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SUMMARY (150 WORDS) 

Glioblastoma (GBM) is the most aggressive brain tumor with a median survival of ~15 months. Targeted 

approaches have not been successful in this tumor type due to the large extent of intratumor 

heterogeneity. Mosaic amplification of oncogenes suggests that multiple genetically distinct clones are 

present in each tumor. To uncover the relationships between genetically diverse subpopulations of 

GBM cells and their native tumor microenvironment, we employed highly multiplexed spatial protein 

profiling, coupled with single-cell spatial mapping of fluorescence in situ hybridization (FISH) for EGFR, 

CDK4, and PDGFRA. Single-cell FISH analysis of a total of 35,843 single nuclei (~2,100 per tumor) 

revealed that tumors in which amplifications of EGFR and CDK4 more frequently co-occur in the same 

cell exhibit higher infiltration of CD163+ immunosuppressive macrophages. Our results suggest that 

high throughput assessment of genomic alterations at the single cell level could provide a measure for 

predicting the immune state of GBM. 
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INTRODUCTION 

Glioblastoma multiforme (GBM) is the most heterogeneous and aggressive brain malignancy, with an 

average survival of 15-18 months post-diagnosis (Wen et al., 2020). Even through GBM’s frequency of 

3 cases per 100,000 people in the U.S is moderate, this disease causes high morbidity and mortality, 

as only 6.8% patients survive beyond 5 years post-diagnosis (Wen et al., 2020). This poor prognosis 

has not changed significantly in recent decades. Combination of chemotherapy and radiation is the 

only treatment providing significant clinical benefit, yet on average it prolongs patients’ life by only 4 

months (Wen et al., 2017). Despite a growing understanding of the disease biology, therapies targeting 

molecular features in GBM have been failing in clinical trials (Aldape et al., 2019). 

 

Challenges to effective treatment of GBM are fueled by the large extent of its intratumor heterogeneity. 

Recent advances in molecular profiling have unraveled the complexity underlying GBM cellular diversity 

at the genetic, epigenetic and phenotypic levels. Genetically, GBMs are characterized by a complex 

mutational landscape with a large degree of inter- and intratumor heterogeneity (J.-K. Lee et al., 2017; 

McKenna et al., 2013; Sottoriva et al., 2013). Gains in chromosome 7 and loss of chromosome 10 are 

common events predicted to arise early in tumor evolution (Ozawa et al., 2014). Frequent amplifications 

of several receptor tyrosine kinases (RTK), including EGFR, PDGFRA and MET, have been explored 

as potential therapeutic targets in GBM (Wen et al., 2020). However, despite successful trials in other 

malignancies, tyrosine kinase inhibitors have not been found to provide significant benefit to GBM 

patients (Rich et al., 2004; Wen et al., 2020; 2006). In addition to the adaptability of cellular signaling 

in response to RTK inhibition, genetic intratumor heterogeneity further contributes to GBM resistance 

(Nicholson and Fine, 2021). In particular, RTK-encoding gene amplifications, PDGFRA, EGFR and 

MET, have been shown to frequently co-occur in the same GBM sample, yet not in the same cells 

(Snuderl et al., 2011; Szerlip et al., 2012). Thus, genetic mosaicism of GBM is one of the key obstacles 

for effective treatment of these tumors. 
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Inter- and intratumor heterogeneity of gene amplifications is also linked to the diversity of phenotypes 

identified in GBM. Initial transcriptional profiling of bulk tumor tissue revealed that GBMs can be 

classified into three subtypes: classical-like (CL), proneural (PN) and mesenchymal (MES) (Verhaak et 

al., 2010; Q. Wang et al., 2017). Each of these transcriptional subtypes is associated with increased 

frequency of specific genetic alterations. EGFR amplification and loss of CDKN2A/B are typical for 

classical-like GBM, CDK4 and PDGFRA amplifications for proneural GBM, and NF1 loss is associated 

with a mesenchymal transcriptional program (Q. Wang et al., 2017). Despite this discovery, the 

restriction to the proneural tumor type in clinical trials for PDGFRA inhibition did not increase the 

treatment success rate (Wen et al., 2020). Advances in single cell transcriptomics revealed that each 

GBM tumor, regardless of subtype reported by bulk profiling, is in fact a mixture of cells belonging to 

different subtypes (Garofano et al., 2021; Neftel et al., 2019; Patel et al., 2014). One of the most recent 

classifications of cells based on single cell expression profiling identified four major cellular states 

(Neftel et al., 2019). This classification also points to gene amplifications as potent drivers of intratumor 

heterogeneity, as each of the cellular states is associated with a distinct genetic alteration: 

oligodendrocytic precursor cell-like (OPC-like) with PDGFRA amplification, neural progenitor cell-like 

(NPC-like) with CDK4 amplification, astrocytic cell-like (AC-like) with EGFR amplification and 

mesenchymal-like (MES-like) with NF1 loss (Neftel et al., 2019). While transitions between these cell 

types can occur, each genetic driver favors a particular transcriptional state of the cell. Thus, 

assessment of copy number alterations (CNA) for EGFR, CDK4 and PDGFRA amplifications at the 

single cell level in situ may provide information about cellular diversity within distinct tumor 

microenvironments. 

 

In situ heterogeneity of GBM, observed as a large extent of variability of histological features, is 

characteristic for this tumor type and forms the root of the name “multiforme”. The disordered tissue 

structure as well as non-uniform contrast enhancement in magnetic resonance imaging (MRI) point to 

a high degree of macroscopic diversity within these tumors (O'Connor et al., 2015). Characteristic 
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pathological features of GBM include areas of pseudopalisading, organized alignment of viable cells 

surrounding the necrotic regions, and microvascular proliferation (Tomaszewski et al., 2019). These 

different tumor microenvironmental types are often intermixed in the tumor tissue. While the 

mechanisms that generate these features are not fully understood, it is thought that pseudopalisades 

are created by tumor cells rapidly migrating away from a necrotic site (Brat et al., 2004). These necroses 

arise due to vaso-occlusion caused by intravascular thrombosis and cells in pseudopalisades activate 

the HIF1alpha hypoxia response (Rong et al., 2006; Tehrani et al., 2008). Interestingly, the perinecrotic 

areas and perivascular regions, constituting drastically different environments, were both shown to 

support GBM stem-like cells, rare subpopulations with increased epigenetic plasticity and potentially 

higher resistance to standard treatment (Calabrese et al., 2007; Janiszewska et al., 2012; Lathia et al., 

2015; Leder et al., 2014; Prager et al., 2019). Constant changes in the tumor microenvironment 

between a highly oxygenated, nutrient-rich state and a hypoxic state with collapsing vasculature could 

significantly affect the survival of distinct cell subpopulations in these microenvironments. Thus, to 

survive, GBM cells may need to adapt to these new selective pressures. Yet, this adaptation is not 

necessarily cell-autonomous; instead, the maintenance of intratumor heterogeneity in GBM may be 

dependent on interactions between genetically diverse GBM cell subpopulations and may be driven by 

differences in and interactions with specific microenvironments.  

