. S8 in the Supporting Material. 

Moreover, the full RMSD-energy scatter-plots of all decoy sets in Puzzles_standardized subset obtained by rsRNASP 

were also given in Fig. S9 in the Supporting Material. In addition, for a historic comparison with the existing 

statistical potentials, we also show the evaluations against the Puzzles_normalized dataset in Table 1, as well as Table 

S6 and Table S7 in the Supporting Material, and the full RMSD-energy scatter-plots for Puzzles_normalized subset 

were given in Fig. S10 in the Supporting Material. The evaluations indicate that rsRNASP also has apparently better 

performance than the existing statistical potentials for Puzzles_normalized dataset. 

PM subset is composed of decoys from four RNA 3D structure prediction models for 20 single-stranded RNAs. 
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For PM subset, as shown in Table 1, rsRNASP can identify 16 native structures out of 20 RNA decoy sets, while 

RNA3DCNN, DFIRE-RNA, 3dRNAscore and RASP identify 14, 10, 2 and 2, respectively. Furthermore, Table 1 also 

shows that, for native structures identified within top five ones of the lowest energies, rsRNASP can identify 18 

RNAs, while RNA3DCNN, DFIRE-RNA, RASP and 3dRNAscore can identify 17, 14, 8 and 4 out of 20, respectively. 

Furthermore, as shown in Table 3, for this subset, rsRNASP gives the average DI of the structures with the lowest 

energy of 3.3 and the average PCC value of 0.64, which is apparently better than those from other statistical potentials. 

The evaluations based on RMSDs show the similar trend to those based on DIs; see Table S8 in the Supporting 

Material. As a typical example, the relationships between RMSDs and energies obtained by all five scoring functions 

for 3RKF on which rsRNASP has a high PCC value were respectively shown in the Fig. S8 in the Supporting Material. 

The full RMSD-energy scatter-plots of all decoy sets in PM subset calculated by rsRNASP were given in Fig. S11 in 

the Supporting Material. 

Therefore, for the subsets in Test set III from realistic prediction models, our rsRNASP is always apparently 

superior to the existing statistical potentials in identifying native structures and in ranking decoy ones. 

Overall performance of rsRNASP on all test sets 

In identifying native structures 

Overall, as shown in Table 1, for all the test sets (test sets I and II with small RNAs or near-native decoys mainly 

from perturbation methods, and realistic test set III with large RNAs of large RMSD range from various structure 

prediction models), rsRNASP has apparently the best performance in identifying native structures, since rsRNASP 

can identifying 145 native structures and 157 native structures within top five ones of lowest energies out of 167 

RNA decoy sets. However, such two evaluation numbers are 119 and 148 for RNA3DCNN, 137 and 144 for DFIRE-

RNA, 122 and 129 for 3dRNAscore, and 100 and 117 for RASP, respectively. Furthermore, as shown in Figs. 2A and 

B, rsRNASP can identify 87% native structures and 94% native structures with top five ones with lowest energies 

for all test sets and even for test set III from various structure prediction models, shown in Figs. 2A and B, such two 

percentages can reach 76% and 88%. This indicates the apparently better performance of rsRNASP in identifying 

native structures, especially for the realistic test set III from various structure prediction models. 

In ranking decoy structures 

 As shown in Fig. 2C, rsRNASP has an overall better performance than other statistical potentials in ranking 

decoy structures for all test sets since the average PCC values for all test sets are 0.66 for rsRNASP, 0.62 for 

RNA3DCNN, 0.64 for DFIRE-RNA, 0.57 for 3dRNAscore and 0.55 for RASP, respectively. Such superiority of 
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rsRNASP becomes very apparent for test set III from various 3D structure prediction models, and the PCC value 

from rsRNASP can still reach ~0.61 which is visibly larger than those from RNA3DCNN (~0.41), DFIRE-RNA 

(~0.53), 3dRNAscore (~0.27) and RASP (~0.26). Therefore, overall, rsRNASP performs better than other statistical 

potentials in ranking decoy structures, especially for realistic test set III from various structure prediction models. 