 

Since the four major subtypes of GBM cells, while remaining plastic, are largely determined by 

underlying genetic aberrations, we aimed to study how genetically constricted populations interact with 

each other in the context of the tumor microenvironment of intact clinical tissue specimens. To this end, 

we performed a spatial analysis of protein markers and single cell quantification of CDK4, EGFR and 

PDGFRA copy number in 17 GBM samples in multiple areas of each biopsy. The increased power of 

single cell automated quantification allowed us to identify tumors with high odds ratio of CDK4 and 

EGFR co-amplification in the same cells. We found that the microenvironment of tumors with co-

amplified cells was significantly enriched in infiltrating immune cells as compared to tumors with fewer 
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co-amplified cells. Our results suggest that a quantification of genetic heterogeneity based on large-

scale single cell measurements in individual biopsies could help identify biologically distinct GBM tumor 

groups.   
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RESULTS 

To investigate the relationship between the spatial localization of cells with different genotypes and 

their microenvironmental preferences, we constructed a tissue microarray (TMA) from 17 formalin-fixed 

paraffin-embedded (FFPE) GBM cases (Supplemental Table 1). From each tumor block, 3-4 cores 

were randomly selected (61 in total) to investigate the patterns of local intratumor heterogeneity within 

each tumor biopsy (Fig. 1a). Since these samples were of variable age and embedded in paraffin 

blocks, they could not be used for transcriptomic studies; however, formalin-fixed paraffin embedding 

and prolonged storage in ambient temperature does not impede immunohistochemistry or DNA-based 

studies. Thus, we used our multi-region TMA of intact tissue samples from each tumor for single cell 

assessment of select genomic features by fluorescence in situ hybridization (FISH) and specific-to-

allele PCR-FISH (STAR-FISH) as well as protein expression using NanoString’s GeoMx Digital Spatial 

Profiling (DSP) platform. 

 

GeoMx DSP data reveals local heterogeneity in tumor microenvironmental marker expression 

To characterize the extent of variation in the local GBM tumor microenvironment within distinct regions 

of the same tumor biopsy, we employed a spatial profiling platform based on highly multiplexed 

immunostaining with oligonucleotide-tagged antibodies (Fig. 1a). GeoMx DSP allows quantification of 

oligo-tags released by UV-illuminated regions of interest (ROI), which can be selected based on 

immunofluorescent staining for a few markers. DSP enables simultaneous antibody staining for tens of 

markers and control antibodies, providing more robust quantification compared to fluorescence-based 

methods. In our assay, multicolor immunofluorescent staining with markers of glial cells (GFAP), 

immune cells (CD45) and vasculature (α-SMA) was used to select ROIs within each TMA core 

(Supplemental Fig. 1a). Despite the small size of each core (1 mm in diameter), many of the cores 

display varied morphology and expression levels for GFAP, CD45 and α-SMA within the core (Fig. 1b). 

We selected 96 regions of interest (ROI) out of the 61 cores present on the TMA (see Methods), with 

multiple (2-3) ROIs in cores with heterogeneous immunofluorescent staining (Supplemental Fig. 1a). 
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These ROIs were then subjected to GeoMx digital spatial profiling for 79 protein markers associated 

with glioblastoma biology, neurobiology and immunology (Fig. 1a,b, Supplemental Table 2). The data 

were normalized to positive controls from the External RNA Controls Consortium (ERCC) and IgG 

isotype controls per ROI to account for differences in hybridization efficiency, background signal, 

cellularity, and size of ROIs (see Methods). We then performed a multi-level analysis of correlation in 

expression patterns across tumors and a quantification of intra- versus inter-tumor expression 

heterogeneity based on ROI- and core-specific expression patterns. 

 

We found that the expression levels of the immune markers CD68, HLA-DR, CD11b, CD45, IBA1, 

CD163, and CD14 were correlated across all tumors (mean Spearman correlation 0.76, range 0.57-

0.92, for clusters; Fig. 1c). A similar trend was observed for the TAU protein and its phosphorylated 

versions, except for phosphor-TAU S404 (Spearman correlation >0.69; Fig. 1c). Negative correlation 

was observed between clusters of immune (including CD68, HLA-DR and CD11b) and neuronal 

markers (Park5, SNCA-filament, SYP, MBP, among others), with a cluster-wise Spearman coefficient 

of -0.48, p = 0.052 (see Methods). A strong correlation was also observed between the expression of 

Lef1 and Rspo2, two proteins of the Wnt signaling pathway, and Satb2, a protein of the TCF/LEF 

pathway (Spearman correlation coefficients 0.88 and 0.93, respectively, and a Spearman correlation 

coefficient of 0.74 between Lef1 and Rspo2). These proteins have been implicated in stemness and 

promotion of a cancer stem cell phenotype (Clevers et al., 2014; Huang et al., 2020; Rheinbay et al., 

2013). 

 

In several cases, expression levels of the 79 markers were variable between cores derived from the 

same tumor in several cases (Supplemental Fig. 1b). Since the TMA cores represent spatially distant 

regions of the same tumor fragment with possibly different compositions, we assessed the variance of 

protein expression between ROIs from distinct tumors relative to the variance within tumors using the 

Kruskal-Wallis H test. Overall, we found that the variance of our 79-protein markers expression panel 
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between tumors exceeded the variance within tumors (Fig. 1d). Particularly high inter-tumor relative to 

intra-tumor variance was observed for several immune related proteins (CD45, HLA-DR, IBA1, P2RX7, 

YKL-40), as well as for EGFR and p53, which are both frequently overexpressed and mutated in human 

GBM (Barthel et al., 2019; McKenna et al., 2013) and can drive tumorigenesis in animal models of 

glioma (J. H. Lee et al., 2018; Z. Wang et al., 2020). The neuronal markers NEFL, MBP, and Park5 

also exhibited higher relative inter-tumor variance.  On the other hand, vascular cell adhesion molecule 

(VCAM), and CD31, both associated with endothelial cell function and tumor vascularization (Weis and 

Cheresh, 2011), exhibited comparatively high expression variance between regions within the same 

tumor sample, suggesting that within a single biopsy of GBM there is high variability in blood vessel 

distribution (Supplemental Fig. 2a,b) and even a single biopsy is likely to contain differentially 

vascularized niches. 

 

This result prompted us to assess the histopathological features of each TMA core to identify which 

protein markers may be specific for different tissue compositions (Supplemental Fig. 2). Tissue 

composition assessment based on hematoxylin/eosin staining confirmed expected variation in 

hemorrhage and necrosis areas within cores from the same tumor (Supplemental Fig. 2c). However, 

classification of each core according to the most dominant histopathological feature did not reveal 

protein expression correlation patterns (Supplementary Fig. 2d), possibly as a consequence of cores 

containing mixed features. 

 

Characterization of single cell genetic heterogeneity in GBM multicore TMA 

Amplifications of EGFR, PDGFRA, and CDK4 occur frequently in GBM and are often present in the 

same tumor in different cellular populations. Each of these genetic alterations is associated with driving 

a particular transcriptional state (Neftel et al., 2019). The analysis of the spatial localization of cells 

harboring these genetic drivers could therefore be revealing of their microenvironmental preferences 

and interactions. To address this question, we performed multiplexed FISH for EGFR, PDGFRA and 
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CDK4 on our multi-region TMA (Fig. 2a, Supplemental Fig. 3a). Using an automated single cell FISH 

signal counting platform, we quantified the number of FISH signals in each individual nucleus imaged 

(n=35,843 nuclei, on average 2,335 nuclei per tumor, 216 nuclei per image, 166 images). Amplification 

of a gene was called when ≥ 6 FISH signals of a respective probe were found in a nucleus (see 

Methods). We found that PDGFRA amplification was relatively rare, detected in less than 2% of all 

cells analyzed, and we therefore focused on the amplification patterns of EGFR and CDK4, 

independently of PDGFRA amplification status. Each cell was assigned to one of the following 

genotypes: E (EGFR amplified and not CDK4 amplified), C (CDK4 amplified and not EGFR amplified), 

EC (EGFR and CDK4 amplified), and N/O (no amplification of either EGFR or CDK4). We observed 

significant variation in the overall frequency of cells of each amplification genotype within each TMA 

tumor (Fig. 2b-d). Although several tumors had relatively high E cell frequency, C and EC cells were 

found in most of the analyzed samples. A calculation of the Shannon index of diversity (Magurran, 

2005) of genotype prevalence within each image (Fig. 2d) shows variation between distinct cores taken 

from the same biopsy, further suggesting that the extent of heterogeneity differs within relatively small 

tumor regions. 

 

About half of all cells quantified in our samples were identified as N/O. This cell population could include 

cancer cells with distinct genotypes, without high copy number amplification of EGFR and CDK4 genes 

but with other genetic alterations. It could also include cells of the tumor microenvironment that have a 

normal (non-amplified) genotype. Correlation of N/O cells frequency with DSP-based protein 

expression did not reveal a distinct identity of this population (Supplemental Fig. 3b). However, we 

found a negative correlation between the N/O cell frequency and expression of Olig2 (Spearman 

correlation -0.75, adjusted p-value 0.044). Our protein expression profiling found Olig2 expression to 

be strongly correlated with Sox2 expression (Spearman coefficient 0.81, adjusted p-value 0.007), 

although within the N/O population the negative correlation with Sox2 expression did not reach 

statistical significance. Both Olig2 and Sox2 are often expressed at high levels by GBM tumor cells 
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(Verhaak et al., 2010; Q. Wang et al., 2017). Thus, low abundance of these proteins in N/O cells could 

indicate that a large proportion of these cells is of non-tumor origin.  

 

Since cells with distinct genotypes based on the three selected amplifications were found in almost all 

tumors analyzed, we investigated whether there were any relationships between the proportions of 

these cell types in a tumor (Fig. 2e, Supplemental Fig. 3c). The prevalence of N/O cells in a tumor 

was negatively correlated with E cell frequency (Spearman correlation -0.91, adjusted p-value 1.7x10-

6) and EC cell frequency (Spearman correlation -0.79, adjusted p-value 3.9x10-4), both of which were 

positively correlated with each other (Spearman correlation 0.78, adjusted p-value 5.7x10-3). EC cell 

frequency was also positively correlated, albeit more weakly, with C cell frequency (Spearman 

coefficient 0.66, adjusted p-value 5.7x10-3). No strong correlation was found between C and E cell 

frequency and a weak one was identified between C and N/O cell frequency (Spearman coefficient -

0.52, adjusted p-value 0.04; Supplemental Fig. 3c).  

 

Next, we sought to establish whether the tumor genotypes based on bulk tissue sequencing could be 

linked to diversity of single cell-based copy number-derived genotypes. Targeted sequencing of 50 

genes using the OncoPanel (see Methods) showed only few mutations present in each tumor in our 

cohort and no clear distinction between tumors could be made based on these genetic alterations 

assessed in bulk (Supplemental Fig. 3d, Supplemental Table 3). 

 

hTERT promoter hotspot mutations have been reported as one of the drivers of GBM (Körber et al., 

2019; McKenna et al., 2013), yet they were not included in the targeted sequencing panel we used. To 

assess the frequency and spatial localization of cells harboring the hotspot mutation C228T in the 

hTERT promoter region, we performed in situ single cell mutation detection using the STAR-FISH assay 

(Janiszewska et al., 2015) on our multi-region GBM TMA (Supplemental Fig. 4). We found that the 

majority of the cores in the TMA contain over 50% TERT mutant cells, hetero- and/or homozygous (Fig. 
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2f). There was significant variation between distinct cores taken from different regions of the same 

tumor (Supplemental Fig. 4d). We did not observe any correlations between the ratio of cells with 

hTERT promoter mutation and the frequency of N/O cells, i.e. cells lacking EGFR, CDK4, and PDGFRA 

amplifications, most likely due to the heterogeneous nature of the N/O population (Supplemental Fig. 

4e). 

 

Together, these results show that single cell-based FISH quantification identifies a high prevalence of 

hTERT mutations and of cells harboring CDK4, EGFR and dual amplifications. These genetic 

alterations coexist in the majority of the GBM samples tested and exhibit a large extent of heterogeneity 

and distinct relationships in their frequencies. 

 

Single cell genotypes stratify tumors by co-occurrence of EGFR and CDK4 in the same cell 

versus distinct cell populations 

Since amplifications of EGFR, PDGFRA, and CDK4 were previously shown to correlate with the 

presence of transcriptionally distinct cell states in GBM (Neftel et al., 2019), cells harboring a 

combination of these genetic events could gain dual properties or have new distinct phenotypes. Our 

dataset of single cell genotypes allows for an investigation of differences between tumors in which 

these alterations tend to co-occur in the same cell and tumors in which they are more likely to be found 

in distinct cell populations. We therefore calculated the odds ratio of detecting co-amplified cells within 

a tumor for each of our 17 GBM cases. Since PDGFRA amplification was rare in our dataset, we again 

focused on EGFR and CDK4 amplifications. The odds ratio (OR), as defined here, represents the 

likelihood that a cell harboring an EGFR amplification also harbors a CDK4 amplification relative to the 

likelihood of a CDK4 amplification unaccompanied by an EGFR amplification. At OR = 1, the presence 

of an amplification of one of these genes has no effect on the probability of the other gene being 

amplified. An OR above (below) unity therefore implies an increased (decreased) tendency for EGFR 

and CDK4 amplifications to co-occur in the same cell over what would be expected if the presence of 
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one amplification had no effect on the presence of the other. The OR calculation (see Methods) 

accounts for all relative frequencies of the cells with distinct genotypes (C, E, CE, N/O) within a tumor. 