Contributions of short- and long-ranged interactions 

Since our rsRNASP has apparently better performance for test set III, we examined the individual contributions 

of short- and long-ranged interactions against RNA-Puzzles_standardized and PM subsets in test set Ⅲ, as shown in 

Fig. 3 and Table S9 and S10 in the Supporting Material. The short-ranged contribution performs better than long-

ranged one in identifying native structures for both Puzzles_standardized and PM subsets. This indicates that the 

difference between native structures and their corresponding predicted decoy structures can be more effectively 

captured by the short-ranged interactions. Furthermore, in ranking the nearest-native structure (on DIs) and ranking 

decoys (reflected by PCC values on DIs), the long-ranged potential is overall superior to the short-ranged one for 

Puzzles_standardized subset, while for PM subset, the short-ranged potential has better overall performance in these 

two metrics. The different performances of the short-ranged and long-ranged interactions against the two subsets 

from prediction models might come from the different methods for generating the subsets. The decoy structures in 

PM subset were predicted by the four prediction models with given secondary structures from their 3D ones and 

consequently their short-ranged interactions can be better captured by the short-ranged potential extracted from native 

structure ensemble. However, Puzzles_standardized subset was produced by various prediction models possibly 

without given secondary structures in some cases and may contain mis-folded secondary structures, and thus the 

long-ranged potential can relatively make more contribution than the short-ranged one in identifying and ranking 

near-native structures. Certainly, the combination of short-ranged and long-ranged potentials overall performs better 

than the individual short-ranged or long-ranged potential, reflected by the average values of three metrics (DI of 

structure with the lowest energy, rank of the nearest-native structure and PCC). Therefore, the overall excellent 

performance of rsRNASP for different metrics should be attributed to the classification of interaction ranges. 

Ability of capturing physical interactions in RNA 

In the following, we analyzed the interactions captured by the short- and long-ranged potentials in rsRNASP, 

which is responsible for the excellent performance of rsRNASP for the realistic test set III from structure prediction 

models. As a paradigm, Figs. 4A and B show the short-ranged and long-ranged potentials between N9 atom of adenine 

(A) and N1 atom of uracil (U), respectively. In the short-ranged potential, the deepest potential well at the distance 
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of ~7.1 Å is mainly corresponding to the reverse Hoogsteen base-pairing interaction (89), and a weaker potential well 

at the distance of ~ 8.9 Å captures the canonical Watson-Crick base-pairing; see Figs. 4C and D. Here, compared 

with canonical Watson-Crick base-pairing, the reverse Hoogsteen base-pairing mode is more preferred due to the 

low-frequency Watson-Crick base-pairing in the limited short-ranged residue separation. In addition, another 

potential well at the distance of ~5.7 Å represents the intra-loop base interactions separated by two or three residues 

in the loop region; see Fig. 4E. In the long-ranged potential, as shown in Fig. 4B, there are four local potential wells 

within the distance of 10 Å. The two deepest ones at the distances of ~8.9 Å and ~7.1 Å capture the Watson-Crick 

and the reverse Hoogsteen base-pairing interactions between A and U, respectively; see in Figs. 4C and D. Besides, 

the interaction between the nearest diagonal AN9 and UN1 in helix region also appears at ~7.1 Å; see Fig. 4F. 

Moreover, the other two potential wells at the distance of ~4.1 Å and ~5.0 Å correspond to the different kinds of 

tertiary base-stacking interactions, including base-stacking between two residues in two adjacent branches of RNA 

3D structures (e.g., tetraloop receptor), coaxial-stacking at junction region and base-stacking in triple-helical region; 

see Figs. 4G-I and Fig. S12 in the Supporting Material.  

As shown above, compared with a potential without distinguishing residue separation (61, 63), the short- and 

long-ranged potentials can capture more interaction information and especially, the long-ranged potential can capture 

some kinds of tertiary interactions, which should be responsible for the good performance of rsRNASP for the 

realistic test set III from structure prediction models. 

Discussion 

The most important difference between rsRNASP and other statistical potentials for RNAs is the classification 

of the short- and long-ranged interactions in rsRNASP. Such classification for interaction ranges may extract more 

details in the potentials such as reverse Hoogsteen base-pairing and some tertiary base-stacking interactions described 

above. Furthermore, for extracting short- and long-ranged potentials, we employed the average and the random-walk 

reference states, respectively. Such hybridization of a database-based reference state and a physical model-based one 

may bring a complementary effect for a potential (65). Moreover, the very strong local (connectivity-related) 

interactions within two residue separations were excluded in building rsRNASP, and consequently the nonlocal 

interactions for stabilizing global/tertiary structures becomes more important in rsRNASP, which would be helpful 

for evaluating global structures of large RNAs. The above-described treatments involved in rsRNASP should 

contribute to the apparently higher overall performance of rsRNASP than the existing statistical potentials for the 

realistic test set III. 
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Here, we would also like to discuss the performance of the existing top statistical potentials or scoring functions. 

The excellent performance on test sets I and II and very weak performance on test set III for 3dRNAscore may come 

from the involvement of local torsional angle potential, which emphasizes the local structure information and 

consequently under-reflects the long-ranged structure information (63). The relatively good performance on test set 

II and test set III and weak performance on test set I for RNA3DCNN may be attributed to its training decoy sets 

containing numerous decoys from MD simulations and Rosetta structure prediction model which may bring a bias 

for evaluating RNA decoy sets generated by MD method and from structure predictions (67). The overall modestly 

good performance of DFIRE-RNA for different test sets may be attributed to the balance between short-ranged and 

long-ranged structure information through using a large bin width (64). The overall worst performance of RASP may 

come from the lower resolution of atom types and limited structure data in the training set (62). 

CONCLUSIONS 

In this work, we have developed a novel knowledge-based potential (rsRNASP) for RNA 3D structure 

evaluation. rsRNASP was built through distinguishing short- and long-ranged interactions and through using different 

reference states and training on a non-redundant training native set and a training decoy set. We also built an 

additional realistic decoy test subset (PM subset) for benchmark test. The extensive tests against the available test 

sets indicate that, overall, rsRNASP has consistently good performance for test sets Ⅰ, Ⅱ and III, especially for the 

realistic test set III including two subsets from realistic structure prediction models. Furthermore, rsRNASP performs 

visibly better than existing statistical potentials for the realistic test set III. It is encouraging that our “traditional” 

rsRNASP is superior to the recently developed RNA3DCNN from 3D convolution neural network. 

Of course, rsRNASP (and other “traditional” statistical potentials) can be furtherly improved for more accurate 

evaluation on RNA 3D structures. First, the reference states can be circumvented through some treatments such as 

iterative technique since the employed reference states may still deviate largely from the ideal one (52, 55). Second, 

other geometric parameters such as torsional angle and orientation beyond atom-atom distance can be involved to 

enhance the description of the relative relationship between atoms or atom groups (29, 55, 63). Third, the 

classification of interaction ranges can become more subtle and more interaction ranges would bring more weight 

parameters and consequently more accurate evaluation for structures (55, 71). Fourth, a multi-body (three- or four-

body) potential can be supplemented to a pair-wise one which would improve the description on atom-atom 

distributions (65, 66). Finally, a statistical potential is still limited by the limited RNA native structures in PDB, and 

it can be improved with the increase of the number of RNA structures deposited in PDB database (55). Additionally, 
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for a statistical potential from training through neural network, more extensive training decoy set built from extensive 

methods would effectively diminish the training bias of a statistical potential and certainly improve its ability in 

evaluating RNA 3D structures.  

AVALIABLITY 

rsRNASP and the relevant databases are available at website https://github.com/Tan-group/rsRNASP.  
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Table 1. The number of identified native structures and the number of structures identified within top five ones of the 

lowest energies (in brackets) by rsRNASP and other existing statistical potentials. 

RNA data sets 
Statistical potentials 

rsRNASP RNA3DCNN DFIRE-RNA 3dRNAscore RASP 

Test set Ⅰ 82 (85)/85 63 (79)/85 85 (85)/85 84 (85)/85 80 (84)/85 

Test set Ⅱ_MD 3 (4)/5 4 (5)/5 3 (4)/5 5 (5)/5 1 (2)/5 

Test set Ⅱ_NM 13 (14)/15 15 (15)/15 12 (12)/15 12 (12)/15 11 (11)/15 

Test set Ⅱ_FARNA 15 (17)/20 10 (15)/20 17 (17)/20 17 (17)/20 4 (6)/20 

Test set Ⅲ_ Puzzles_normalized 13 (17)/18 12 (15)/18 9 (11)/18 2 (5)/18 1 (5)/18 

Test set Ⅲ_Puzzles_standardized 16 (19)/22 13 (17)/22 10 (12)/22 2 (6)/22 2 (6)/22 

Test set Ⅲ_PM 16 (18)/20 14 (17)/20 10 (14)/20 2 (4)/20 2 (8)/20 
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Table 2. The DIs of structures with the lowest energy, ranks of the nearest-native structure (DI) and Pearson 

correlation coefficients between energies and DIs of decoy structures calculated by rsRNASP and other statistical 

potentials for Puzzles_standardized subset in test set Ⅲ. 