Using the OR values, we separated the tumors into 3 classes based on OR tertiles (n=6, n=5, and n=6): 

ORlow, where there is decreased tendency for EGFR and CDK4 same-cell co-amplification (OR is 

significantly below unity); ORhigh, where there is increased tendency for same-cell co-amplification (OR 

is significantly above unity); and tumors where there is no strong effect either way (OR near unity) (Fig. 

3a,b, Supplemental Table 4). Frequency of E cells (EGFR amplification alone) and N/O cells (lacking 

EGFR and CDK4 amplifications) was significantly different between ORhigh and ORlow groups, while C 

and EC cells were similarly distributed across all tumors (Fig. 3c). Thus, low OR can be driven by 

increased frequency of cells harboring only the EGFR amplification. While the median frequency of 

cells with hTERT promoter mutation was similar across the OR groups, ORlow tumors had significantly 

higher variability in hTERT mutation frequency (Fig. 3c). Interestingly, the average copy number of 

EGFR in E cells is significantly higher in ORlow tumors (Fig. 3d; mean 9.7 copies in ORlow vs 7.8 copies 

in ORhigh, Mann-Whitney test p-value 0.015) and also exhibits higher variability in ORlow tumors, as 

indicated by the Shannon diversity index (Fig. 3f). CDK4 copy number diversity remained similar 

between ORlow and ORhigh tumors (Fig. 3e,f). 

 

The in situ single-cell genotyping dataset contains spatial coordinates for each nucleus recorded in an 

image. This dataset thus enabled us to compute the distance between cells with distinct genotypes in 

ORlow and ORhigh tumors. In comparison with ORlow tumors, E cells in ORhigh tumors are farther away 

from each other (Mann-Whitney test p-value 0.02; Fig. 3g), while no significant difference in C cell 

distances was found between ORlow and ORhigh tumors (distances shown are relative to N/O-N/O cell 

distances in order to normalize for variability in tissue density). Calculation of the between-cluster sum 

of squares to total sum of squares, which informs about the clustering of individual cell types, showed 

that in ORhigh tumors C cells have a tendency toward tighter clustering within the tissue (Mann-Whitney 

test p-value 0.046, Fig. 3h).  
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Overall, our results suggest that the nature of EGFR amplification in E cells in tumors with lower 

prevalence of CDK4 co-amplification may be qualitatively different from that observed in E cells in 

ORhigh tumors. A possible explanation for the higher EGFR copy number frequency and diversity 

observed in ORlow tumors is that in these tumors EGFR amplification could be generated by 

extrachromosomal DNA fragments.  

 

Single cell EGFR-CDK4 amplification co-occurrence is associated with an immunosuppressive 

tumor microenvironment 

Since the ORlow and ORhigh tumor groups exhibit distinct cellular composition and distribution properties 

with respect to EGFR and CDK4 copy number alterations, we sought to identify whether any proteins 

are differentially expressed between these tumor groups. We found that ORhigh tumors were highly 

enriched in proteins associated with immune cell infiltration and an immunosuppressive 

microenvironment (CD163, IBA1, CD14, CD45, CD11b, HLA-DR; Fig. 4a), whereas these markers 

were downregulated in ORlow tumors. These markers additionally showed a trend towards a negative 

correlation with EGFR protein expression (Spearman correlation coefficient range -0.28 to -0.59; Fig. 

4b), although these correlations were not statistically significant. 

 

Among the other immune-related proteins in our expression panel, CD163, a marker of 

immunosuppressive macrophages, showed the highest mean difference in expression between the 

ORhigh and ORlow tumor groups, suggesting enrichment of immunosuppressive cells (Fig. 4a,b). 

Immunofluorescent staining of the original sections from ORlow and ORhigh tumors confirmed the striking 

difference in infiltration by CD163+ cells (Fig. 4c). Our results suggest that tumors classified based on 

the odds ratio of EGFR and CDK4 co-occurrence at the single-cell level have different tumor 

microenvironments and that a higher relative frequency of co-amplification of these genes may promote 

a more immunosuppressive state. The presence of immunosuppressive macrophages and CD163 
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expression in the tumor has been previously linked with GBM patient survival (Liu et al., 2019; Zeng et 

al., 2020). In line with this, using CPTAC (L.-B. Wang et al., 2021) and TCGA (McKenna et al., 2013) 

datasets for CD163 protein and transcript level-based stratifications, respectively, we observed that 

GBM patients with higher CD163 expression tend to have somewhat shorter survival times, however 

in these datasets the differences are not significant (Fig. 4d-e).    
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DISCUSSION 

The insight provided by single cell studies into the diversity of genomic alterations can drive a deeper 

understanding of the subclonal structure of tumors not afforded by bulk tumor sequencing-based 

approaches. Key to this understanding is the interaction of a generally heterogeneous tumor 

microenvironment with subclonal-level changes. In this study, we aimed to gain a close-up view of this 

complex landscape through an integrative study of multi-region amplification and proteomic data in 

GBM biopsy samples. We identified distinct subclonal amplification patterns and associated 

microenvironmental properties and observed substantial spatial heterogeneity across all features that 

were profiled.  

Central to these findings is our identification of the odds ratio of EGFR-CDK4 co-amplification as an 

indicator of distinct alteration and expression trends. This quantity is a subclonal-level property that can 

be obtained from single cell data, but that is unavailable to bulk tumor sequencing studies. The odds 

ratio is based on the relative prevalence of distinct amplification-based cell types. High intratumor 

heterogeneity of these genetically-defined subpopulations may especially hamper the ability of bulk 

sequencing studies to identify distinct and prognostically-relevant patterns related to the extent of 

amplification occurrence and co-occurrence. This fact is exemplified in our study, as EGFR and CDK4 

amplifications (irrespective of PDGFRA amplification status) co-occur in 6.6% of nuclei analyzed, yet 

in 8 out of 17 of the tumors the frequency of these dual-amplified cells was more than three times higher 

than that in at least one imaged region. PDGFRA amplification was rare in our small dataset, and since 

our cohort is rich in EGFR amplified cases and a trend for mutual exclusivity between EGFR and 

PDGFRA amplification had previously been observed (Brennan et al., 2013; Szerlip et al., 2012), a 

larger cohort would likely be required to capture the relationships between PDGFRA amplification and 

the occurrence of CDK4 and EGFR amplifications. 
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In our dataset, EGFR-amplified cells in tumors with a lower EGFR-CDK4 co-amplification odds ratio 

had a higher average copy number and increased copy number diversity of EGFR. It is possible that 

EGFR amplification in extrachromosomal DNA (ecDNA) may explain these observations. ecDNA, 

circularized DNA fragments found in GBM and other tumors, contain an oncogene together with an 

enhancer element, allowing for increased gene expression (Dogan-Artun et al., 2019; Turner et al., 

2017; Wu et al., 2019). The circularized form as well as lack of telomeres and centromeres contribute 

to highly efficient replication of ecDNA, which can then be asymmetrically divided between daughter 

cells in mitosis (Verhaak et al., 2019). This in turn can result in a large copy number of the oncogene 

and increased heterogeneity without the fitness penalty associated with large genomic alterations. In 

GBM, extrachromosomal amplification of EGFR is well documented (deCarvalho et al., 2018; Vogt et 

al., 2004). Thus, it is possible that our analysis identified tumors harboring ecDNA EGFR as a distinct 

class of tumors, associated with low immune marker expression and high levels of EGFR protein.  