  DI of structure with the lowest energy Rank of the nearest-native structure (DI) Pearson correlation coefficient (PCC) 

RNA length rsRNASP RNA3DCNN DFIRE-RNA 3dRNAscore RASP rsRNASP RNA3DCNN DFIRE-RNA 3dRNAscore RASP rsRNASP RNA3DCNN DFIRE-RNA 3dRNAscore RASP 

rp01 46 0.0 0.0 0.0 6.5 6.5 6 6 7 7 9 0.50 0.56 0.48 0.19 0.22 

rp02 100 0.0 2.8 4.3 4.3 4.3 4 6 3 4 5 0.65 0.44 0.36 0.29 0.42 

rp03 84 0.0 21.6 0.0 21.6 21.6 11 6 10 10 8 0.60 0.47 0.55 0.44 0.45 

rp04 126 5.0 5.1 4.7 4.8 4.8 16 14 21 15 20 0.49 0.51 0.58 0.56 0.61 

rp05 188 0.0 0.0 0.0 0.0 0.0 2 2 1 11 6 0.44 0.65 0.63 0.76 0.76 

rp06 168 19.2 0.0 19.2 40.5 45.0 2 7 2 5 7 0.78 0.32 0.69 0.22 0.07 

rp07 185 33.3 31.6 31.6 34.1 31.6 15 28 17 16 9 0.62 0.23 0.62 0.23 0.28 

rp08 96 0.0 0.0 0.0 0.0 12.4 13 10 19 12 6 0.70 0.47 0.74 0.34 0.64 

rp09 71 8.6 8.7 9.1 8.8 8.7 1 8 3 5 2 0.87 0.59 0.93 0.74 0.82 

rp10 171 0.0 12.7 12.5 12.5 12.5 7 11 12 14 13 0.94 0.81 0.78 0.53 0.70 

rp11 57 16.5 16.5 7.5 7.5 16.5 39 26 46 46 27 -0.24 0.17 -0.26 -0.11 -0.08 

rp12 125 17.8 0.0 23.1 18.1 18.1 38 15 33 27 26 0.83 0.27 0.78 0.76 0.78 

rp13 71 0.0 0.0 0.0 26.5 11.1 5 45 1 27 24 0.82 0.30 0.83 0.68 0.79 

rp14_bound 61 0.0 0.0 16.0 7.8 9.6 19 1 19 1 9 0.43 0.62 0.28 0.55 0.52 

rp14_free 61 0.0 0.0 7.8 13.9 13.9 1 10 1 6 3 0.66 0.14 0.49 0.23 0.34 

rp15 68 0.0 0.0 21.7 30.4 25.0 45 25 36 30 50 0.52 0.09 0.54 0.37 0.33 

rp17 62 0.0 0.0 0.0 11.6 50.1 22 23 7 39 43 0.54 0.06 0.56 0.41 0.32 

rp18 71 0.0 0.0 0.0 24.6 18.5 7 4 5 12 19 0.66 -0.13 0.58 0.03 0.08 

rp19 62 0.0 23.0 0.0 23.0 23.0 13 39 22 53 45 0.23 0.13 0.00 -0.22 -0.23 

rp20 68 0.0 0.0 0.0 23.6 24.7 24 19 23 28 31 0.44 0.21 0.38 0.07 -0.17 

rp21 41 0.0 8.8 8.8 34.2 34.2 4 39 9 35 36 0.48 0.17 0.54 0.10 0.12 

rp24 112 0.0 0.0 0.0 22.3 0.0 1 31 2 5 2 0.52 0.65 0.29 0.51 0.59 

Average 4.6 5.9 7.6 17.1 17.8 13.4 17.0 13.6 18.5 18.2 0.57 0.35 0.52 0.35 0.38 
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Table 3. The DIs of structures with the lowest energy, ranks of the nearest-native structure and Pearson correlation 

coefficients between energies and DIs of decoy structures calculated by the different statistical potentials for test set 

Ⅲ_PM subset. 

  DI of structure with the lowest energy Rank of the nearest-native structure Pearson correlation coefficient (PCC) 

RNA length rsRNASP RNA3DCNN DFIRE-RNA 3dRNAscore RASP rsRNASP RNA3DCNN DFIRE-RNA 3dRNAscore RASP rsRNASP RNA3DCNN DFIRE-RNA 3dRNAscore RASP 