 

Our results demonstrate that higher relative frequencies of cells with co-amplification of EGFR and 

CDK4 (or lower relative frequencies of cells harboring EGFR amplification alone) are associated with 

higher expression of immune markers, showing that ORhigh tumors are likely highly infiltrated by immune 

cells. We found the strongest differential expression for CD163, a scavenger receptor expressed in 

macrophages and monocytes and a classical marker of M2/immunosuppressive polarization (Chen et 

al., 2019). This observation suggests that the immune cells infiltrating ORhigh tumors may be 

predominantly of an immunosuppressive phenotype. The small size of our cohort (n=5-6 per group) 

precludes survival analysis; however, high expression of CD163 alone has been previously associated 

with poor outcome (Lisi et al., 2017; Liu et al., 2019; Zeng et al., 2020). Tumor infiltration by the 

immunosuppressive macrophages is a well-established hallmark of decreased survival for GBM 

patients (Quail and Joyce, 2017; Tomaszewski et al., 2019).  
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The link between GBM immune status and underlying genetic alterations in the tumor was explored in 

several studies. Most notably, inactivating mutations of the NF1 gene were shown to be associated 

with increased expression of macrophage-related signatures (Luoto et al., 2018; Q. Wang et al., 2017). 

Tumor-infiltrating lymphocytes are depleted in tumors representing the classical-like subtype, harboring 

EGFR amplification and PTEN deletion (Rutledge et al., 2013). This finding is consistent with our 

observation that tumors with low EGFR-CDK4 odds ratio, which are also enriched with cells with high 

EGFR copy number, had lower expression of immune markers. Interestingly, our data show that higher 

relative prevalence of cells with dual CDK4 and EGFR amplification was associated with a macrophage-

enriched tumor microenvironment. This effect cannot be explained by the presence of CDK4, as this 

amplification alone has been linked to lower macrophage infiltration and fewer CD4+ T cells in tumor 

bulk analysis (Luoto et al., 2018). Our findings therefore suggest that a subpopulation of GBM cells 

harboring a low level of EGFR amplification that co-occurs with amplification of CDK4 is likely to elicit 

different immunological effects than subpopulations of cells with a single amplification. Further 

investigation of how these genetically distinct subpopulations interact with each other and with the cells 

of their native microenvironment will be necessary to exploit these properties as new therapeutic targets.  

 

Our study suggests that the assessment of co-amplification of EGFR and CDK4 at the single-cell level 

by FISH could serve as a proxy of immune status. Standard immunofluorescence to assess immune 

infiltration is often difficult to quantify due to variation in staining intensity driven by technical issues and 

imaging modality, and most notably due to limitations in accurate cell segmentation during image 

processing. Relying on a DNA-based nuclear signal of a FISH assay alleviates these challenges, as 

there is much less ambiguity about nuclear borders and speckle count compared to relative intensity of 

staining quantification. Quantification of FISH in thousands of cells could be easily implemented in a 

standard pathology lab setting, as our analyses were all done using open-source software and 

thresholding of the signal is easier to benchmark for FISH than for immunohistochemistry-based 

methods.  Thus, the copy number alteration status of subclonal populations of cells within a tumor could 
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serve as a representation of tumor-intrinsic properties that can be linked to tumor microenvironmental 

status. Future studies of larger cohorts, including samples from clinical trials targeting CKD4, EGFR or 

macrophages, will shed more light on the utility of single cell FISH signal quantification as a prognostic 

and predictive tool. Our study provides evidence that the presence of genetically distinct subpopulations 

is associated with differences in the tumor microenvironment.   
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FIGURE LEGENDS 

 

Figure 1. Spatial profiling reveals regional heterogeneity in protein expression between distinct 
areas of the same GBM biopsy. a) Schematic of tumor microarray (TMA) construction and digital 

spatial profiling (DSP) for protein marker expression. GBM biopsies from 20 patients were embedded 

in paraffin blocks. From each block 3-4 cores were punched to construct a multiregion TMA. In DSP 

assay, staining with 79 protein marker-specific antibodies labeled with photocleavable oligo-tags were 

used. UV light exposure of a region of interest (ROI) releases the tags, which are then quantified for 

each ROI separately. b) Example of two cores with low (left) and high (right) heterogenous staining  

used to select regions-of-interest for DSP. Large circle – full core size (1mm diameter), small circles – 

selected ROIs. c) Spearman correlations between all profiled markers. Groups of markers with the 

strongest correlations are marked. d) Relative inter-tumor to intra-tumor variability, as indicated by the 

H statistic (see Methods), in the expression of each protein. 

 
Figure 2. Single-cell characterization of EGFR, PDGFRA, CDK4 amplifications and hTERT 
promoter mutations in a multiregion GBM TMA. a) Summary of the workflow for FISH signal 

quantification in individual nuclei. Three images were taken per each TMA core and each imaged area 

was segmented, based on the nuclear outlies for counting of each FISH signal in individual nuclei. 

Based on presence of gene amplifications, each nucleus is classified as a distinct genotype. b) Overall 

frequency of cells with FISH-based genotypes. c) Proportion of cells with the E, C, and EC genotypes 

shown in individual images in each tumor. E – cells with amplified EGFR and no CDK4 amplification, 

C – cells with amplified CDK4 and no EGFR amplification, EC – cells with amplification of both EGFR 

and CDK4. d) Heterogeneity of cells (measured by the Shannon index) across the E, C, EC and N/O 

(N/O = not amplified in either CDK4 or EGFR) genotypes within each tumor. Each data point represents 

an image. Distinct colors represent different cores of the same tumor. e) Correlations between 

proportions of cells with distinct genotypes, with each point representing the ratio of the genotype within 

a tumor (i.e. consisting of all cells imaged within that tumor). Spearman correlation coefficients and p-

values adjusted for multiple comparisons are shown along with best-fit curves. f) Within-core frequency 

of cells harboring TERT promoter mutation. 

 
Figure 3. Single-cell genotypic classification of tumors based on relative proportions of cells 
with EGFR and EGFR+CDK4 amplifications. a) Odds ratios for presence of CDK4 amplification in 

the same cell as EGFR amplification, relative to cells with CDK4 amplification alone. Odds ratio (OR) 

tertiles are shown in different colors. b) Representative images of EGFR and CDK4 FISH in tumors 
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with low (Tumor 1) and high (Tumor 17) odds ratio. Gray – DAPI, green – EGFR FISH, magenta – 

CDK4 FISH. Scale bar – 50μm. c) Distribution of frequencies of E, C, EC, and N/O cells as well as cells 

harboring TERT promoter mutations in low- and high-OR tumors. P-values from a Mann-Whitney test 

of distributional differences are shown. d) Distributions of per-tumor mean EGFR copy number in E 

cells across the defined OR groups. e) Distributions of per-tumor mean CDK4 copy number in C cells 

across the defined OR groups. f) Diversity (per-tumor Shannon index) of EGFR or CDK4 copy number 

in single- and dual-amplified cells across the OR groups. g) Distributions of within-image distances 

between cells of different genotypes relative to distances between non-amplified-to-non-amplified cells 

in low- and high-OR tumors. h) Clustering of cells with distinct genotypes. BCSS/TSS represents the 

ratio of the between cluster sum of squares to the total sum of squares and provides a measure for the 

extent of clustering of each noted genotype, with a higher ratio indicating tighter clustering. All p-values 

shown in the above subfigures were obtained from Mann-Whitney tests. Colors of tumor groupings are 

indicated in (a). Genotypes are denoted as E – cells with amplified EGFR and non-amplified CDK4, C 

– cells with amplified CDK4 and non-amplified EGFR, EC – cells with amplification of both EGFR and 

CDK4, N/O – cells not amplified in either EGFR or CDK4. Each point within the displayed distributions 

represents a single tumor, with weighted averages (by cell number) employed for image-wise quantities 

(distances and clustering). 

 
Figure 4. EGFR and CDK4 co-amplification odds ratio-based tumor groups have distinct protein 
expression patterns that are associated with immune infiltration and differential survival 
outcomes. a) Differential protein expression between odds ratio-based tumor groups. Each sample is 

a weighted mean of expression levels in individual ROIs in that tumor. Only proteins exhibiting a Mann-

Whitney test p-value < 0.05 are shown (p-values shown above). Underlined proteins are markers of 

immune cells. b) Tumor-wise correlations between the differentially expressed proteins of panel a). c) 
Representative images of CD163 staining in the tumors with the highest and lowest co-amplification 

odds ratios in the dataset (left) and CD163+ cell quantification (right). FOV – field of view. Scale bar - 

50μm. d) Survival analysis performed on the CPTAC dataset (L.-B. Wang et al., 2021) for patients 

stratified into top and bottom tertiles (n=31 and n=30, respectively) based on CD163 protein level. Log-

rank test p-values and Cox proportional hazard ratio (HR) values (age- and sex-adjusted, see Methods) 

are shown with a 95% confidence interval in brackets. Shaded areas represent confidence intervals. e) 
Survival analysis performed on the TCGA Firehose Legacy dataset for patients stratified into top and 

bottom tertiles (n=170 for each group) based on CD163 mRNA expression level. Log-rank test p-values 

and Cox proportional hazard ratio (HR) values (age- and sex-adjusted, see Methods) are shown with 

a 95% confidence interval in brackets. Shaded areas represent confidence intervals. 
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SUPPLEMENTAL FIGURE LEGENDS 
 
Supplemental Figure 1. Spatial profiling ROI selection, clustering, protein expression and 
heterogeneity. a) TMA morphology marker staining and ROI selection for digital spatial protein profiling. 

For cores with heterogeneous expression of CD45 (red), GFAP (green) and SMA (yellow), more than 

one ROI was selected. b) Unsupervised hierarchical clustering of ROIs based on expression level of 

79 protein markers. Tumor IDs are color-coded.  

 
Supplemental Figure 2. Histopathology of TMA cores and correlations with protein expression.  
a) Blood vessel quantification based on immunofluorescent ROI images. Vessel count was normalized 

to ROI area. Colors represent core of origin form each ROI. b) Representative image of Tumor 16 ROIs 

with low (left) and high (right) blood vessel count. Scale bar – 100μm. c) TMA core histology. Each bar 

represents a core, grouped by tumor ID. Tissue fraction occupied by tumor cells, normal brain, necrosis 

or hemorrhage was assessed based on H&E staining. d) Association between histopathological 

features in individual TMA cores and protein expression.  Hierarchical clustering of core-level protein 

expression levels (average of ROI-level expression, weighted by number of nuclei in an ROI, for all 

ROIs in a core) shown alongside a histopathological categorization for each core. The scale bar 

represents the normalized expression level. 
 

Supplemental Figure 3. Validation of FISH and STAR-FISH assays. a) FISH for EGFR, CDK and 

PDGFRA on histogel FFPE samples made from glioma cell lines with known amplification of the gene. 

Metaphase FISH on HEK293T cells is also shown. Scale bar - 25 μm. b) Correlation of protein 

expression with non-amplified cell fraction for the 10 most strongly (negatively and positively) correlated 

proteins. c) Correlations between proportions of C (harboring CDK4 amplification and no EGFR 

amplification) and N/O (no amplification of either EGFR or CDK4) cells and proportions of C and E 

(harboring EGFR amplification and no CDK4 amplification) cells. Spearman correlation values and 

adjusted p-values are shown. d) Mutations identified by OncoPanel in 20 GBM tumors from which the 

TMA was derived. * - tumor 7 and 20 DNA extraction was successful, however the quality of the tissue 

on TMA was not sufficient for FISH analysis, thus these tumors were excluded from all TMA analyses. 

ClinVarID – clinical significance of the variants.  

 
Supplemental Figure 4. In situ single-cell TERT promoter mutation quantification. a) Schematic 

of STAR-FISH assay for TERT promoter mutation detection in situ. 1st round of the in situ PCR amplifies 

the TERT promoter region potentially harboring the mutation. In 2nd round of the in situ PCR 
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mismatched primers specifically amplify only the template harboring the C228T mutation, allowing for 

hybridization of a fluorescent probes to the overhangs within the PCR product. b) Validation of TERT 

promoter mutation PCR specificity on DNA extracted from wild-type (HEK293T) or mutant (U87) glioma 

cell lines. Arrows indicate the expected product size of 150bp. c) Validation of TERT promoter mutation-

specific STAR-FISH, performed on intact U87 xenograft and a human GBM sample. U87 xenograft was 

subject to the assay in presence or absence of DNA polymerase (+/- Pol). Expected regional 

heterogeneity in human GBM sample was confirmed by digital droplet PCR results. Scale bar – 50μm. 

d) Proportion of cell with TERT promoter mutation in each tumor. Each datapoint represents an image. 

e) Correlations between proportions of cells with distinct genotypes. TERTp - TERT promoter mutation. 

E –cells with EGFR amplification only. C –cells with CDK4 amplification only. EC –cells with EGFR and 

CDK4 amplification. N/O – cells with no EGFR or CDK4 amplification. Spearman correlation coefficients 

and p-values adjusted for multiple comparisons are shown. 
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MATERIALS AND METHODS 

Human tissue samples 

All experiments with use of human tumor tissue were approved by Scripps Research IRB protocol #IRB-

18-7209 and Mount Sinai Medical Center IRB. Formalin-fixed paraffin embedded (FFPE) tissue blocks 

were provided by Dr. Cristina Vincentelli, Mount Sinai Medical Center, under IRB exemption for 

discarded tissue. GBM pathology was confirmed for each block by a board-certified neuropathologist. 