1Z43 101 0.0 27.4 32.7 23.6 15.1 22 33 27 18 24 0.66 0.53 0.49 0.03 0.07 

3A3A 86 4.8 4.2 15.5 30.0 13.9 6 5 14 14 18 0.85 0.90 0.63 0.65 0.64 

3IVN 69 0.0 0.0 0.0 8.3 0.0 1 5 6 26 28 0.48 0.49 0.31 0.14 -0.16 

3L0U 73 0.0 0.0 0.0 15.8 10.7 1 2 16 20 26 0.80 0.76 0.76 -0.34 -0.53 

3LA5 71 0.0 0.0 0.0 0.0 30.5 1 1 1 15 14 0.88 0.57 0.87 0.04 -0.36 

3RKF 67 0.0 0.0 1.1 12.9 15.4 3 1 6 11 3 0.95 0.69 0.97 0.47 0.48 

3SKI 68 0.0 0.0 0.0 11.8 14.0 2 3 6 12 7 0.89 0.80 0.82 0.23 0.21 

4AOB 94 0.0 0.0 0.0 14.9 22.8 1 1 1 23 17 0.78 0.69 0.69 -0.39 -0.34 

4FEN 67 0.0 0.0 0.0 12.0 35.4 2 3 2 14 12 0.86 0.59 0.88 0.04 -0.30 

5D5L 77 0.0 0.0 0.0 24.2 14.3 10 6 11 14 20 0.72 0.47 0.54 0.41 0.38 

5FJC 93 0.0 0.0 0.0 25.8 0.0 1 7 1 19 6 0.86 0.72 0.84 -0.35 -0.06 

5SWD 65 0.0 0.0 0.0 6.7 7.5 3 1 1 4 3 0.69 0.27 0.38 0.61 0.60 

6C27 47 9.7 12.3 11.7 9.7 11.4 5 10 4 4 3 0.60 0.69 0.46 0.69 0.74 

6E8S 38 0.0 22.7 21.2 21.6 21.1 30 29 25 32 33 0.26 -0.07 0.34 -0.09 -0.05 

6JQ6 81 33.3 42.1 32.3 32.9 32.3 7 30 9 9 8 0.21 -0.03 0.03 -0.03 -0.05 

6TFE 52 0.0 0.0 12.5 0.0 15.6 35 30 33 29 29 0.38 -0.04 0.37 -0.01 -0.25 

6VMY 148 0.0 0.0 48.0 27.0 29.8 13 12 14 2 11 0.47 0.42 0.46 0.68 0.65 

7D82 50 17.7 14.6 9.0 14.6 17.7 10 3 23 25 21 -0.03 -0.09 -0.10 -0.33 -0.34 

7K16 51 0.0 0.0 0.0 5.2 5.2 2 6 3 1 1 0.73 0.25 0.65 0.66 0.66 

7KJU 75 0.0 0.0 20.5 19.8 27.0 7 28 13 4 4 0.66 0.74 0.42 0.71 0.74 

Average 3.3 6.2 10.2 15.9 17.0  8.1 10.8 10.8 14.8 14.4 0.64 0.47 0.54 0.19 0.14 
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Figure 1. Flow chart of building and testing steps of rsRNASP. 
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Figure 2. (A) The percentages of the number of identified native structures, (B) the percentages of the numbers of 

native structures identified within top five ones of lowest energies, and (C) the average values of PCCs on DIs by 

different statistical potentials for the whole test sets (test sets I+II+III) and test set Ⅲ, respectively. Here, the PCC 

values for the whole test sets and for test set III were averaged over the mean values of individual test set and subsets 

since decoys in a test set or subset were generated with a same method and generally have similar structure features. 

It is noted that the performance on test set III was explicitly shown because test set III is considered as a realistic test 

set in which decoy structures were generated from various 3D structure prediction models. 
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Figure 3. (A) The number of identified native structures, (B) the average rank of the nearest-native structures, and 

(C) the average value of PCCs on DIs by short-ranged and long-ranged interactions, and by the whole potentials of 

rsPNASP for Puzzles_standardized and PM subsets in test set Ⅲ, respectively.   
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Figure 4. (A) Short-ranged and (B) long-ranged potentials between AN9 and UN1 in rsRNASP. (C) and (D) 

Representative distances between AN9 and UN1 for reverse Hoogsteen (C) and Watson-Crick (D) base-pairing 

interactions. (E) Representative distance between AN9 and UN1 for intra-loop base interaction in the short-ranged 

potential (PDB ID: 4GXY). (F)-(I) Representative distances between AN9 and UN1 for the nearest diagonal base 

interaction of A-form helix (F), base-stacking interaction of two residues in adjacent branches of RNA 3D structure 

(G) (PDB ID: 6DME), base-stacking interaction of triple-helical region (H) (PDB ID: 3P22) and coaxial-stacking 

interaction at junction region (PDB ID: 4QK9) in the long-ranged potential, respectively. Please see Fig. S12 for the 

complete 3D structures for panels G-I. 
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