The cohort was comprised of 20 cases (10 female, 10 male) of GBM and one recurrence. Clinical 

details are shown in Supplemental Table 1. Tissue microarray (TMA) was constructed by manually 

selecting four distant areas within each block, cores of 1mm diameter were punched. H&E staining of 

the TMA was used to assess presence of hemorrhage, microvascular proliferations, and necrosis within 

each core, done by board certified pathologist, blinded to the other data derived from TMA.  

 

DNA sequencing 

DNA was extracted from 30um sections of each FFPE GBM block, before cores for TMA construction 

were removed, using QiaAmp DNA FFPE Tissue Kit (Qiagen) and libraries were prepared using 

AmpliSeq Cancer HotSpot Panel v2 kit (Illumina). This panel targets 2800 COSMIC mutations in 50 

oncogenes and tumor-suppressor genes. The libraries were sequenced using 2x150bp MiSeq format. 

For analysis DNA Amplicon Workflow version 3.24.1.8+master was used. Sequences were aligned to 

reference human genome hg19 using BWA-MEM Whole Genome Aligner version 0.7.9a-isis-1.0.2. 

Over 99.5% on-target aligned reads were reported for each sample, base mismatch was ~ 0.24%. 

Variant calling was done with Pisces Variant Caller 5.2.9.23, Illumina Annotation Engine 2.0.11-0-

g7fb24a09, Bam Metrics v0.0.22, SAMtools 0.1.19-isis-1.0.3.  

 

GeoMx digital spatial profiling (DSP) 

FFPE TMA was profiled using the commercial GeoMX DSP platform (Nanostring). TMA was stained 

with three fluorescent visualization markers, GFAP (GBM cells and astrocytes), CD45 (immune cells), 
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and αSMA (endothelial cells) and two panels of UV-cleavable oligo-labeled antibodies (Suppl. Table 

XX). Stained slides were then digitally scanned, and 96 regions of interest (ROI) were selected based 

on the fluorescent channels, at least one ROI per TMA core. For TMA cores which displayed 

heterogeneity for the fluorescent markers, two ROIs were selected. Selected ROIs were UV-illuminated 

to release the conjugated oligos and quantified on the nCounter system (Nanostring). 

 

Fluorescence in situ hybridization (FISH) 

Bacterial artificial chromosome clones RP11-339F13 (EGFR gene), RP11-231C18 (PDGFRA gene), 

RP11-571M6 (CDK4 gene) were obtained from BACPAC Genomics (formerly BACPAC Resources at 

Childern’s Hospital Oakland Research Institute) and validated by PCR and FISH on xenografts with 

known amplification status (Supplemental Fig. 3). FISH probes were generated by Nick Translation 

(Abbott Molecular, 07J00-001) using fluorescent dUTPs (Abbott Molecular, 02N32-050). The FFPE 

TMA slide that was used in GeoMx DSP was de-mounted, washed in a series of increasing ethanol 

concentration solutions and incubated with hybridization solution containing 1:1:1 ratio of fluorescently 

labeled FISH probes, human COT1 DNA (Invitrogen, 15279011) and Vysis CEP hybridization buffer 

(Abbott Molecular, 07J36-001) at 74ºC for 7min and then at 37 ºC overnight. The slide was then washed 

for 2min with 0.4x SSC/0.3% NP-40 at room temperature, 0.4x SSC/0.3% NP-40 at 74ºC, 2x SSC/0.1% 

NP-40 at room temperature and 2x SSC at room temperature; buffers made with UltraPure 20x SSC 

(Invitrogen, 15557044) and NP-40 (Sigma, 13021). After wash with PBS and H2O, the slide was dried 

and mounted with ProLong Gold Antifade mountant with DAPI (Invitrogen, P36931). Imaging was 

performed on Olympus FV3000 confocal microscope (Olympus), for each TMA core three z-stack 

images were taken and maximum projections were used to quantify signals from the three fluorescent 

channels in each individual nucleus (ImageJ macro available upon request).  

 

STAR-FISH 
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The PCR conditions specific for hTERT C228T promoter mutation were optimized on DNA extracted 

from U87 (hTERT C228T mutant) and DBTRG cells (hTERT C228 WT) with primers F1: 

5’CTATGGTTCCAGGC CCGTTC3’, R1: 5’GGCTCCCAGTGGATTCGC3’ in first round and F2: 

5’TGTCGACGCAAAACCGGTTCCGGCCCAGCCCTTT3’, R2: 5’GCGATATGACGACGCGAATAC 

CCACGTGCGCAGC3’ in second round (IDT). 1st round PCR reactions were set with 2.5 mM MgCl2, 

200 μM dNTPs (with 3:1 mix of 7-deaza-dGTP:dGTP; dNTPs from New England Bio Labs, cat#N0446, 

7-deaza- 2’-deoxy-GTP from Roche, cat#10988537001), 0.8 M Betaine (Alfa Aesar, cat#J77507VCR), 

200 nM of each primer and 0.125 U of Platinum Taq Polymerase (Life Technologies, cat#10966083). 

After initial denaturation at 95 °C for 1 minute, 10 steps of 3 cycles each (95°C - 30 seconds, Tannealing - 

30 seconds, 72°C - 20 seconds) were performed, starting at Tannealing = 70°C ending  at Tannealing = 61°C 

with ∆Tannealing = -1°C between steps. Then 10 cycles were performed at Tannealing = 60°C (95°C - 30 

seconds, 60°C - 30 seconds, 72°C - 20 seconds), followed by final extension at 72°C for 1 minute. PCR 

conditions for 2nd round PCR were 2 mM MgCl2, 200 μM dNTPs (with 3:1 7-deaza-dGTP:dGTP), 250 

nM of each primer, with 0.2 U of Platinum Taq Polymerase. After initial denaturation at 95 °C for 1 

minute, 18 steps of 3 cycles each (95°C - 30 seconds, Tannealing - 30 seconds, 72°C - 20 seconds) were 

performed, starting at Tannealing = 70°C ending  at Tannealing = 53°C with ∆Tannealing = -1°C between steps. 

Then 15 cycles were performed at Tannealing = 58°C (95°C - 30 seconds, 58°C - 30 seconds, 72°C - 20 

seconds), followed by final extension at 72°C for 1 minute. 

Specific-to-allele PCR-FISH was performed as described previously(Janiszewska et al., 2015). Briefly, 

after deparaffinization the FFPE TMA slide was treated with Proteinase K (20ug/ml, ThermoFisher 

AM2548) and subjected to two rounds of in situ PCR with a mixture of primers specific to the hTERT 

C228T mutation. After in situ PCR, the slide was washed in a series of increasing ethanol concentration 

solutions and hybridization of a probe specific to the PCR product (/5FAM/ 

+T+G+TCGACGCAAAACCGG+T+T+C (+ indicates LNA modified bases), custom made by Life 

Techonologies, working stock 25 μM) was performed at 74ºC for 7min and continued overnight at 37oC. 

After post-hybridization washes, as in FISH protocol, the slide was mounted with ProLong Gold Antifade 
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mountant with DAPI (Invitrogen, P36931). Imaging, 3 images per core, and image analysis was 

performed as for the FISH experiment (modified ImageJ macro from our previous work (Janiszewska 

et al., 2021)). This quantification allowed for classification of each individual nucleus as WT or MUT for 

hTERT promoter mutation and downstream analysis was performed using R software. 

 

Immunofluorescent staining 

After deparaffinization, the FFPE sections were subject to antigen retrieval solution pH9 (Dako, S2367) 

for 20 min in a steamer. Blocking with 10% goat serum (ThermoFisher, 31873) in PBST at room 

temperature was followed by incubation with primary antibody for CD163 (Abcam, ab182422, 1.4ug/ml 

working solution) at 4°C overnight. Next, the slides were washed 3 times with PBS and incubated for 

1h at room temperature with goat anti-rabbit AlexaFluor-568 (ThermoFisher, Invitrogen A-1101, 5ug/ml 

working solution). After washes with PBS, the slides were mounted with with ProLong Gold Antifade 

mountant with DAPI (Invitrogen, P36931). Images were taken using Olympus FV3000 confocal 

microscope (Olympus) and image stitching was performed with CellSense (Olympus). 

 

Statistical analysis 

GeoMX proteomic analysis 

Tumor-level (core-level) protein expression was calculated from ROI-level protein expression as a 

weighted (by ROI nucleus number) average over all ROIs in a tumor (core) and min-max rescaled to a 

[0,1] range for each protein to enable global comparison. Tumor-level expression profiles were used in 

calculating Spearman correlations between proteins and performing hierarchical clustering on the 

dataset (Fig. 1c). ROI-level expression was used for establishing the relative inter-tumor to intra-tumor 

variability in protein expression via the Kruskal-Wallis H test (Python SciPy) (Fig. 1d). Here, each tumor 

constitutes a group, with within-group samples constituting all ROIs within a tumor. All p-values except 

where indicated are at the p < 0.01 significance level after FDR adjustment for multiple comparisons. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.461080doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461080


Cluster-wise correlation between a cluster of immune markers and a cluster of neuronal markers 

(Spearman -0.48, p-value 0.052) was computed as the correlation between cluster scores comprising 

the sum of normalized protein levels for all proteins in the cluster, with distinct clusters indicated in Fig. 

1c. 

 

Single-cell genotype analysis 

Cores for which no GeoMX data was available were removed from the analysis of both amplifications 

and hTERT mutations due to tissue quality concerns. Cells were considered to be amplified in a gene 

𝑔 if at least 6 copies of 𝑔 were recorded in that nucleus location, analogous to the HER2 FISH scoring 

guidelines of the American Society of Clinical Oncology/College of American Pathologists (Li et al., 

2020). Coordinates for which 50 or greater copies of any gene were recorded were removed from the 

dataset as these likely represent overlapping cells. The Shannon diversity index for genotypic diversity 

in each individual image 𝑖 (Fig. 2d) was computed as 𝐻! = −∑ 𝑅",! log 𝑅",!"∈𝒢 , where 𝑅",! represents 

the proportion (if nonzero) of cells of genotype	𝐺 in image 𝑖 out of the set 𝒢 of four genotypes: E, C, EC, 

and N/O. Tumor-level genotype proportions were computed by combining data from all images in a 

particular tumor. Spearman correlations between proportions (Fig. 2e, Supp. Fig. 3c) were computed 

based on tumor-level proportions using the R Hmisc package, with p-values FDR-adjusted for multiple 

comparisons. Best-fit lines shown in Fig. 2e were obtained with an inverse (y = a/x + b) curve fit (Python 

SciPy) (top panels; negative Spearman coefficient) and linear fits (Python NumPy polyfit) (bottom 

panels; positive Spearman coefficient). Computation of minimum relative distances (Fig. 3g) was done 

by calculating in each image 𝑖, for each cell 𝑐 of genotype 𝐺, the Euclidean distance 𝑑","
(')  to the nearest 

cell of the same genotype and the Euclidean distance 𝑑",any
(')  to the nearest cell of any genotype. The 

minimum relative distance for genotype 𝐺 in image 𝑖 is then given by  

0R),*2 = 3
d),)
(+)

d),any
(+) 5

+∈𝒞𝒾,𝒢

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.461080doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461080


where 𝒞𝒾,)  is the set of all cells of genotype 𝐺  in image 𝑖 . Computation of clustering properties 

proceeded by implementing k-means clustering (Python scikit-learn) in each image 𝑖 for all cells 𝑐 ∈

𝒞𝒾,). The optimal number of clusters (from 2 to 5) was selected by finding the highest Silhouette score. 

The total sum of squares (TSS) was computed as Euclidean distances between all 𝑐 ∈ 𝒞𝒾,) and the 

mean of 𝑐, 𝑐 ∈ 𝒞𝒾,𝒢. The between cluster sum of squares (BCSS) was then computed as the difference 

between the TSS and the within cluster sum of squares, as given by the inertia property of the clusters 

obtained. 

 

Integrative analysis 

The odds ratio of EGFR and CDK4 co-amplification (EC genotype) is given by the odds of a cell being 

co-amplified given that it is amplified in EGFR relative to the odds of a cell being co-amplified given that 

it is not amplified in EGFR, OR = (𝑁EC/𝑁E)/(𝑁C/𝑁N/O).  The OR was computed in each tumor 

separately by combining data from all images in the tumor (Fig. 3a). For subsequent analysis, tumors 

were divided based on their computed OR into tertiles representing low-OR (ORlow), middle-OR, and 

high-OR (ORhigh) tumors. To determine statistical significance of distributional differences between the 

top and bottom tertiles in copy numbers (Fig. 3a), distances (Fig. 3g), clustering (Fig. 3h), and protein 

expression (Fig. 4a) a Mann-Whitney test (Python SciPy) was employed. Associated proteomic 

analysis (Fig. 4a,b) employed tumor-level expression data, processed as described above. 

 

Survival analysis 

Separate analyses were carried out on clinical and proteomics data from Wang et al. (Cancer Cell 

2021) and on clinical and mRNA expression levels (U133 microarray) TCGA Firehose Legacy dataset. 

In each case, clinical data was combined with CD163 expression data to fit a Cox proportional hazard 

model (Breslow’s method), adjusted for patient age and sex, and compute a 95% CI. IDH-mutant 
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tumors were excluded from the analysis. The Python lifelines package was used to fit the model, obtain 

Kaplan-Meier curves, and perform a log-rank test. 
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